
528
IEICE TRANS. FUNDAMENTALS, VOL.E89–A, NO.2 FEBRUARY 2006

PAPER

An Enhanced BSA for Floorplanning

Jyh Perng FANG†a), Yang-Shan TONG††, and Sao Jie CHEN††, Nonmembers

SUMMARY In the floorplan design of System-on-Chip (SOC), Buffer
Site Approach (BSA) has been used to relax the buffer congestion problem.
However, for a floorplan with dominant wide bus, BSA may instead worsen
the congestion. Our proposed Enhanced Buffer Site Approach (EBSA) ex-
tends existing BSA in a way that buffers of dominant wide bus can be dis-
tributed more evenly while reserving the same fast operation speed as BSA
does. Experiments have been performed to integrate our model into an iter-
ative floorplanning algorithm, and the results reveal that buffer congestion
in a floorplan with dominant wide bus can be much abated.
key words: floorplanning, buffer insertion, routing, dominant wide bus

1. Introduction

As modern VLSI technology advances, a significant fraction
of un-routable designs are caused by congestion. Typically,
congestion was estimated during the routing phase. How-
ever, congestion estimation at the routing stage frequently
lengthens the design time because a design failed in rout-
ing or buffering should be returned to the preceding stage
for re-design. To shorten the design time, estimating con-
gested localities is preferred before the actual routing stage.
Specifically, locating congested wires and congested buffers
of a floorplan design is indispensable.

There exist two methodologies for congestion estima-
tion, the probabilistic method [1]–[3] and the actual num-
ber method [4]–[7]. Both methodologies divide a floorplan
into grids; the former evaluated congestion of each grid by
accumulating probabilities that wires are predicted to pass
through and buffers predicted to be inserted; the latter eval-
uated congestion of each grid by accumulating numbers that
wires are actually passing through and buffers actually in-
serted. For the latter methodology, there exist two further
approaches, the first is to calculate buffer locations before
routing, the second is to route before buffering. Following
the first approach, Cong et al. [4] proposed a buffer block
planning (BBP) method to allocate buffers into feasible re-
gions (FR’s). Sarkar et al. [5] expanded FR’s into indepen-
dent feasible regions (IFR’s) such that more than one buffer
can be inserted on a single net. Dragan et al. [6] proposed

Manuscript received June 17, 2004.
Manuscript revised August 23, 2005.
Final manuscript received November 4, 2005.
†The author is with Department of Electrical Engineering, Na-

tional Taipei University of Technology, Taipei, Taiwan, ROC.
††The authors are with Graduate Institute of Electronics Engi-

neering and Department of Electrical Engineering, National Tai-
wan University, Taipei, Taiwan, ROC.

a) E-mail: jpfang@ntut.edu.tw
DOI: 10.1093/ietfec/e89–a.2.528

an approximation method based on multicommodity-flow to
solve the same routing problem. Fang et al. [7], [8] proposed
a simultaneous routing and buffering procedure to meet the
constraints of delay, wire congestion, and buffer congestion
all together. In the first approach, although the delay con-
straint is considered while buffering, the routing sometimes
is restricted because the net must go through the congested
region to reach predefined buffer blocks. As to the second
paradigm, Alpert et al. [9] introduced a buffer site approach
(BSA), where a Steiner tree is built for a net, buffers are then
added at optimal locations. The operation speed of BSA is
fast, and its experimental results revealed that BSA is nearly
as effective as BBP. However, for a floorplan with dominant
wide bus, i.e., a specified region of the floorplan is occupied
mainly by wide bus, while being inclined to optimize the
buffer numbers, BSA may contrarily worsen the congestion
of area(s) occupied by bus.

1.1 Optimized Buffering

On a given routing path, BSA [9] adopted a van Ginneken
style dynamic programming algorithm [10] to insert buffers.
For a net with source and target, assuming the net is routed
horizontally from left to right and each grid in the routing
path is denoted as Rp[x], the operations of BSA can be de-
scribed as follows.

1. Build an accumulated cost (aC) array for each grid
from target to source according to the following formula:

Rp[xt].aC[i] = 0, for 0 ≤ i<MGD
Rp[x].aC[i] = Rp[x + 1].aC[i − 1],

for 1 ≤ i<MGD, x � xt

Rp[x].aC[0] = Rp[x].bu f + min(Rp[x + 1].aC),
for x � xt

(1)

where Rp is an array with elements representing grids on the
routing path, Rp[xt] is the target grid and Rp[x] is any grid
other than the target grid; MGD is the maximum number
of grids that a buffer can drive; and min() is a function to
return the minimum value from an array.

2. Examining aC arrays built at step (1) and starting
from the grid next to source (buffer), we can decide the opti-
mal buffer location(s) according to the index of a minimum
element in the aC array, and repeat this procedure until tar-
get is reached.

Take Fig. 1 as an example. In Fig. 1(a), a routing path
passing through five grids from S to T is given, where the
buffer densities of those grids are respectively 3, 2, 4, 2, and

Copyright c© 2006 The Institute of Electronics, Information and Communication Engineers

FANG et al.: AN ENHANCED BSA FOR FLOORPLANNING
529

(a) (b) (c)

Fig. 1 Demonstration of buffer site approach.

1, and the MGD of this net is assumed to be 3. Firstly,
we initialize the aC array of target as {0, 0, 0}, and build
aC arrays of each grid from target to source according to
Eq. (1). The operation of Eq. (1) is also depicted as shown
in Fig. 1(b). When retracing starts from the grid next to
source, as the grid next to source has {5, 3, 4} in its aC array,
in which the index of minimum one (framed) is 1, optimal
buffer location will be the grid apart by one grid, i.e., the
one with buffer density of 2 and encircled. After retracing
resumes from the next grid, we examine its aC array and
decide the next buffer location according to the index of a
minimum one. As the index of minimum one in {4, 2, 1} is
2, optimal buffer location will be the grid apart by 2 grids,
i.e., the one with buffer density of 1 and encircled.

BSA can efficiently and optimally decide buffer loca-
tion for a given net to minimize the buffer numbers. How-
ever, for a dominant wide bus, in which a set of nets shares
the same source and target, BSA may derive an unsatis-
fied result. Take Fig. 1(c) as an example, in which five nets
with the same terminals are buffered using BSA while their
MGD’s are assumed to be 3 and the buffer densities of grids
between source and target are initialized as 0’s. After apply-
ing BSA net by net, as shown in Fig. 1(c), the buffers (encir-
cled) of the preceding four nets are all inserted according to
the mechanism demonstrated in Fig. 1(a) and Fig. 1(b), but
buffer of the fifth net is inserted at a location (encircled) that
will minimize the number of buffers rather than locations
(framed) that will alleviate congestion. This condition is
caused by a tie that exists when examining minimum value
in the aC array, i.e., when more than two elements in the aC
array have the same minimum value, BSA will return the
one with the larger index to minimize the number of buffers.

1.2 Our Contribution

Thus, we proposed an enhanced buffer site approach
(EBSA), in which buffers can be either optimally inserted
to minimize buffer congestion or optimally inserted to min-
imize the buffer numbers or even optimally inserted accord-
ing to the weighting between buffer numbers and degree of
uniformity of distributed buffers. After integrating this ap-
proach into a floorplanner, the experimental results showed
that EBSA distributes buffers of a dominant wide bus evenly,
estimates buffer congestion efficiently, and generates an op-
timized floorplan successfully.

We did not alleviate the condition of buffer congestion

of a floorplan by simply adding penalty costs for buffer-
congested grids to be used, or alternately by applying non-
linear (e.g., quadratic) penalty function to the number of
buffers in each grid of a given routing path. The reason why
EBSA not simply added penalty costs for buffer-congested
grids to be used is that, EBSA implicitly adopts penalty cost
because EBSA will not choose a congested grid as a location
for more buffers. Besides, EBSA has properly planned the
buffer locations in each routing path such that better conver-
gence can be reached in an iterative floorplanning algorithm.
As to the approach of adopting non-linear penalty function,
the operation typically includes instructions of multiplica-
tion and/or division, which, in comparison to the instruction
of addition/subtraction in EBSA, apparently takes more op-
eration time to reach an acceptable result.

This paper is organized as follows: Sect. 2 formulates
the problems. Section 3 describes the cost function for
buffer congestion. Section 4 discusses EBSA. The exper-
imental results are presented in Sect. 5. The last section
draws a conclusion.

2. Problem Formulation

Given a net, a routing path, and the delay budget (as defined
in [5]) of that net, we want to perform buffering such that

1. the number of buffers is minimized,
2. the buffer(s) is (are) inserted at the least congested

region(s).
In our problem modeling, only two-pin nets are con-

sidered because a multi-pin net can be divided into two-pin
nets. In such a way, a more detail evaluation procedure,
such as construction of Steiner tree, can be considered dur-
ing routing phase. Also, we adopt the model presented by
Alpert et al. [9] to evaluate delay, in which the grids that a
buffer or source can drive is expressed as MGD, the max-
imum number of grids drivable. In other words, the con-
straint of delay is correspondingly met if distance of buffers
≤ MGD.

Although in most cases buffers cannot be placed into
a prefixed module, some soft modules have emerged that
allow buffers to be put into predefined locations. For the
area that do not allow buffering, the buffering cost can be set
to be∞, and EBSA works as well.

Besides, we use standard deviation to evaluate the
buffer congestion of a floorplan, the following equation is
thus proposed.

S D =

√√
1

n − 1

n∑
i=1

(bi − bm)2 (2)

where bm is mean of buffers inserted in each grid, bi is the
buffers inserted in the ith grid, and n is grid numbers.

The buffer-insertion problem is thus formulated as fol-
lows:

Given : A tessellated floorplan F, a set of nets N =
{n1, n2, n3, · · ·}, a set of delay budgets DBi for each net i, a
buffer upper-bound matrix BUB with each element denoted

530
IEICE TRANS. FUNDAMENTALS, VOL.E89–A, NO.2 FEBRUARY 2006

as BUB[y][x], and MGD’s for each net.
Goal : For the given floorplan F, buffers are optimally

inserted such that
1. for all nets i ∈ N, the normalized delay value in net

i (Di) meets the delay budget, i.e., Di ≤ DBi,
2. the buffer congestion in a flooplan is optimized, i.e.,

S D(F), standard deviation for buffers inserted in each grid
in a floorplan F, is minimized.

3. Congestion Evaluation Model

The buffer density of each grid in a tessellated floorplan
is denoted as Grid[y][x].bu f . Before a net is routed,
buffer densities of grids Grid[y][x].bu f are correspondingly
copied into bu f members of an array Rp[idx]; after a net
is routed and buffered, the updated buffer density in each
grid of array Rp[idx].bu f is written back to Grid[y][x].bu f ,
which will contribute to the evaluation of buffer congestion
as shown below. The procedure used to evaluate buffer con-
gestion of a floorplan includes the estimation of buffer den-
sity increased by each net based on the algorithm introduced
in Sect. 4.

In our algorithm, the formulas of buffer congestion
evaluation for each grid are defined as follows. For a sin-
gle grid Grid[y][x] on an m × n grid structure, the buffer
congestion is evaluated as:

bu fCongestion = PAS S ,
if Grid[y][x].bu f ≤ BUB[y][x]

bu fCongestion = FAIL,
if Grid[y][x].bu f>BUB[y][x]

(3)

in which Grid[y][x].bu f is the Buffer Estimation Value and
BUB[y][x] is the Buffer Upper Bound (constraint of buffer
congestion).

4. Evaluating Buffer Congestion

This section demonstrates the model we used to evaluate
congestion and how we integrate the proposed model to an
iterative floorplanning algorithm.

4.1 Deciding Routing Path

Before buffering, the routing path should be decided. To ef-
ficiently evaluate buffer congestion, nets are categorized into
three types: local nets, h-v nets, and bended nets, where lo-
cal net is a net with grid distance ≤ MGD; h-v net is a net
with grid distance > MGD, and these two terminal grids
are located at the same grid row or grid column; bended net
is a net with grid distance > MGD and its two terminals
are located at different grid rows and different grid columns.
For a local net, no buffer insertion is necessary; whereas for
an h-v net, its routing path will pass through grids between
source and target. On the other hand, for a bended net, we
use Fang’s BR algorithm [8] to decide routing path, which
is a two-phase approach. At the first phase, BR applies dy-
namic programming to accumulate routing cost from source

to target; and at the second phase, BR retraces backwards
from target to source to decide a routing path according to
the accumulated routing cost. BR needs a time of O(l × w)
for a net occupying l × w grids.

Thus, for a floorplan F with k nets, the time complexity
of defining routing paths is at most O(k × l × w).

4.2 Buffer Congestion Estimation

For each net, after its routing path is decided, the path can be
treated as a one-dimensional array with each grid expressed
as Rp[x]. Analogous to Eq. (1), in the Enhanced Buffer Site
Approach (EBSA), buffers are inserted into this array ac-
cording to Eq. (4).

Rp[xt].aC[i] = 0, for 0 ≤ i<MGD
Rp[x].aC[i] = Rp[x + 1].aC[i − 1],

for 1 ≤ i<MGD, x � xt

Rp[x].aC[0] = Rp[x].bu f − threshhold
×u− f actor + min(Rp[x + 1].aC), for x � xt

(4)

where, Rp is an array with elements representing grids on
the routing path, Rp[xt] is the target grid and Rp[x] is any
grid other than the target grid; MGD is the maximum num-
ber of grids that a buffer can drive; and min() is a function to
return the minimum value from an array; each element in Rp
array contains a member array (aC) for storing accumulated
cost. Besides, u− f actor is an adjustable factor ranging from
0 to 1, which is used for adjusting the degree of uniform;
when u− f actor is set to 0, the buffers are optimally inserted
such that the number of buffers is minimized, and under this
condition, EBSA works exactly the same as BSA does; if
u− f actor is set to 1, the buffers are optimally inserted such
that the congested condition is minimized.

Thus, the operation of EBSA is described as shown in
Fig. 2. Given a routing path from source to target, with the
routing path expressed as Rp[SIZE], where SIZE is the size
of routing path. Before building the aC array for each grid in
the routing path, EBSA firstly searches the buffer density of
each grid for a minimum one, take it as a threshold value, as
shown in Step 1∼Step 4 of Fig. 2. The threshold value will
contribute to build the aC array for each grid, as shown in
Step 10 of Fig. 2. Also, Step 5 ∼ Step 12 are used to build an
aC array for each grid from target to the grid next to source
according to Eq. (4).

After the aC array for each grid is completed, Step 13
∼ Step 18 perform retracing and buffering. Retracing is per-
formed in an iterative manner, which starts from the grid
next to source and stops when the action reaches target. In
each iteration, Step 14 examines the aC array of a grid next
to a source or buffer, locates the index of a minimum one,
Step 15 and Step 17 use that index as a footstep to decide
which grid to be buffered.

Again, take the routing path of Fig. 1 as an example.
For convenience, the routing path is redrawn in Fig. 3(a),
MGD is assumed to be 3, and u− f actor is set to 1. Firstly,
we search for the threshold value of the routing path, which
is 1, then initialize the aC array of target as {0, 0, 0}, and

FANG et al.: AN ENHANCED BSA FOR FLOORPLANNING
531

Given: A routing path Rp[SIZE] from source S (not
included) to target T (included), in which
SIZE is the length of Rp array and each grid
Rp[x] has its own buffer density bu f as well
as associated aC array aC[MGD].

Goal: decides optimal location(s) for buffer insertion.

Algorithm EBSA
1. threshold ← Rp[0].bu f ;
2. for (x← 1; x < SIZE ; x← x + 1)
3. if (Rp[x].bu f < threshold)
4. threshold ← Rp[x].bu f ;
5. for (idx← 0; idx < MGD; idx← idx + 1) //Eq. (4)
6. Rp[SIZE - 1].aC[idx]← 0;
7. for (x← SIZE-2;x ≥ 0; x← x − 1) { //Eq. (4)
8. for (idx← 1; idx < MGD; idx← idx + 1)
9. Rp[x].aC[idx]← Rp[x + 1].aC[idx − 1];
10. Rp[x].aC[0]← RP[x].bu f − threshold∗
11. u− f actor + min(Rp[x + 1].aC);
12. }
13. for (x← 0; x < SIZE -1; x← x + 1){
14. idx← idx−min(Rp[x].aC);
15. x← x + idx;
16. if (x >SIZE-2) return;
17. else Rp[x].bu f ← Rp[x].bu f + 1;
18. }

Fig. 2 Algorithm EBSA.

(a) (b) (c)

Fig. 3 Demonstration of enhanced buffer site approach.

build the aC arrays for each grid from target to source ac-
cording to Eq. (4). The operation of Eq. (4) is also depicted
as shown in Fig. 3(b). When retracing from the grid next to
source, as the grid next to source has {3, 1, 3} in its aC array,
in which the index of minimum one (framed) is 1, buffer lo-
cation will be the grid apart by one grid, i.e., the one with
buffer density of 2 and encircled. Then resuming from next
grid, we examine its aC array and decide the next buffer lo-
cation according to the index of a minimum one. As the
index of a minimum one in {3, 1, 0} is 2, optimal buffer loca-
tion will be the grid apart by 2 grids, i.e., the one with buffer
density of 1 and encircled.

In contrast to BSA, EBSA optimally decides buffer lo-
cation for nets on a dominant wide bus. Take Fig. 3(c) as
an example, which is analogous to Fig. 1(c). After apply-
ing algorithm EBSA introduced in Fig. 2, the buffers of the
preceding four nets are all inserted at the same locations (en-
circled) as done by BSA, but buffer of the fifth net is inserted
at locations (encircled) that will alleviate congestion rather
than framed location.

Procedure Floorplanning
1. f plan← Random− f loorplanning();
2. T ← initial−temperature;
3. while (T ≥ threshold) {
4. count ← 0;
5. while (Not−equilibrium(count, f plan, T)) {
6. new− f plan ← Perturb(f plan);
7. 	C ← Cost(new− f plan) −Cost(f plan);
8. if (C < 0)
9. if (congestionEva(new− f plan)= PASS)
10. f plan← new− f plan;
11. else {
12. prob← Min(1, e−	C/T);
13. if (Random(0, 1) ≤ prob)
14. if(congestionEva(new− f plan)=PASS)
15. f plan ← new− f plan;
16. }
17. count ← count + 1;
18. }
19. U pdate(T);
20. }

Fig. 4 Integrating EBSA into an SA-based floorplanner.

Procedure congestionEva
1. for each net k ∈ floorplan F
2. if (BR(k) = FAIL)
3. return FAIL; // wire congested
4. else {
5. if (EBS A(dupline(k), k) = FAIL)
6. return FAIL;
7. }
8. return PASS;

Fig. 5 Procedure to evaluate wire/buffer congestion.

4.3 Procedure of Floorplanning

There is a great flexibility to integrate the estimation codes
in EBSA into an iterative floorplanning algorithm. The Sim-
ulated Annealing (SA) based procedure as shown in Fig. 4
is an example.

In Fig. 4, f plan is the floorplan generated at each it-
eration. Perturb() is a perturbation function used to gener-
ate the next floorplan new− f plan from the current floorplan.
Not−equilibrium() is a function that decides the termination
condition at a given temperature, and U pdate() is used to
cool down the temperature. After each perturbation, Cost()
evaluates the area/wire-length change between an old floor-
plan and a new floorplan, the cost change is expressed as
∆C. For each newly generated floorplan, as shown in Step 9
and Step 14 of Fig. 4, congestionEva() is performed to eval-
uate its wire congestion and buffer congestion according to
the procedure as shown in Fig. 5.

In Fig. 5, wire congestion is evaluated net by net us-
ing Fang’s BR algorithm [8], and for a net k succeeding in
wire congestion evaluation (i.e., BR(k) = PAS S), if that net
does not share the same source and target with other nets,
dupline(k) return 0, its u− f actor is set to 0, EBS A(0, k) is
thereafter performed to evaluate buffer congestion; On the
contrary, once net k shares the same source and target with

532
IEICE TRANS. FUNDAMENTALS, VOL.E89–A, NO.2 FEBRUARY 2006

any other net, dupline(k) returns 1, and EBSA(1, k) is per-
formed instead, which implies that u− f actor of EBSA can
be adjusted depending on the operation environment.

5. Experiment Results and Discussions

In Sect. 5.1, we take MCNC benchmarks as platforms for
examining the feasibility of embedding EBSA into a floor-
planner. Also, the experimental results of EBSA and BSA
are compared. Then, experiments revealing the superiority
of EBSA are described in Sect. 5.2.

5.1 Applying EBSA to MCNC Circuits

We embedded the codes of EBSA into a SA-based B*-tree
floorplanning algorithm [11] and took MCNC circuits as test
benches. The experiment is performed at a PC with Intel
1.3 GHz Pentium Processor and 256 MB memory. It is as-
sumed that each block can supply some buffers according to
its area, and for each floorplan, the necessary buffer(s) can
be either inserted at dead space or supplied by blocks.

With 10× 10 grids on ami33 and assuming an MGD of
3, we randomly choose one net and duplicate it 32 times to
simulate a 32-bits bus while all the other nets are kept un-
changed, the resultant buffers inserted for final floorplan of
ami33 are shown in Fig. 6, in which x-y plane represents a
floorplan and z-axis denotes number of inserted buffers. In
Fig. 6(a), we adopt BSA to insert buffers, the most congested
grid of the final floorplan has 25 buffers while in Fig. 6(b),
EBSA(0.5) decreases the number of buffers in the most con-
gested grid to 21. Moreover, in Fig. 6(c), EBSA(1) further
decreases the number of buffers in the most congested grid
to 17.

Further, five MCNC circuits are floorplanned respec-
tively using both the procedure in Fig. 4 and BSA. The floor-
plans are tessellated into 20 × 20 grids and MGD of nets
are assumed to be 3. For each circuit, one net is picked
and duplicated 32 times to model a dominant wide bus. Ta-
ble 1 compares the resultant floorplan, in which TWL, DS,
CT, SD, and BMC respectively represent total wire length,
dead space, CPU time, standard deviation, and the number
of buffers in the most congested grid, in which standard de-
viation is derived from Eq. (2).

Observed from the experiment results, the floorplan
area and total wire length are interactively decided by the
floorplanning algorithm and associated routing algorithm as
well as strategy for buffer insertion. Besides, the constraint
of buffer density is deliberately set to a higher value, the
resultant floorplans generated by BSA and EBSA are iden-
tical in terms of area and total wire length. However, the
BMC column in Table 1 shows that EBSA can obtain a
floorplan with less congested buffers in the grids. In other
words, when the buffer density in each grid in a floorplan is
strictly constrained, the resultant floorplan using BSA may
have larger area and longer total wire length. For example,
an additional experiment shows that when buffer density is
constrained to be 14, the TWL, DS, and CT of ami33 using

(a) (b) (c)

Fig. 6 Resultant buffers inserted for final floorplan of ami33 with differ-
ent u− f actor′ s.

Table 1 Floorplanning MCNC circuits using EBSA.

Circuit Approaches TWL DS(%) CT(s.) SD BMC
BSA 113.259 3.94 220 6.8431 16ami33

EBSA 113.259 3.94 224 6.8423 14
BSA 1891.78 3.49 397 9.9545 31ami49

EBSA 1891.78 3.49 406 9.7930 30
BSA 807.751 6.87 4 5.6649 20xerox

EBSA 807.751 6.87 4 5.6551 19
BSA 238.567 6.42 9 3.2049 8hp

EBSA 238.567 6.42 9 3.1951 8
BSA 797.362 2.51 55 4.6218 13apte

EBSA 797.362 2.51 59 4.2072 11

BSA will respectively become 142.620, 8.82, and 264.
The time spent by EBSA is slightly more than the

time spent by BSA because an additional step of find-
ing/subtracting threshold is needed by EBSA.

Also, it is interesting to observe that, the number of
buffers in the most congested grid as well as the standard
deviation obtained by EBSA are not dramatically enhanced
in comparison to those obtained by BSA. The reason is that,
once a bus is routed and buffered, for the subsequent nets,
the routing processes are inclined to find a path of less cost,
and the buffering processes are inclined to insert buffers into
grids of less cost. Thus, those grids with less buffer densities
will have higher probabilities to be chosen as buffer sites
than the most congested grid do.

However, in some cases, grids are occupied mainly by
wide bus, the bus connecting AND plane and OR plane of
a programmable logic design is a typical example. As the
buffer congestion in these cases is irremediable and BSA is
inclined to cause congestion, for these cases, EBSA will be
a preferred approach to avoid congestion.

5.2 The Effect of EBSA

To demonstrate the effect of EBSA, we use 1000 nets routed
from the same source and reaching the same target to model
the bus connecting AND plane and OR plane of a pro-
grammable logic design. The number of grids between
source and target is assumed to be 10. The buffers inserted
using BSA and using EBSA with different MGD’s are listed
in Table 2, where EBSA(0.5) uses u− f actor of 0.5 while
EBSA(1) uses u− f actor of 1. Obviously, EBSA(1) can
uniformly distribute buffers, and the penalty for uniformly
distributing buffers is that, the buffer numbers inserted by
EBSA(1) in comparison to those inserted by BSA are in-
creased from 0% to 11%. When the u− f actor is adjusted

FANG et al.: AN ENHANCED BSA FOR FLOORPLANNING
533

Table 2 Buffers inserted into grids with different MGD’s using BSA and EBSA.

MGD Grid Grid Grid Grid Grid Grid Grid Grid Grid Grid Total
size Approaches 1 2 3 4 5 6 7 8 9 10 buffer

numbers
BSA 273 363 364 273 363 364 273 363 364 273 3273

MGD = 3 EBSA(0.5) 300 350 350 300 350 350 300 350 350 300 3300
S EBSA(1) 333 333 334 333 333 334 333 333 334 333 T 3333
o BSA 200 200 300 300 200 200 300 300 200 200 a 2400

MGD = 4 u EBSA(0.5) 222 222 278 278 222 222 278 278 222 222 r 2444
r EBSA(1) 250 250 250 250 250 250 250 250 250 250 g 2500
c BSA 200 200 200 200 200 200 200 200 200 200 e 2000

MGD = 5 e EBSA(0.5) 200 200 200 200 200 200 200 200 200 200 t 2000
EBSA(1) 200 200 200 200 200 200 200 200 200 200 2000

BSA 125 125 125 125 250 250 125 125 125 125 1500
MGD = 6 EBSA(0.5) 143 143 143 143 214 214 143 143 143 143 1572

EBSA(1) 166 166 167 167 167 167 166 166 167 167 1666

Table 3 Buffers inserted into grids using different schemes.

MGD S Grid Grid Grid Grid Grid Grid Grid Grid Grid Grid T
size o Approaches 1 2 3 4 5 6 7 8 9 10 a SD

u r
r BSA 23 54 77 94 75 75 71 57 37 26 g 22.5896

MGD = 3 c EBSA(1) 40 64 80 85 83 80 77 59 45 33 e 18.4456
e BSA+EBSA(1) 38 62 79 86 83 79 76 59 45 32 t 18.7853

to 0.5, as shown in row EBSA(0.5), the buffers inserted are
not as uniform as what done by EBSA(1), and the number
of buffers inserted is less. Furthermore, when the u− f actor
is adjusted to 0, i.e., EBSA(0), then EBSA acts exactly the
same as BSA does and has the same result as BSA.

To further demonstrate the effect of EBSA for nets
which are partly overlapped, 200 nets each with randomly
given start point and end point are routed on a specified
path which passes through 12 grids (including grids marked
Source and Target), and randomly chosen nets are delib-
erately duplicated. The typical number of buffers inserted
using different schemes is listed in Table 3, where the first
scheme uses BSA only, the second scheme uses EBSA(1)
only, while the last scheme, BSA+EBSA(1), uses EBSA
for bus (nets sharing the same terminals) and uses BSA
otherwise. The BSA+EBSA(1) scheme is a variation of
EBSA(1). The difference between these two schemes is that
the former applied algorithm EBSA to bus only and applied
algorithm BSA to other nets while the latter applied algo-
rithm EBSA to all nets.

The resultant standard deviations in Table 3 impli-
cate that both EBSA(1) and BSA+EBSA(1) can distribute
buffers more uniformly than BSA only, and the congestion
of dominant wide bus can be more effectively alleviated.

6. Conclusion

We proposed an enhanced buffer site approach to distribute
buffers evenly while minimizing the number of inserted
buffers such that congestion of a floorplan design can be ef-
fectively eliminated.

Our approach is in distinction from the existing ap-
proach especially when the floorplan contains a dominant
wide bus. Our approach features (1) avoiding the tendency

of congestion when multiple nets share the same routing
path while (2) maintaining the fast operation speed of orig-
inal buffer site approach, and (3) providing a linearly ad-
justable threshold switch, through which buffer insertion can
be optimized according to the significance of minimizing
number of buffers or lessening buffer congestion. The ex-
perimental results showed that EBSA can be integrated into
an iterative floorplanner and successfully generate an opti-
mized floorplan even if the floorplan contains a dominant
wide bus.

Acknowledgments

This work was supported by the National Science Coun-
cil, R.O.C., under Grant NSC91-2215-E002-042. The au-
thors would like to thank Prof. Jason Cong for providing the
source code of Buffer Block Planning [4] and benchmarks.

References

[1] J. Lou, S. Thakur, S. Krishnamoorthy, and H.S. Sheng, “Estimat-
ing routing congestion using probabilistic analysis,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol.21, no.1, pp.32–41,
Jan. 2002.

[2] C.W. Sham, W.C. Wong, and E.F.Y. Young, “Congestion estimation
with buffer planning in floorplan design,” Proc. Design Automation
and Test in Europe, pp.696–701, Paris, France, March 2002.

[3] C.W. Sham and E.F.Y. Young, “Routability driven floorplanner with
buffer block planning,” Proc. International Symposium on Physical
Design, pp.50–55, Del Mar, CA, USA, April 2002.

[4] J. Cong, T. Kong, and D.Z. Pan, “Buffer block planning for
interconnect-driven floorplanning,” Proc. International Conference
on Computer-Aided Design, pp.358–363, San Jose, CA, USA, Nov.
1999.

[5] P. Sarkar, V. Sundararaman, and C.-K. Koh, “Routability-driven re-
peater block planning for interconnect-centric floorplanning,” Proc.
International Symposium on Physical Design, pp.186–191, San

534
IEICE TRANS. FUNDAMENTALS, VOL.E89–A, NO.2 FEBRUARY 2006

Diego, CA, USA, April 2000.
[6] F.F. Dragan, A.B. Kahng, I.I. Mandoiu, S. Muddu, and A. Ze-

likovsky, “Provably good global buffering using an available buffer
block plan,” Proc. International Conference on Compter-Aided De-
sign, pp.104–109, San Jose, CA, USA, Nov. 2000.

[7] J.P. Fang, Y.S. Tong, and S.J. Chen, “Simultaneous routing and
buffering in floorplan design,” Proc. International Symposium
on VLSI Technology, Systems, and Applications, pp.188–191,
Hsinchu, Taiwan, Oct. 2003.

[8] J.P. Fang, Y.S. Tong, and S.J. Chen, “Integration of an efficient
routing and buffering procedure into a floorplanner,” Proc. Interna-
tional Symposium on Nanoelectronic Circuits and Giga-scale Sys-
tems, pp.68–73, Miaoli, Taiwan, Feb. 2004.

[9] C. Alpert, J. Hu, S. Sapatnekar, and P. Villarrubia, “A practical
methodology for early buffer and wire resource allocation,” Proc.
Design Automation Conference, pp.189–194, Las Vegas, NV, USA,
June 2001.

[10] L. v. Ginneken, “Buffer placement in distributed RC-tree network
for minimal elmore delay,” Proc. IEEE International Symposium on
Circuits and Systems, pp.865–868, New Orleans, LA, USA, May
1990.

[11] Y.C. Chang, Y.-W. Chang, G.-M. Wu, and S.-W. Wu, “B*-tree: A
new representation for non-slicing floorplans,” Proc. Design Au-
tomation Conference, pp.458–463, Los Angeles, CA, USA, June
2000.

Jyh Perng Fang received the B.S. degree in
Electrical Engineering from Chung Yuan Chris-
tian College in 1977 and, respectively, the M.S.
and Ph.D. degree in Electrical Engineering from
National Taiwan University in 1986 and 2004.
Currently, he is an associate professor in the
Department of Electrical Engineering, National
Taipei University of Technology. His current re-
search interests include: VLSI physical design
automation and Embedded System.

Yang-Shan Tong received the B.S. degree
in Physics from National Taiwan University in
1997 and the M.S. degree in Electrical Engineer-
ing from National Taiwan University in 2002.
Currently, he is a PhD student in the Graduate
Institute of Electronics Engineering, National
Taiwan University.

Sao-Jie Chen received the B.S. and M.S.
degrees in electrical engineering from the Na-
tional Taiwan University, Taipei, Taiwan, ROC,
in 1977 and 1982 respectively, and the Ph.D.
degree in electrical engineering from the South-
ern Methodist University, Dallas, USA, in 1988.
Since 1982, he has been a member of the fac-
ulty in the Department of Electrical Engineer-
ing, National Taiwan University, where he is
currently a full professor. During the fall of
1999, he was a visiting scholar in the Depart-

ment of Computer Science and Engineering, University of California, San
Diego, USA. During the fall of 2003, he held an academic visitor position in
the Department of System Level Design, IBM Thomas J. Watson Research
Center, Yorktown Heights, New York, USA. His current research interests
include: VLSI physical design automation, Wireless LAN and Bluetooth
IC design, and SOC hardware/software co-design. Dr. Chen is a member
of the Chinese Institute of Engineers, the Chinese Institute of Electrical En-
gineering, the Association for Computing Machinery, a senior member of
the IEEE Circuits and Systems and the IEEE Computer Societies.

