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Structural basis of mercury- and zinc-conjugated complexes
as SARS-CoV 3C-like protease inhibitors
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Abstract Five active metal-conjugated inhibitors (PMA, TDT,
EPDTC, JMF1586 and JMF1600) bound with the 3C-like pro-
tease of severe acute respiratory syndrome (SARS)-associated
coronavirus were analyzed crystallographically. The complex
structures reveal two major inhibition modes: Hg2+-PMA is
coordinated to C44, M49 and Y54 with a square planar geometry
at the S3 pocket, whereas each Zn2+ of the four zinc-inhibitors is
tetrahedrally coordinated to the H41–C145 catalytic dyad. For
anti-SARS drug design, this Zn2+-centered coordination pattern
would serve as a starting platform for inhibitor optimization.
� 2007 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

Severe acute respiratory syndrome-associated coronavirus

(SARS-CoV) is an enveloped, positive-stranded RNA virus

belonging to Coronaviridae, which caused the SARS outbreak

in 2003. Other members of human coronaviruses include

HCoV-229E, HCoV-OC43, HCoV-HKU1 and HCoV-NL63.

For SARS-CoV, its 3C-like protease (3CLpro) functions in

the maturation of viral proteins, thus representing an ideal tar-

get for therapeutic intervention [1]. Its crystal structure [2,3]

has been determined to assist the design of inhibitors [4,5].

We previously found that some metal ions (e.g., Cu2+, Hg2+,

Zn2+) and their metal-conjugated compounds [phenylmecuric

acetate (PMA), toluene-3,4-dithiolato zinc (TDT), and N-

ethyl-N-phenyldithiocarbamic acid zinc (EPDTC)] showed
Abbreviations: BABIM, bis(5-amidino-2-benzimidazolyl) methane;
EPDTC, N-ethyl-N-phenyldithiocarbamic acid zinc; ESI-MS, electro-
spray ionization mass spectrometry; JMF1586, bis(LL-aspartato-N,O)
zinc(II) ethanate; JMF1600, (nitrilotriacetato-N,O) zinc(II) acetate;
NMR, nuclear magnetic resonance; PMA, phenylmercuric acetate;
TDT, toluene-3,4-dithiolato zinc
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inhibitory potency in the low or sub-lM range against

SARS-CoV 3CLpro [6]. Hg2+ or Zn2+ were known to inhibit

several viral proteases such as 3CLpro of norovirus, papain-like

protease (PLP2) of SARS-CoV, human cytomegalovirus

(hCMV) protease and hepatitis C virus (HCV) NS3 protease

[7–11]. Here, to elucidate the metal-inhibitor binding mode

and to pursue better inhibitors, we extended our work to two

zinc-based inhibitors bis(LL-aspartato-N,O) zinc(II) ethanate

(designated as JMF1586) and (nitrilotriacetato-N,O) zinc(II)

acetate (designated as JMF1600) and obtained the crystal struc-

tures of SARS 3CLpro complexed with PMA, TDT, EPDTC,

JMF1586 and JMF1600 to delineate the inhibition modes.
2. Materials and methods

2.1. Inhibitors and inhibition assay
JMF1856 and JMF1600 were prepared according to the following

procedure. Et3N (10 mmol) was added to a mixture of LL-aspartic acid
(10 mmol) or nitrilotriacetic acid (5 mmol) in ethanol. The reaction
mixture was stirred at room temperature, prior to the addition of zinc
acetate dihydrate (5 mmol). The white precipitate was collected by fil-
tration, and washed with ethanol and acetone to yield the desired zinc
complex. These complexes were characterized by nuclear magnetic res-
onance (NMR) spectra and electrospray ionization mass spectrometry
(ESI-MS). Their molecular formula are shown in Scheme 1.

The fluorimetric assay was utilized to identify inhibitors of SARS-
CoV 3CLpro and determine their inhibition constants [12]. The Ki val-
ues of PMA, EPDTC, and TDT against 3CLpro have been reported [6],
and those of JMF1600 and JMF1586 was 0.32 lM and 0.05 lM,
respectively.

2.2. Crystallization, data collection and structure determination
The purified SARS-CoV 3CLpro was prepared as described previ-

ously [2]. All inhibitors were dissolved in DMSO for crystallization.
Using the sitting-drop vapor diffusion method, enzyme solution was
mixed with inhibitor solutions by a molar ratio of 1:5 for 20 min before
combining with equal amounts of reservoir. The 3CLpro-EPDTC crys-
tals were obtained using a reservoir of 10% PEG 6000, 14% DMSO,
2 mM DTT, 0.1 M MES at pH 6.5. The other complex crystals were
obtained using 15% PEG 6000, 4–14% DMSO, 0.1 mM DTT, and
0.1 M MES at pH 6.5. The crystals were flash-frozen to 100 K with
20–25% ethylene glycol (vol/vol) as a cryo-protectant. The 3CLpro-
JMF1586 data were collected at the wavelength of 1.000 Å using Tai-
wan beam line BL12B2 in SPring8 (Japan). Data sets for the other four
crystals were collected using the MSC MicroMax 002 equipped with an
R-AXIS IV++ image-plate detector. Diffraction data were processed
and scaled using the program HKL2000 [13].
blished by Elsevier B.V. All rights reserved.



Scheme 1. Chemical structures and inhibition parameters of inhibitors. PMA is a mercury-conjugated compound, whereas TDT, EPDTC, JMF1586
and JMF1600 are zinc-conjugates. The respective inhibition constants (Ki) for SARS-CoV 3CLpro are also indicated.
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All crystal structures were determined by molecular replacement
method using the program AMoRe [14], and using Protein Data Bank
(PDB) code 1Z1J [2] as the search model. The Crystallography and
NMR System (CNS) program [15] was used for structure refinement.
All manual modifications of the models were performed using the pro-
gram XtalView [16]. The difference Fourier map (Fo � Fc) was used to
locate the inhibitors and solvent molecules. Data collection and final
model statistics are shown in Table S1. The atomic coordinates and
structure factors of 3CLpro-EPDTC, 3CLpro-JMF1600, 3CLpro-
JMF1586, 3CLpro-PMA and 3CLpro-TDT have been deposited in the
Protein Data Bank codes 2Z9J, 2Z9K, 2Z9L, 2Z9G and 2Z94, respec-
tively.
3. Results

3.1. Overall structures

SARS-CoV 3CLpro is a homodimer with three domains in

each monomer. Its active site comprises the His41-Cys145 cata-

lytic dyad located at the cleft between domains I and II, and

the third domain contributes to the dimerization of protease

[2,3] (Fig. 1A). Here, five complex structures were determined.

Diffraction data of the 3CLpro-JMF1586 crystal were pro-

cessed for anomalous signal and exploited to locate the zinc

atom sites by calculating anomalous difference Fourier maps.

Two major Zn2+ peaks were located in the active site of each

protein molecule in the asymmetric unit. In the 3CLpro-

EPDTC, 3CLpro-JMF1600, 3CLpro-JMF1586 complex struc-

tures, four DMSO molecules in each dimer derived from the

crystallization condition were found. Two were located on

the enzyme surface surrounded by the side chains of R298,

M6, and F8 of each subunit. The second pair of DMSO mole-

cules was bound in the S1 pocket, which consists of the side
chains of H163 and F140 and the main-chains of M165, E166

and H172. The oxygen atom of DMSO is hydrogen bonded

to the imidazole side chain of H163 with a mean distance of

2.55 Å (Fig. 1A,B).

3.2. Binding mode of PMA, TDT and EPDTC

In the 3CLpro-PMA complex structure, the phenyl-bound

mercury is bound to the sulfur atom of residue C44 with

the bond distance of 2.5 Å, and the phenolic oxygen atom

of Y54and sulfur atom of M49 serve as the other two ligands

to form a square planar geometry with Hg–O and Hg–S bond

lengths of 2.6 Å and 3.5 Å, respectively (Fig. 1C). The ob-

served electron density of the inhibitor is well defined for

mercury and the phenyl group, but the acetate group of

PMA was dissociated and replaced by protein ligands. Fur-

thermore, the phenyl group of PMA occupying the S3 pocket

contacts the side chain of H41, causing its imidazole ring to

rotate to form a hydrogen bond (3.0 Å) with the backbone

carbonyl oxygen of H164 (Fig. 1D). Comparison of 3CLpro-

PMA with the native-3CLpro (PDB code 1Z1I) [2] structure

reveals a significant conformational change of residues 43–

51, indicating its flexibility for PMA entry to and binding

at the S3 pocket.

TDT is bound to the catalytic dyad residues H41 and C145

acting to inhibit the enzyme’s activity (Fig. 2A). The zinc atom

of TDT is coordinated to the side chain nitrogen atom of H41

and the sulfur atom of C145 with a distorted tetrahedral geom-

etry despite a rigid S–Zn–S bond angle of 93.3� (Fig. 2E). The

toluene group of TDT has no interaction with the protein. The

inhibition mode of EPDTC is the same as that of TDT regard-

ing the zinc atom coordination to two sulfur atoms and two



Fig. 1. Crystal structures of inhibited3CLpro. (A,B) The overall three-dimensional structure and active site of 3CLpro with the bound EPDTC and
DMSO. The substrate binding subsites are designated as S1, S2, and S3. (C,D) The active site of 3CLpro with the bound PMA. (C) The 2Fo � Fc

electron density maps (1.0 r level) and schematic representation of PMA coordination geometry with the bond lengths and bond angles indicated.
(D) The phenyl-bound mercury is covalently attached to C44 and coordinated to Y54 and M49. The oxygen atoms are red, nitrogen blue, sulfur
orange, and carbon on protein gray. The inhibitor carbon atoms are green, and mercury is magenta sphere.
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side chains of H41 and C145 (Fig. 2B). Nonetheless, the local

metal center geometry of EPDTC, unlike that of TDT, is that

the zinc ion binds to H41 and C145 in a more typical zinc tetra-

hedral geometry with the S–Zn–S bond angle of 107.2�
(Fig. 2F). Moreover, the electron density map of the zinc atom

and two sulfur atoms of EPDTC can be clearly seen in each

subunit, yet the bulky substituent groups are absent

(Fig. S1). The lack of electron density might suggest that the

substituents are disordered. We have performed a computer

modeling study to address the question whether the bulky sub-

stituents impede the binding of the complex. Fig. S2 shows

that the entire EPDTC could be accommodated in the active

site pocket, with sufficient room for the bulky side groups to

rotate about. Therefore conformational disorder of side chains

remains a likely possibility.

3.3. Binding modes of JMF1586 and JMF1600 and inhibition

activity

JMF1600 and JMF1586 showed smaller Ki value (0.32 lM

and 0.05 lM, respectively) for inhibiting SARS-3CLpro than

that of Zn2+ (1.1 lM) [6] by 3- and 20-fold, respectively

(Scheme 1), with JMF1586 exhibiting the highest inhibition

activity. In the 3CLpro-JMF1586 complex, the zinc-centered

tetrahedral coordination is formed by H41, C145 and two nitro-

gen atoms. On the other hand, H41, C145, one nitrogen atom

and a water molecule are responsible for the Zn coordination

in the 3CLpro-JMF1600 complex (Fig. 2C,D). Scheme 1 shows

that the zinc atom is chelated by two nitrogen and two oxygen
atoms for JMF1586, and by one nitrogen and three oxygen

atoms for JMF1600. The Zn–N bond is stronger than the

Zn–O bond, consistent with the lower Ki value for JMF1586.

Both structures indicate that the metal–oxygen bond of

JMF1586 and JMF1600 must break prior to being substituted

by H41 and C145 in the formation of the zinc-centered complex.

Like the case above, the electron densities of the zinc ions and

nitrogen atoms of JMF1586 and JMF1600 were visible, but

not those for the substituent groups (Fig. S1).
4. Discussion

In this study, five crystal structures allow us to identify li-

gand binding regions of metal-conjugated compounds as

inhibitors of SARS-CoV 3CLpro. The 3CLpro-PMA structure

reveals that a phenyl-bound mercury occupying the S3 pocket

is responsible for inhibiting the enzymatic activity. One SARS-

CoV 3CLpro molecule contains 12 free cysteine-SH residues, in

which only C44, but not the active site C145, provides a specific

coordination environment for the phenyl-bound mercury.

Inorganic Hg ion is known to cause toxic effects, since the

affinity of Hg(II) ion to thiol group in proteins lead to non-spe-

cific inhibition of cellular enzymes [17]. Therefore, structural

studies of the specific interaction between mercury-conjugated

compounds and the thiol groups of cysteine-containing en-

zyme may be valuable for the future development of specific

inhibitors.



Fig. 2. Zinc-conjugated compounds bound to SARS-CoV 3CLpro. (A–D) The zinc inhibitors are coordinated to the catalytic dyad with the zinc ion
surrounded by a tetrahedral or distorted tetrahedral arrangement of ligands. A DMSO molecule located at the S1 pocket was observed in the latter
three crystals B, C and D, colored as in Fig. 1D. In all complexes, DMSO and inhibitors carbon atoms are green. The zinc ions are depicted as a yellow
sphere. (E–H) Schematic representation of zinc-centered geometry in active sites. The zinc centered coordination is NHisSCysS2 for 3CLpro-TDT and
3CLpro-EPDTC, NHisSCysN2 for 3CLpro-JMF1586, and NHisSCysON for 3CLpro-JMF1600. The bond lengths and bond angles are also indicated.
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Regarding the structures of the zinc-centered complexes, the

zinc ion plays a key role in targeting the catalytic residues, via

binding to the H41–C145 catalytic dyad to yield a zinc-central

tetrahedral geometry. This type of inhibition is similar to the

zinc-mediated serine protease inhibitor keto-BABIM-Zn2+

for trypsin in that a zinc ion is coordinated to two chelating

nitrogen atoms of bis(5-amidino-2-benzimidazolyl) methane

(BABIM) and two catalytic residues (Ser-His) of trypsin in a

tetrahedral geometry [18]. However, this zinc-centered inhibi-

tion mode has never been described before for cysteine prote-

ase. The safety of zinc-containing compounds for human use is

indicated by the fact that zinc acetate and zinc sulfate are

added as a supplement to the drug for the treatment of Wil-

son’s disease and Behcet’s disease, respectively [19,20]. The

possibility of zinc complexes incorporated into cells through

the cell membrane is also demonstrated by the studies on type

2 diabetic treatment [21]. Here, our results show that the zinc-

centered coordination pattern would serve as a starting

platform for inhibitor optimization and the development of

potential drug for SARS therapies. Since 3C and 3CL prote-

ases with the Cys-His catalytic residues have been found in sev-

eral human viruses such as the family of Coronaviridae, and

Arteriviridae [22,23], these proteases can be targets for the zinc

derivatized inhibitors.
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Appendix A. Supplementary material

Supplementary data associated with this article can be

found, in the online version, at doi:10.1016/j.febslet.2007.10.

048.
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