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Abstract

Flood forecasting has long been a major topic of hydrologic research. Recent events and studies indicate that the success of flood
forecasting in Taiwan depends heavily on the accuracy of real-time rainfall forecasting. In this study, we demonstrate a multi-spectral
spatial convolution approach for real-time rainfall forecasting using geostationary weather satellite images. The approach incorporates
cloud-top temperatures of three infrared channels in a spatial convolution context. It not only characterizes the input–output relation-
ship between cloud-top temperature and rainfall at the ground level, but also is more consistent with physical and remote sensing prin-
ciples than single-pixel matches. Point rainfall measurements at raingauge sites are up-scaled to pixel-average-rainfall by block kriging,
then related to multi-spectral cloud-top temperatures derived from Geostationary Meteorological Satellite images by spatial convolution.
The kernel function of the multispectral spatial convolution equation is solved by the least squares method. Through a cross-validation
procedure, we demonstrate that the proposed approach is capable of achieving high accuracy for 1- to 3-h-lead pixel-average-rainfall
forecasting.
� 2005 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Taiwan is located at the center of the western Pacific
Rim and is particularly vulnerable to threat by typhoons.
On average, there are 3.5 typhoons passing through Tai-
wan annually. Approximately 79% of these typhoons occur
in the period from July to September. Typhoons often
draw huge amounts and high intensity rainfall and may
sometimes result in high casualties and severe property
damage. For example, a ferocious typhoon Nari passed
through and ravaged Northern Taiwan in September,
2002. During its passage, more than 700 mm of rainfall
was recorded near the capital city Taipei. Overbank flood
flow caused extensive inundation and tremendous property
damage in the city.
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The water resources agency (WRA) has a flood forecast-
ing and warning system in operation. The system comprises
three major components: a rainfall forecasting system using
weather radar, a hydrological rainfall-runoff model, and a
three-dimensional inundation model. The three compo-
nents work in series to yield a projected inundation map
of the study area. Among the three components, rainfall
forecasting is considered the most difficult, owing to high
spatial and temporal variations of rainfall. Furthermore,
the extremely rugged terrain in upstream mountainous
areas, which causes beam blockage and ground clutter, of-
ten sabotage successful utilization of radar images for rain-
fall forecasting. In contrast, the weather satellite provides
images of cloud-top temperature and water vapor, which
are not affected by land surface features.

The success of flood forecasting in Taiwan depends
heavily on accurate real-time rainfall forecasting since
time-of-concentrations of major watersheds in Taiwan
ed.

mailto:Rslab@Ccms.Ntu.Edu.Tw


Fig. 1. The study area and raingauge locations.

Table 1
Duration of typhoon events used in this study

Name Nominal date Duration (h)

Winnie 19/08/1997 18
Amber 29/08/1997 24
Zeb 15/10/1998 35
Babs 25/10/1998 48
Yanni 26/09/1998 57
Maggie 08/06/1999 10
Dan 03/10/1999 16
Kaitak 09/07/2000 20
Bilis 22/08/2000 25
Prapiroon 28/08/2000 28
Bopha 09/09/2000 21
Xangsane 31/10/2000 41

Table 2
Spectral range and spatial resolution of GMS images

Channel Spectral range
(lm)

Spatial resolution
(km)

Related information

IR1 10.5–11.5 5 Cloud-top temperature
IR2 11.5–12.5 5 Cloud-top temperature
IR3 6.5–7.0 5 Water vapor
PAN 0.55–0.90 1.25 Albedo
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are relatively short (usually a few hours only) and flow at
the watershed outlet quickly responds to rainfall in the up-
stream area. Unless accurate rainfall forecasts can be
made, there will not be enough time to issue flood warnings
and evacuate people who live in flood-prone areas. There-
fore, the objective of this study is to develop a real-time
rainfall forecasting approach which can be integrated into
a flood forecasting system, using weather satellite imagery.

Estimation of rainfall using weather satellite images has
a long history of nearly four decades. Thermal infrared
images are most widely used for such applications
(Scofield, 1987; Griffith et al., 1978; Woodley et al., 1979;
Negri and Adler, 1987; D�souza et al., 1990; Martin
et al., 1990; Ba and Nicholson, 1998; Ba and Gruber,
2001; Mishra and Sharma, 2001). Techniques coupling
multi-sensors images (for example, thermal infrared and
space-borne microwave images) have also been developed
(Kummerow and Giglio, 1995; Turk et al., 1998; Berg
et al., 1999; Xu et al., 1999; Kazumasa and Liu, 2000; Pra-
bhakara et al., 2000; Miller et al., 2001; Todd et al., 2001;
Ferreira et al., 2001; Toshiaki et al., 2001). Since rainfall
forecasting must be conducted in real-time, many multi-
sensor techniques that utilize space-borne microwave
images are not applicable and we develop a rainfall fore-
casting algorithm using only geostationary weather satellite
images. It is also worthy to mention that if the space-borne
microwave images are used only to calibrate the thermal
infrared data, then the delay of the microwave data is
not an issue in applying the combined IR/microwave algo-
rithms in real time, unless other data such as rain gauge
data are also considered. Examples of such algorithms in-
clude Turk et al. (1998) and Sorooshian et al. (2000).

2. Study area and data

The Danshui River watershed, which covers 2700 km2

drainage area in northern Taiwan, was selected for this
study. It is composed of three major tributaries – the
Hsindien River (900 km2), Dahan River (1200 km2) and
Keelung River (600 km2). Terrain elevation in the wa-
tershed ranges from near mean sea level at the outlet to
over 3500 m in headwater mountainous area. Fig. 1 shows
the location and drainage systems of the Danshui River
watershed. GMS images and hourly rainfall data from a
network of 37 raingauge stations (see Fig. 1) for 12 ty-
phoon events with durations ranging from 10 to 57 h
(see Table 1) were collected. GMS has three thermal
infrared channels (IR1–IR3) and one panchromatic
(PAN) channel. The spectral ranges and spatial resolu-
tions of GMS images are shown in Table 2. Radiances re-
ceived at the satellite sensors in the spectral range of IR1
and IR2 channels (10.5–12.5 lm) are mainly emitted by
clouds and are dependent on the cloud-top temperature.
Radiances received at the sensors in the IR3 and PAN
spectral ranges, respectively, characterize water vapor in
the upper atmosphere and visible albedo of the cloud
(Conway, 1997).
3. Methodology

Our methodology of real-time rainfall forecasting is
composed of three major components: (1) estimation of
pixel-average-rainfall (PAR) by block kriging, (2) forecast-
ing of pixel-average-rainfall using weather satellite imagery
by a multi-spectral spatial convolution (MSSC) approach,
and (3) updating MSSC kernel function by Kalman filter-
ing. Because of the page limit, this paper presents only
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results of the first two components. Implementation of the
Kalman filtering technique for MSSC kernel function up-
date and real-time rainfall forecasting will be presented in
a future paper.

3.1. Estimation of pixel-average-rainfall by block kriging

An important difference between rainfall measured by
raingauges and estimated from GMS satellite images is
their spatial scales, i.e. the spatial area over which rain-
fall amounts are collected. Rainfall measurements by
raingauges are considered point measurements, whereas
GMS estimates of rainfall rate are areal average
(5 km · 5 km) rainfall. Also, satellite cloud images are ac-
quired instantaneously while rain gauges give accumu-
lated amounts of rainfall that are discrete in time. This
further complicates the efforts to relate the two. In order
to establish a relationship between ground-based rainfall
measurements and satellite-based rainfall estimates, we
first discretized the study area into a grid mesh with 5-
km intervals so that each grid cell corresponds to a pixel
on GMS satellite images. Then, 1- and 3-h cumulative
pixel-average-rainfall (hereafter referred to as 1-h-PAR
and 3-h-PAR) corresponding to raingauges were esti-
mated by block kriging using point rainfall measured
at 37 raingauges.

Consider point rainfall at location x as a random vari-
able denoted by Z(x) and spatial variation of point rainfall
as a random field {ZX(x), x 2 X} where X represents the
spatial extent of rainfall field. Rainfall measurements
{z(xi), i = 1,2, . . . ,n} are observed by raingauges at loca-
tions xi, i = 1,2, . . . ,n, and average rainfall within an area
of V centered at x0, denoted by zV(x0), can be estimated by
a linear estimator

z�V ðx0Þ ¼
Xn

i¼1

kizðxiÞ. ð1Þ

Block kriging estimator z�V ðx0Þ is a linear, unbiased esti-
mator of zV(x0) and has a minimum variance of estimation
error. The following block kriging system of equations is
used to solve the linear weights ki�s:

Pn
b¼1

kbcðxa � xbÞ þ l ¼ �cðV ; xaÞ ða ¼ 1; 2; . . . ; nÞ;

Pn
b¼1

kb ¼ 1:0;

8>>><
>>>:

ð2Þ

where l is a Lagrange multiplier, �cðV ; xaÞ ¼ 1
V

R
V cðx; xaÞdx,

and c(xi,xj) is the variogram of the random field ZX(x) and
is defined as cðxi; xjÞ ¼ cðjxi � xjjÞ ¼ 1

2
Ef½ZðxiÞ � ZðxjÞ�2g.

Variogram is a function that characterizes the spatial
variation structure of a random field and can be estimated
using observed data {z(xi), i = 1,2, . . . ,n},

c
_ðhÞ ¼ 1

2jNðhÞj
X
NðhÞ
½zðxiÞ � zðxjÞ�2; h > 0; ð3Þ
where N(h)”{(xi � xj):jxi � xjj = h; i, j = 1,2, . . . ,n}. The
function c

_ðhÞ is often termed the experimental variogram.
For detailed descriptions of spatial estimation by block kri-
ging readers are referred to Journel and Huijbregts (1978)
and Chilès and Delfiner (1999).

3.2. Multi-spectral spatial convolution for pixel-average-

rainfall forecasting

Both cloud-top temperature (CTT) observed by weather
satellites and rainfall on the ground surface exhibit signifi-
cant spatial and temporal variations and can be character-
ized using the concept of random fields. Let T(x,y) and
R(x,y), respectively, represent the random fields of cloud-
top temperature and ground-surface rainfall at image loca-
tion (x,y). Transformation of cloud-top temperature to
rainfall can be considered as a linear system with T(x,y)
and R(x,y) being the input and output functions, respec-
tively. The following equation of spatial convolution inte-
gral is introduced to relate the two random fields:

Rðx; yÞ ¼
Z xþ‘

x�‘

Z yþ‘

y�‘
T ðx0y0Þf ðx� x0; y � y0Þdx0 dy0; ð4Þ

where the extent of convolution (also seen as the extent of
influence by unit input) is (2‘ + 1) by (2‘ + 1), and f is the
kernel function. The above integration equation only
works for continuous random fields; however, both CTT
and PAR are discrete random fields with 5 km · 5 km sup-
port and the following discrete form of spatial convolution
should be used:

Rðx; yÞ ¼
Xxþ‘

x0¼x�‘

Xyþ‘
y0¼y�‘

T ðx0; y 0Þf ðx� x0; y � y 0Þ

¼
XN

i¼1

T ði; x; yÞf ði; x; yÞ; N ¼ ð2‘þ 1Þ2. ð5Þ

R(x,y) represents pixel-average rainfall corresponding to a
pixel at image location (x,y). It is calculated by spatial con-
volution of cloud-top temperature of surrounding pixels
T(x 0,y 0) (nine pixels in our study using ‘ = 1 and
N = (2‘ + 1)2). In order to simplify the expression we
adopt T(i;x,y) to represent the cloud-top temperatures of
nine pixels surrounding the central pixel at image location
(x,y). The index i is used merely to identify the ith pixel
(i = 1,2, . . . ,N) surrounding the central pixel at image
location (x,y). Similarly, f(i;x,y) is the value of kernel func-
tion assigned to the cloud-top temperature of the ith pixel
surrounding the central pixel at (x,y). The kernel function
acts as a moving window of weights corresponding to
cloud-top temperatures T(x,y). The rationale of using spa-
tial convolution equation is twofold (see Fig. 2): (1) sensor
onboard the satellite receives not only radiances from the
target cloud pixel (path of solid line in Fig. 2) but also
atmospheric-scattered radiances from adjacent pixels (path
of dashed line in Fig. 2), and (2) precipitation within a
cloud pixel may result in rainfall over an area at the ground



Fig. 2. Processes of radiances received at sensor and rainfall reaching
ground surface.

Fig. 3. Comparison of block kriging estimates and MSSC predictions of
1-h-PAR using various numbers of spectral channels (model building).
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level much larger than the corresponding ground cell. An-
other reason to use spatial convolution is that there may be
errors in the navigation of the satellite data, or displace-
ments between the cloud tops and the associated precipita-
tion at ground level due to wind shear. Both processes can
be characterized by point-spread-functions.

Suppose that there are n pixel-average rainfall in the
study area, we then establish n spatial convolution equa-
tions and form the following matrix equation:

Rð1Þ
Rð2Þ

..

.

RðnÞ

2
66664

3
77775 ¼

T ð1; 1Þ T ð1; 2Þ � � � T ð1; NÞ
T ð2; 1Þ T ð2; 2Þ � � � T ð2; NÞ

..

. ..
. . .

. ..
.

T ðn; 1Þ T ðn; 2Þ . . . T ðn; NÞ

2
66664

3
77775

f ð1Þ
f ð2Þ

..

.

f ðNÞ

2
66664

3
77775.

ð6Þ

Or, R = T . . . F. T(j, i) (j = 1, . . . ,n; i = 1, . . . ,N) in Eq. (6)
represents the cloud-top temperature of the ith surround-
ing pixel associated with the jth pixel-average rainfall
(R(j)). The kernel function F can be solved by the least-
squared method

F ¼ ðT 0T Þ�1T 0R ð7Þ

Eqs. (4)–(6) only consider CTT of single spectral chan-
nel, if CTT from k infrared channels are considered, Eq.
(6) can be extended as

Rm ¼
Xk

i¼1

wiRiðmÞ ¼
Xk

i¼1

wi

XN

j¼1

T ijðmÞfij

 !

¼
Xk

i¼1

XN

j¼1

T ijðmÞðwifijÞ ¼
Xk

i¼1

XN

j¼1

T ijðmÞf 0ij;

m ¼ 1; 2; � � � ; n; ð8Þ
where Rm represents the multi-spectral spatial convolution
estimate of the mth pixel-average-rainfall. Previous re-
searches suggested using CTT threshold of 253 K for dis-
crimination of rain and no-rain pixels (Griffith et al.,
1978; Woodley et al., 1979; Negri and Adler, 1987; Adler
and Negri, 1988). Therefore, effective temperatures (CTT
minus 253 K) are used in the spatial convolution equation
(Eqs. (6) and (8)). All cloud pixels with CTT higher than
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253 K correspond to zero effective temperatures, and there-
fore, produce no rainfall. Also, readers are reminded that
in order to achieve 3-h-lead rainfall forecasting 3-h-PAR
(3-h cumulative pixel-average-rainfall starting at time t) to-
gether with GMS CTT of time t must be used in Eqs. (6)
and (8). The kernel function (F in Eq. (7) and f 0ij in Eq.
(8)) is updated at every real-time step using the Kalman fil-
tering algorithm by taking into account the rainfall predic-
tion errors of the previous time step.

4. Results and discussion

4.1. 1-h-PAR accuracy assessment in model building

Block kriging estimates of 1-h-PAR corresponding to 37
raingauges were compared against predicted 1-h-PAR
using GMS images by the MSSC approach. Fig. 3 demon-
strates that block kriging estimates and MSSC predictions
of 1-h-PAR are highly correlated and inclusion of more
spectral channels yield better results. Fig. 3 accounts for
a total of 11,174 data points which correspond to PAR
of 12 typhoon events with durations ranging from 10 to
57 h.
Fig. 4. Cross-validation of 1-h-PAR forecasts during T
4.2. Cross-validation of 1- and 3-h-PAR forecast

Eqs. (6) and (8) which involve block kriging PAR esti-
mates corresponding to available raingauges and the kernel
function f, is solved by least-squared method. Accuracy
assessment in Section 4.1 is therefore, analogue to compar-
ison of measurements and their regression estimates. Such
comparison, generally, only indicates good data-fitting and
will not serve to demonstrate the accuracy of forecasts. In
this study, we adopted a cross-validation approach of accu-
racy assessment for 1- and 3-h- PAR forecasts.

From a total of n block kriging PAR estimates, we first
remove one PAR estimate, say corresponding to the first
raingauge, and solve Eqs. (6) or (8) for the kernel function
f using the remaining (n � 1) PAR estimates. We then cal-
culate the PAR forecast corresponding to the first rainga-
uge. The same procedure is repeated again by replacing
the removed PAR estimate with another one until all of
the n PAR estimates have been chosen.

We conducted cross-validation for 1- and 3-h-PAR fore-
casts (1- and 3-h-lead forecasting) at pixels corresponding
to individual raingauge sites for individual events. Figs. 4
and 5, respectively, show examples of cross validation for
yphoon Winnie using IR1, IR2 and IR3 channels.



Fig. 5. Cross-validation of 3-h-PAR forecasts during Typhoon Winnie using IR1, IR2 and IR3 channels.
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1- and 3-h-PAR forecasts corresponding to four raingauges
(Guandu, Chung-Cheng Bridge, Dabao and Gauyi) during
Typhoon Winnie occurred in 1997. It can be seen clearly
that MSSC forecasts of 1- and 3-h-PAR forecasts are com-
patible with block kriging estimates.

In addition to cross-validation, the 3-h-PAR forecasts
are also compared with forecasts by simple persistence
(i.e. assuming that rainfall amount from the previous
3 h will fall again during the next 3 h). Even though data
from many typhoons and raingauges were used in our
study, we only show comparisons between 3-h-PAR fore-
casts (by spatial convolution and simple persistence meth-
ods) and block-kriging PAR (which are considered as
observed rainfall) for Chung-Cheng Bridge and Gauyi
stations during Typhoon Winnie. As can be seen in
Fig. 6, forecasts by spatial convolution tend to follow
the variation trend of block-kriging PAR. Root mean
square errors of the spatial convolution method are 24.6
and 20.4 mm for Chung-Cheng Bridge and Gauyi sta-
tions, respectively. As can be expected, the simple persis-
tence forecasts follow the variation trend very well,
however, it cannot yield forecasts at locations, where no
raingauge stations exist. In contrast, the proposed spatial
convolution approach solves for the kernel function and
then extends forecasts to large cloud-covered area with
no riangauge stations.

5. Conclusion

We have developed a multi-spectral spatial convolution
approach for real-time rainfall forecasting using geosta-
tionary weather satellite images. The approach incorpo-
rates cloud-top temperatures of three infrared channels in
a spatial convolution context. It not only characterizes



Fig. 6. Comparison of 3-h-PAR forecasts by spatial convolution, simple
persistence and block-kriging PAR during Typhoon Winnie at Chung-
Cheng Bridge and Gauyi raingauge stations.
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the input–output relationship of cloud-top temperature
and rainfall on the ground level but also is more consistent
with physical and remote sensing principles than single-pix-
el matches. Through cross-validation, the MSSC demon-
strates its capability of achieving high accuracy for 1- to
3-h-lead pixel-average-rainfall forecasting.
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