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Abstract

In this paper, we develop a fully adaptive decentralized controller of robot manipulators for trajectory tracking. With high-order and adaptive
variable-structure compensations, the proposed scheme makes both position and velocity tracking errors of robot manipulators globally converge
to zero asymptotically while allowing all signals in closed-loop systems to be bounded, even without any prior knowledge of robot manipulators.
Thus this control scheme is claimed to be fully adaptive. Even when the proposed scheme is modified to avoid the possible chattering in
actual implementations, the overall performance will remain appealing. Finally, numerical results are provided to verify the effectiveness of
the proposed schemes at the end.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The control of robotic manipulators is especially challeng-
ing due to the inherent high non-linearity in its dynamics. In a
practical situation, the inevitable uncertainty in the underlying
manipulator model, say, payload change, adds additional diffi-
culty into the control task. Although significant achievements,
marked by the development of adaptive and robust central-
ized control schemes, have been made to improve the tracking
performance of robots (Slotine & Li, 1987; Spong, Thorp, &
Kleinwaks, 1987), the decentralized controller structure is still
adopted by the majority of modern robots in favor of its com-
putation simplicity and low-cost hardware setup. As a result,
how to best improve the tracking performance of robots through
decentralized control is still an interesting research topic that
attracts great attention from robotic community.

The adaptive decentralized control approaches for linear
and linear-dominant systems have been well developed, for
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example, by Gavel and Šiljak (1989), Ioannou (1986), Shi and
Singh (1992) and Wen and Soh (1999). Specifically, for a set of
linear-dominant subsystems whose interconnections are non-
linear but linearly bounded by the norms of the overall system
states, the approaches proposed by Gavel and Šiljak (1989) and
Ioannou (1986) guarantee the exponential convergence of track-
ing errors and parameter estimation error to a bounded residual
set. Shi and Singh (1992) use nonlinear feedback to handle the
interconnections bounded by a higher-order polynomial of the
system-state norms. Moreover, Wen and Soh (1999) develop a
decentralized model reference adaptive control without restric-
tion on subsystem relative degrees.

For manipulator tracking tasks, decentralized approaches
are not that straightforward since the overall system cannot be
decomposed into subsystems whose states and control inputs
are totally decoupled from one another because of the inherent
coupling such as moment of inertia and Coriolis force. In re-
cent years, several attempts, e.g. by Fu (1992), Liu (1999), and
Tang, Tomizuka, Guerrero, and Montemayor (2000), have been
made for the adaptive independent-joint control (IJC) or the
so-called adaptive decentralized control such that a separate
actuator taking feedback only from that particular joint is re-
sponsible for the joint control. Although those schemes result in
asymptotical convergence of tracking errors, prior estimation of
gains is necessary, that is inconvenient in applying. In order to
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resolve this problem, a novel adaptive decentralized control law
is proposed here such that the desired tracking performance is
achieved without any prior determination of gains.

This paper is originated as follows: Tracking problem of
robot manipulators is introduced in Section 2. And then a
novel adaptive decentralized control scheme is proposed in
Section 3. In order to demonstrate the performance of the pro-
posed scheme, a numerical study is provided in Section 4. Fi-
nally, a conclusion is given in Section 5.

2. Problem statement

For general n-link rigid manipulators, the dynamic model
can be derived by using the Euler–Lagrangian approach and
expressed in joint space as:

M[q(t)]q̈(t) + C[q(t), q̇(t)]q̇(t) + g[q(t)]
= �(t) + d[t, q(t), q̇(t)], (1)

where t �0 denotes time; q(t) = [q1(t), . . . , qn(t)]T ∈ Rn and
q̇(t)=[q̇1(t), . . . , q̇n(t)]T ∈ Rn are the vectors of joint position
and velocity, respectively; �(t)=[�1(t), . . . , �n(t)]T ∈ Rn is the
control input; M: Rn → Rn×n such that M[q(t)] is the iner-
tia matrix; C: Rn × Rn → Rn×n such that C[q(t), q̇(t)]q̇(t)

is the vector of centrifugal and Coriolis force, g: Rn → Rn

such that g[q(t)] is the vector of gravitational force, and finally
d: [0, ∞) × Rn × Rn → Rn such that d[t, q(t), q̇(t)] is the
vector of friction input. This dynamic model has the follow-
ing properties that will be used in controller design (Spong &
Vidyasagar, 1989; Fu, 1992):

(P1) The matrix M(y) is a symmetric and positive-definite ma-
trix and satisfies �mI �M(y)��MI for some constants
�m, �M > 0, where y ∈ Rn.

(P2) The matrix C(y, z) satisfies ||C(y, z)||2 ��C ||z||2 for
some constant �C > 0, where y, z ∈ Rn.

(P3) The vector g(y) satisfies ||g(y)||2 ��G for some constant
�G > 0, where y ∈ Rn.

(P4) Time-varying matrix d/dtM[y(t)]−2C[y(t), ẏ(t)], is al-
ways skew-symmetric for all t �0, where differentiable
signals y: [0, ∞) → Rn.

If an adaptive decentralized control scheme achieves the de-
sired tracking performance without any prior knowledge of
plants, it is called a fully adaptive decentralized control scheme.
In this paper, such a control scheme is proposed for robot
manipulators such that all signals of closed-loop systems are
bounded as well as both position and velocity tracking errors
globally converge to zero asymptotically. Global convergence
here means convergence from any initial position and velocity
tracking errors in joint space.

3. Controller design

In this section, a novel control scheme is proposed for
the tracking control of general n-link rigid manipulators.
Let qd : [0, ∞) → Rn such that qd(t) for all t �0 means
the desired position trajectory of robot manipulators and is

generally chosen twice differentiable to guarantee smooth-
ness of the motion. Define the position tracing error e(·) as
e(t) = [e1(t), . . . , en(t)]T ∈ Rn where e(t) ≡ q(t) − qd(t) and
auxiliary signal s(·) as s(t) = [s1(t), . . . , sn(t)]T ∈ Rn where
s(t) ≡ ė(t) + �e(t) with � ∈ Rn×n being a feedback-gain
matrix. Now the dynamics defined by the signals e(·) and s(·)
is derived as

ė(t) = −�e(t) + s(t), (2a)

M[q(t)]ṡ(t) = −C[q(t), q̇(t)]s(t) + �(t) − v[t, q(t), q̇(t)],
(2b)

where

v[t, q(t), q̇(t)] = M[q(t)][q̈d (t) + �ė(t)]
+ C[q(t), q̇(t)][q̇d (t) + �e(t)]
+ g[q(t)] − d[t, q(t), q̇(t)], (3)

behaves as the disturbance. Without loss of generality, sev-
eral technical assumptions are made to pose the problem in a
tractable manner.

(A1) The feedback-gain matrix � is constant, diagonal and
positive-definite; that is, �=diag(�1, . . . , �n) > 0 for any
constant �i > 0, i ∈ {1, . . . , n}.

(A2) The desired joint position trajectory qd(t) and the time
derivatives q̇d (t) and q̈d (t) are bounded signals.

(A3) Let di : [0, ∞) × R × R → R, i ∈ {1, . . . , n}, sat-
isfy that |di(t, y, z)| �di_1 + di_2|y| + di_3|z| for
all t �0 for some constant di_j �0, i ∈ {1 . . . , n} and
j ∈ {1, 2, 3}, where y, z ∈ R, such that the friction in-
put considered in (1) is assumed as d[t, q(t), q̇(t)] =
[d1[t, q1(t), q̇1(t)], . . . , dn[t, qn(t), q̇n(t)]]T.

Remark 1. From properties (P1)–(P3) and assumptions
(A1)–(A3), it is guaranteed that along the trajectory of robot
manipulators the disturbance (3) satisfies the following:

‖v[t, q(t), q̇(t)]‖2 ��1 + �2‖e(t)‖2 + �3‖ė(t)‖2

+ �4‖e(t)‖2‖ė(t)‖2, (4)

with some positive constants �1–�4, which only depend on the
desired trajectory and parameters in (1).

Before designing the claimed decentralized control law, one
useful lemma should be derived first. Here we start with adopt-
ing the norm of vector-valued signals as follows: For vector-
valued signals x: [0, ∞) → Rn, ||x||T , the norm of x(·) for
T > 0, is defined as ||x||T ≡ supt ∈ [0,T ]||x(t)||2. The following
lemma will obtain another bound estimation of the disturbance
(3), which is useful in control design.

Lemma 1. Under assumptions (A1)–(A3), if there is a constant
T > 0 such that ||s||T exists, then there are positive constants
�1, �2 and �3 such that along the trajectory of robot manipu-
lators it is satisfied that

‖v[t, q(t), q̇(t)]‖2 ��1 + �2‖s‖T + �3(‖s‖T )2, (5)
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for all t ∈ [0, T ]. In addition, the positive constants �1, �2 and
�3 only depend on the matrix �, desired trajectory, initial po-
sition condition of robot manipulators and parameters in (1).

Proof. The proof can be referred to Hsu and Fu (2003). �

Remark 2. It should be pointed out that Lemma 1 could be
applied for the initial time interval, since the signal s(·) always
exists initially.

Now the adaptive decentralized control input �(t) is designed.
The ith component �i (t), i ∈ {1 . . . , n}, is given as

�i (t) = ui(t) − �i_3s
3
i (t), (6)

where the constant �i_3 > 0, i ∈ {1, . . . , n}, and the component
ui(t), i ∈ {1 . . . , n}, is defined as:

ui(t) =
⎧⎨
⎩− 1

εi (t)
�̂

2
i_1(t)si (t) − �i_2si (t) if �̂i_1(t)|si (t)|�εi (t)

−�̂i_1(t)sgn[si (t)] − �i_2si (t) if �̂i_1(t)|si (t)| > εi(t)

(7)

with �̂i_1(t), i ∈ {1, . . . , n}, being adjusted by the adaptive law
on line; �i_2, i ∈ {1, . . . , n}, being a positive constant; sgn(·)
denoting the signum function (Khalil, 2002), and | · | denoting
the absolute value of scalars. In (10), εi(t), i ∈ {1, . . . , n}, is
defined by:

ε̇i (t) = −piεi(t), εi(0) > 0, (8)

where the constant pi > 0, i ∈ {1, . . . , n}. It is worth noting
that εi(t) > 0 for all t �0, i ∈ {1, . . . , n}, and thus the auxiliary
signal εi(·) is used as the convergent boundary layer in (6).
For accounting for the uncertainty in the tracking task of robot
manipulators, we choose the adaptive law as follows:

˙̂�i_1(t) = �i_1|si(t)|, �̂i_1(0)�0, (9)

for i ∈ {1, . . . , n}, where the constant �i_1 > 0, i ∈ {1, . . . , n}.
Note that the adaptive control law (6)–(9) is apparently in
a decentralized manner, and its performance is summarized
into the following theorem. Note also that when εi → 0 and

�̂i_1(t)|si(t)|�εi(t), the term (�̂
2
i_1(t)si(t))/εi in control law

ui is bounded with the boundary −�̂i_1 and �̂i_1. |si(t)| will
be well defined if the switching law specified in Eq. (7) will
not result in infinitely fast switching as time goes on and on. In
order to make sure that this is true, we can see from Eq. (29)
that ‖si(·)‖2 ∈ L2 which implies that |si(t)| converge to zero
slower than the exponentially converging εi(t) when t goes long
enough. In turn, this implies that the control ui will eventu-
ally switch to the case where �̂i_1(t)|si(t)| > εi(t) so that si(t)

will evolve normally and hence is well defined throughout the
whole time.

Theorem 2. Under assumptions (A1)–(A3), consider the er-
ror dynamics of robotic manipulators subject to the adaptive

decentralized control law (6)–(9). If the gain �i_j > 0,
i ∈ {1, . . . , n} and j ∈ {2, 3}, then all signal are bounded, and
the position tracking error e(t) and velocity tracking error ė(t)

will globally converge to zero as t → ∞.

Proof. The proof proceeds in the following two steps.
Step 1: Prove the signal s(·) is bounded. We guarantee this

statement by way of contradiction. Let a positive constant l1
satisfy

‖s(0)‖2 <

[
n(�1 + �2l1 + �3l

2
1)

�3,min

]1/3

<

√
�m

�M

l1, (10)

where �3,min =min{�1_3, . . . , �n_3} > 0. Such l1 always exists.
(When l1 is large enough, (13) can be satisfied.) Now assume
the signal s(·) is not bounded. Thus there always is a smallest
time T1 > 0 such that ||s(T1)||2 = l1. Consider a Lyapunov-like
function V1 : [0, T1] × Rn → R as

V1(t, s) = 1
2 sTM[q(t)]s, (11)

where the state s ∈ Rn (Ioannou & Sun, 1996). The time deriva-
tive of (11) along the trajectory of the closed-loop system gives

d

dt
V1[t, s(t)] = sT(t){�(t) − v[t, q(t), q̇(t)]}

�sT(t)�(t) + ‖s(t)‖2‖v[t, q(t), q̇(t)]‖2, (12)

for all t ∈ [0, T1], where property (P4) has been applied. Hence
we have

d

dt
V1[t, s(t)]�sT(t)�(t) + ‖s(t)‖2‖v[t, q(t), q̇(t)]‖2

�sT(t)�(t) + ‖s(t)‖2(�1 + �2l1 + �3l
2
1),

(13)

for all t ∈ [0, T1], where Lemma 1 has been applied. After taking
the second term on the right-hand side of (6) into account, it
follows that

d

dt
V1[t, s(t)]� −

n∑
i=1

�i_3s
4
i (t) + ‖s(t)‖2(�1 + �2l1 + �3l

2
1)

� − �3,min
1
n
‖s(t)‖4

2 +‖s(t)‖2(�1 + �2l1 +�3l
2
1),

(14)

for all t ∈ [0, T1]. Note that the inequality (14) has adopted the
Schwartz inequality (Khalil, 2002) so that

n∑
i=1

s4
i (t)� 1

n
‖s(t)‖4

2. (15)

By the original assumption, there exists a time interval t1 > 0
such that

‖s(T1 − t1)‖2 =
[

n(�1 + �2l1 + �3l
2
1)

�3,min

]1/3

, (16)
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and d/dtV 1[t, s(t)]�0 for all t ∈ [T1 − t1, T1]. Hence we have

V1[T1, s(T1)]�V1[T1 − t1, s(T1 − t1)]

� 1

2
�M

[
n(�1 + �2l1 + �3l

2
1)

�3,min

]2/3

. (17)

But, from definition of T1, it follows that

V1[T1, s(T1)]� 1

2
�ml

2/3
1 . (18)

Clearly, the inequalities (17) and (18) are in contradiction.
This guarantees that the original assumption is false, Thus the
signal s(·) is bounded and moreover satisfies ||s(t)||2 < l1 for
all t � 0.

Step 2: Prove all signals are bounded and the signal s(t) →
0 globally as t → ∞. Consider the Lyapunov-like function
V2: [0, ∞) × Rn × R × · · · × R → R as

V2(t, s, �̂1_1, . . . , �̂n_1)

= 1

2
sTM[q(t)]s +

n∑
i=1

[
1

2
�−1
i_1(�̂i_1 − �∗

i_1)
2
]

+
n∑

i=1

p−1
i εi(t), (19)

where the states s ∈ Rn and �̂i_1 ∈ R, i ∈ {1, . . . , n}. In (19),
�∗
i_1 ∈ R, i ∈ {1, . . . , n}, is the desirable value with respect to

the updated gain �̂i_1 (·), i ∈ {1, . . . , n}, respectively. Here, it
is required that

�∗
1,min ��1 + �2l1 + �3l

2
1 , (20)

where �∗
1,min=min{�∗

1_1, . . . , �
∗
n_1}. The time derivative of (19)

along the trajectory of the closed-loop system gives

d

dt
V2[t, s(t), �̂1_1(t), . . . , �̂n_1(t)]
�sT(t)�(t) + ‖s(t)‖2‖v[t, q(t), q̇(t)]‖2

+
n∑

i=1

[�̂i_1(t) − �∗
i_1]|si(t)| −

n∑
i=1

εi(t), (21)

for all t � 0, where property (P4) has been applied. Hence we
have

d

dt
V2[t, s(t), �̂1_1(t), . . . , �̂n_1(t)]
�sT(t)�(t) + ‖s(t)‖2(�1 + �2l1 + �3l

2
1)

+
n∑

i=1

[�̂i_1(t) − �∗
i_1]|si(t)| −

n∑
i=1

εi(t), (22)

for all t � 0, where the conclusion in Step 1 has been applied.
Now, without loss of generality, consider two different cases of
(22) as:

Case 1: �̂i_1(t)|si(t)|�εi(t) for all i ∈ {1, . . . , n}. Taking the
first term on the right-hand side of (6) into account, it follows

that

d

dt
V2[t, s(t), �̂1_1(t), . . . , �̂n_1(t)]

� −
n∑

i=1

1

εi(t)
�̂

2
i_1(t)s

2
i (t) −

n∑
i=1

�i_2s
2
i (t)

+ ‖s(t)‖2(�1 + �2l1 + �3l
2
1)

+
n∑

i=1

(�̂i_1(t) − �∗
i_1)|si(t)|

−
n∑

i=1

εi(t), (23)

which implies that

d

dt
V2[t, s(t), �̂1_1(t), . . . , �̂n_1(t)]

� −
n∑

i=1

1

εi(t)
�̂

2
i_1(t)s

2
i (t) −

n∑
i=1

�i_2s
2
i (t)

+ ‖s(t)‖2(�1 + �2l1 + �3l
2
1)

−
n∑

i=1

�∗
i_1|si(t)|. (24)

From (24), we have

d

dt
V2[t, s(t), �̂1_1(t), . . . , �̂n_1(t)]

� −
n∑

i=1

�i_2s
2
i (t) + ‖s(t)‖2(�1 + �2l1 + �3l

2
1)

−
n∑

i=1

�∗
i_1|si(t)|. (25)

Case 2: �̂i_1(t)|si(t)| > εi(t) for all i ∈ {1, . . . , n}. Like Case
1, taking the first term on the right-hand side of (6) into account,
it follows that

d

dt
V2[t, s(t), �̂1_1(t), . . . , �̂n_1(t)]

� −
n∑

i=1

�̂i_1(t)|si(t)| −
n∑

i=1

�i_2s
2
i (t) −

n∑
i=1

εi(t)

+ ‖s(t)‖2(�1 + �2l1 + �3l
2
1) +

n∑
i=1

(�̂i_1(t)

− �∗
i_1)|si(t)|, (26)

which implies that

d

dt
V2[t, s(t), �̂1_1(t), . . . , �̂n_1(t)]

� −
n∑

i=1

�i_2s
2
i (t) + ‖s(t)‖2(�1 + �2l1 + �3l

2
1)

−
n∑

i=1

�∗
i_1|si(t)| −

n∑
i=1

εi(t). (27)
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From (27), we have

d

dt
V2[t, s(t), �̂1_1(t), . . . , �̂n_1(t)]

� −
n∑

i=1

�i_2s
2
i (t) + ‖s(t)‖2(�1 + �2l1 + �3l

2
1)

−
n∑

i=1

�∗
i_1|si(t)|. (28)

From the inequalities (25) and (28), it is obtained that

d

dt
V2[t, s(t), �̂1_1(t), . . . , �̂n_1(t)]
� − �2,min‖s(t)‖2

2 + ‖s(t)‖2(�1 + �2l1 + �3l
2
1)

− �∗
1,min‖s(t)‖2, (29)

for all t �0, where �2,min = min{�1_2, . . . , �n_2}. Thus, apply-
ing (20), we conclude that

d

dt
V2[t, s(t), �̂1_1(t), . . . , �̂n_1(t)]� − �2,min‖s(t)‖2

2 �0,

(30)

for all t � 0, which implies all signals are bounded and further-
more the signal ||s(·)||2 ∈ L2 (Ioannou & Sun, 1996). Finally,
to show the zero convergence of the tracking errors e(·) and
ė(·), we need to guarantee ‖s(·)‖2 is uniformly continuous and
then apply Barbǎlat’s Lemma (Ioannou & Sun, 1996). Suffi-
ciently, we investigate boundedness of the signal ṡ(·) from (2)
and (6) and easily verify such a condition. As a result, the zero
convergence is insured. �

Remark 3. From Lemma 1 and inequality (10), we known that
�1, �2, �3 and l1 are independent of �∗

1,min. Thus, inequality
(30) is derived from (29) when �∗

1,min is large enough.

Remark 4. The scheme in Theorem 3 can be applied without
any prior knowledge of robot manipulators such as initial condi-
tions and parameters in (1). Accordingly, the proposed scheme
is indeed a fully adaptive decentralized control. This scheme is
a modified variable-structure control coupled with a convergent
boundary layer. Convergence of the signal si(·), i ∈ {1, . . . , n},
into the sliding mode si ≡ 0 does not correspond to occurrence
of infinite gain (Filippov, 1964). When this scheme is imple-
mented via computer controller, what one really concerns is the
boundedness of the control input, and it is worth noting that
the control input � in (6) is always bounded. Thus there is no
infinite-gain problem in the proposed scheme.

Remark 5. When all knowledge of robot manipulators is pro-
vided a priori, the constants �1, �2, �3 and the bound l1 can be
estimated in advance, and then the desirable �∗

i_1, i ∈ {1, . . . , n},
can be determined by making (20) satisfied. Substituting these
determined desirable values into (7) to replace the on-line ad-
justed gains, the scheme in Theorem 2 becomes a non-adaptive
control, which can be guaranteed by the similar procedure in
the proof of Theorem 2.

The convergent boundary layer (8) might lead to chattering
in actual implementations. As a result, it is modified as follows:

ε̇i (t) = −piεi(t) + wi, εi(0) > 0, (31)

for i ∈ {1, . . . , n}, where the constants pi , wi > 0, i ∈ {1,

. . . , n}, such that the signal εi(·), i ∈ {1, . . . , n} has a positive
lower bound, which can be made smaller by use of design pa-
rameters such as smaller wi , i ∈ {1, . . . , n}. With modification
(314), adaptive law (9) should also be made robust such that
the parameter drift can be avoided (Fu, 1992). It is achieved
by using addition of leakage term as

˙̂�i_1(t) = �i_1|si(t)| − 	i_1�̂i_1(t), �̂i_1(0)�0 (32)

for i ∈ {1, . . . , n}, where the constants �i_1, 	i_1 > 0, i ∈
{1, . . . , n} (the latter is used as the leakage constant). Note
that the modified boundary layer (31) and robust adaptive law
(32) is also apparently in a decentralized structure. The perfor-
mance of the robust adaptive control law (6)–(7) and (31)–(32)
is summarized into the following theorem.

Theorem 3. Under assumptions (A1)–(A3), consider the er-
ror dynamics of robotic manipulator subjects to the adap-
tive control law (6)–(7) and (31)–(32). If the gain �i_j > 0,
i ∈ {1, . . . , n} and j ∈ {2, 3}, then all signal are bounded, and
the position tracking error e(·) and velocity tracking error
ė(·) globally “exponentially converge” to a residue set whose
size can be reduced by use of smaller wmax and 	1,max where
wmax = max{w1, . . . , wn} and 	1,max = max{	1_1, . . . , 	n_1}.

Proof. Step 1: Prove the signal s(·) is bounded. This procedure
is the same as that in the proof of Theorem 2, and hence is
omitted.

Step 2: Prove all signals are bounded and the signal s(·)
“globally exponentially converges" to a residual set whose size
can be reduced by means of smaller wmax and 	1,max . Now
consider the Lyapunov-like function V3 : [0, ∞) × Rn × R ×
· · · × R → R as follows:

V3(t, s, �̂1_1, . . . , �̂n_1)

= 1

2
sTM[q(t)]s +

n∑
i=1

[
1

2
�−1
i_1(�̂i_1 − �∗

i_1)
2
]

, (33)

where states s ∈ Rn and �̂i_1 ∈ R, i ∈ {1, . . . , n}. Taking time
derivative of (33) along the trajectory of the closed-loop system
and then following the similar argument as that in the proof of
Theorem 2, we obtain

d

dt
V3[t, s(t), �̂1_1(t), . . . , �̂n_1(t)]

� − 
 · V3[t, s(t), �̂1_1(t), . . . , �̂n_1(t)] +
n∑

i=1

εi(t)

+ 1

2

n∑
i=1

�−1
i 	i_1�

∗
i_1

2, (34)
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for all t � 0, where the positive constant 
 satisfies that


� min

{
�2,min

�M

, 	1_1, . . . , 	n_1

}
. (35)

Following the stability analysis in Ioannou & Kokotović (1984),
it is guaranteed that all signals are bounded and the signal s(·)
globally converges exponentially to a residual set, which is
centered at zero and whose size can be made smaller by use of
smaller wmax and 	1,max. Thus, the signals e(·) and ė(·) also
globally converge exponentially to a residual set whose size
can be reduced by use of smaller wmax and 	1,max. �

Fig. 1. Numerical results of Joints 1 (solid line) and 2 (dotted line) without boundary-layer modification.

Fig. 2. Numerical results of Joints 1 (solid line) and 2 (dotted line) with boundary-layer modification.

4. Simulation results and discussions

Numerical results are provided in this section. Tracking
control of two-link planar elbow robot manipulator moving on
a vertical plane is studied (Spong & Vidyasagar, 1989), where
the gravity magnitude is 9.8 (N/kg). Links 1 (lower) and 2 (up-
per) are assumed uniformly thin cylinders where Link 1 is with
mass 3 kg, link length 1 m, and mass center at 0.5 m. And Link
2 is with mass 1 kg, link length 1 m, and mass center at 0.5 m.
The friction inputs are assumed zero here. The desired joint
trajectory qd(t) = [qd1(t), qd2(t)]T ∈ R2 for all t �0 is defined



S.-H. Hsu, L.-C. Fu / Automatica 42 (2006) 1761–1767 1767

by qd1(t) = 0.2 + 2 sin 2t (rad) and qd2(t) = −1.7 + 1.8 sin 2t

(rad). The initial conditions of robot manipulators and adap-
tive control law are considered as q1(0) = 0 (rad), q2(0) = 0.3
(rad), q̇1(0)= 4.25 (rad/s), q̇2(0)=−0.2 (rad/s), �̂1_1(0)= 20,
�̂2_1(0) = 0, ε1(0) = 1, and ε2(0) = 1. The design parameters
for Theorem 3 are shown as

�1 = �2 = 6, �1_2 = �2_2 = 15,

�1_3 = �2_3 = 10,

p1 = p2 = 0.15, �1_1 = �2_1 = 20.

(36)

Besides, the additional design parameters are:

w1 = w2 = 0.025, 	1_1 = 	2_1 = 0.025, (37)

other design parameters for Theorem 3 are the same as those
in (36). All numerical results are obtained by use of Simnon�,
where the step time is 1 × 10−3 s and accuracy is 1 × 10−6.
Fig. 1 depicts the numerical results following Theorem 2, in
which the boundary layer has no modification (i.e., the bound-
ary layer is always positive and converges to zero exponen-
tially). In this case, both the position and velocity tracking errors
converge to zero asymptotically, whereas the input torques are
bounded but have the chattering when tracking errors are small
(see the input torques after 10 s). On the other hand, numerical
results following Theorem 3 are depicted in Fig. 2, where the
boundary layer has been modified as (31). It is observed that
both the position and velocity tracking errors converge expo-
nentially to a residual set, which is centered at zero. Due to the
finite boundary layer, the input torqueses are bounded as well
as have no chattering.

5. Conclusion

In this paper, we developed a fully decentralized control
scheme of robot manipulator for trajectory tracking. By use of
high-order and adaptive variable-structure compensations, the
control scheme not only makes tracking errors of robot manip-
ulators globally converge to zero asymptotically but also allows
all signals in closed-loop systems to be bounded, even with-
out any prior knowledge of robot manipulators. For avoiding
the possible chattering in actual implementations, the proposed
scheme can be modified with the finite boundary layers and ro-
bust adaptive law such that all signals are bounded, and both
position and velocity tracking errors globally converge expo-
nentially to a residual set, which is centered at zero and whose
size can be made smaller by the design parameters.
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