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Abstract

Asian options are strongly path-dependent derivatives. Although efficient numerical methods and approximate closed-
form formulas are available, most lack convergence guarantees. Asian options can also be priced on the lattice. All efficient
lattice algorithms keep only a polynomial number of states and use interpolation to compensate for the less than full rep-
resentation of the states. Let the time to maturity be partitioned into n periods. This paper presents the first Oðn2Þ-time
convergent lattice algorithm for pricing European-style Asian options; it is the most efficient lattice algorithm with con-
vergence guarantees. The algorithm relies on the Lagrange multipliers to choose optimally the number of states for each
node of the lattice. The algorithm is also memory efficient. Extensive numerical experiments and comparison with existing
PDE, analytical, and lattice methods confirm the performance claims and the competitiveness of our algorithm. This result
places the problem of European-style Asian option pricing in the same complexity class as that of the vanilla option on the
lattice.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Path-dependent derivatives have payoffs that depend strongly on the price history of the underlying asset.
In pricing such derivatives, the historical information needs to be encoded as part of the state. Although the
effect tends to enlarge the state space, it may not lead to exponential complexity if done properly. For example,
barrier and look back options can be efficiently priced despite the fact that they are path-dependent. For other
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path-dependent derivatives, however, the performance issue is more intricate. The Asian option is perhaps the
most representative of them.

Asian options are originally traded in the Asian markets, particularly Tokyo [1]. The payoff of the Asian
option depends on the arithmetic average price of the underlying asset. It is therefore useful for hedging trans-
actions whose cost is related to the average price of the underlying asset. The price of the Asian option is also
less subject to price manipulation. Hence the averaging feature is popular in many thinly traded markets and
embedded in complex derivatives such as the refix clauses in convertible bonds. Asian option is first suggested
by [2].

Pricing Asian options has been a practical and research problem of long standing when the underlying
asset’s price is lognormally distributed. The source of the difficulty lies in that the sum of lognormal random
variables is no longer lognormally distributed. Several solutions have been proposed for the problem, includ-
ing analytical approximations, Monte Carlo simulation, lattices, and partial differential equations (PDEs).

Approximate closed-form formulas have been derived under various assumptions. These formulas have
been evaluated thoroughly in [1,3–5]. The general conclusion is that all are as good as their assumptions,
and most lack convergence guarantees. For example, some formulas lose accuracy for low volatility levels,
whereas others do so for high volatility levels. Lower and upper bounds on the option price are derived in
[6–9]. As no simple, exact closed-form solutions exist yet, the development of efficient numerical algorithms
becomes an important alternative. First, there are the popular Monte Carlo and the related quasi-Monte
Carlo methods surveyed in [10]. Both the Monte Carlo approach and the analytical approach suffer from
the inability to handle early exercise without bias. Although Longstaff and Schwartz have developed a
least-squares Monte Carlo approach to tackle the problem [11], a convergence proof remains elusive (see
[12] for a convergence proof in the case of American-style vanilla options). Other drawbacks of Monte Carlo
include its probabilistic nature and relative inefficiency.

The third type of approach, the lattice and the closely related PDE methods, are more general as they can
handle early exercise. The main challenge with the lattice method in the case of Asian options is its exponential
nature: An exponential number of arithmetic operations seem needed for an exact evaluation. This is because
every price path, which corresponds to a state (that is, the average to date, also called the running average),
leads to a different average price, thus payoff as well. To reduce the complexity, all known practical lattice
algorithms keep only a small subset of the states. When an option value for a missing state is called for in
the pricing algorithms, it is interpolated from the option values of the neighboring states. This successful par-
adigm is due to Hull and White [13] and Ritchken et al. [14] and is followed by, for example, Zvan et al. [15]
and Klassen [16]. We will call it the interpolation paradigm. The interpolation paradigm obviously introduces
interpolation error, and a major concern is whether the magnitude of the interpolation error converges to zero.
Pricing Asian options with two-dimensional PDEs also tackles the issue of exploding state space with the
interpolation paradigm [17].

Partition the time to maturity into n periods. It is well-known that a binomial lattice with n periods contains
about n2/2 nodes (see Fig. 1). Observe that the binomial model has a lattice structure because it recombines.
Let the average number of states (running averages) kept at each node be k, a critical adjustable parameter for
lattice algorithms. As the total number of states is kn2=2, the asymptotic running time of the lattice algorithm
is Oðkn2Þ. An algorithm must decide upon how to distribute these kn2=2 states among the nodes. The choice
Fig. 1. Binomial lattice. Each node has two successor nodes. The number of nodes at any time i is iþ 1. The total number of nodes of an
n-period binomial lattice is

Pn
t¼0ðiþ 1Þ ¼ ðnþ 2Þðnþ 1Þ=2 � n2=2.
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will determine whether a small k guarantees convergence to the true value. The ultimate goal is that a constant
k – thus quadratic running time – suffices.

A uniform allocation scheme is perhaps the most straightforward scheme. It simply allocates the same num-
ber of states k for each node. Unfortunately, a uniform allocation scheme with k states per node is suboptimal.
First, a small k may result in large deviations from the correct option price because of the low resolution, but a
k that grows in some way with n makes the algorithm less efficient. Hence we are confronted with the conflict-
ing demands of accuracy and speed. Second, an identical k for all nodes may be sufficient for nodes where few
paths lead to, but hardly enough for nodes where exponentially many paths lead to. Intuitively, an algorithm
should assign a smaller number of states to a node with a low probability of occurrence than one with a high
probability of occurrence. The problem is how to find the numbers methodically. This paper addresses these
issues by an optimization technique, which yields nonuniform allocation schemes. In particular, the number of
states allocated for each node is determined by the Lagrange multiplier. It is then proved that a constant k
suffices for convergence purposes, resulting in a running time of Oðn2Þ.

Some algorithms in the literature let the running averages or the logarithms of the running averages kept at
each node be spaced at a given distance apart. (We will call the latter, more popular allocation scheme the log-
linear allocation scheme.) As the range of running averages differs for different nodes, the number of states
vary from node to node in both cases. Although the result is not a uniform allocation scheme, the overall idea
remains ad hoc.

Rigorous convergence analysis of Asian options is relatively rare. Barraquand and Pudet [18] and Forsyth
et al. [17] analyze the interpolation paradigm for European-style Asian options. For example, under plausible
assumptions, Forsyth et al. demonstrate that the interpolation paradigm together with linear interpolation
and the log-linear allocation scheme is convergent provided that k is proportional to n1.5 [17]; the running time
is thus Oðn3:5Þ. Dai and Lyuu achieve the same running time with the nonuniform allocation scheme but with-
out the assumptions [19]. In general, algorithms based on linear interpolation lack convergence guarantees
unless k grows with n. This rules out the possibility of quadratic-time algorithms. Traditional PDE methods
solve a two-dimensional PDE [20]. The most efficient one, due to Forsyth et al. runs in Oðn3Þ time [17]. Since
Rogers and Shi derive the first one-dimensional PDE for Asian options [6], subsequent works by, for example,
Večeř [21] and Dubois and Lelièvre [22] have proposed one-dimensional PDE methods that run in Oðn2Þ time.
Numerical evaluation in the paper will show that one-dimensional PDEs require more mesh points for high
volatility levels or long maturities. Another drawback of one-dimensional PDE methods is they cannot apply
to American-style fixed-strike Asian options. The transform method is yet another numerical alternative. It
includes the Oðn2 log nÞ-time algorithm of Benhamou based on the fast Fourier transform for pricing discretely
sampled Asian options [23] (discretely sampled Asian options monitor the price of the underlying asset at
fixed time points), and Fusai based on both Fourier and Laplace transforms for pricing continuously
sampled Asian options [5] (continuously sampled Asian option monitors the price of the underlying asset
continuously).

Lattice algorithms that do not use approximations beyond discretization of the continuous-time model are
called exact. Exact algorithms are convergent, but they traditionally require exponential time until the multi-
resolution algorithm of Dai and Lyuu [19]. The multiresolution algorithm maintains all possible states and is
hence exact. Empirically, it runs in subexponential time. Later, Dai and Lyuu prove that a variant of the mul-
tiresolution algorithm does indeed run in 2Oð

ffiffi
n
p
Þ time [24]. It is the first exact lattice algorithm to break the

exponential-time barrier, but its running time remains prohibitive.
This paper proposes the first Oðn2Þ-time lattice algorithm for pricing European-style fixed-strike Asian

options. Under assumptions similar to those made by Forsyth et al. [17], the algorithm is guaranteed to con-
verge to the true value of the continuous-time model. It is hence the first convergent lattice algorithm compet-
itive with the one-dimensional PDE method in terms of efficiency. Interestingly, our algorithm’s convergence
rate does not go down with high volatilities or long maturities; in fact, the opposite is true. Extensive numer-
ical experiments and comparison with existing methods back up the claims.

Our algorithm draws on four ideas. First is the methodology of Dai et al. [19,25], which establishes the
advantages of nonuniform allocation schemes based on optimization principles. Second, Forsyth et al. make
explicit some of the plausible assumptions adopted in our analysis [17]. These assumptions combined with the
nonuniform allocation scheme allow detailed analysis of individual nodes’ contribution to the total error.
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Third, we only need to work with running averages below a threshold at each node. The reason is that for
European-style Asian options, running averages at or over this threshold will necessarily result in the option
being in the money at maturity, in which case their contribution to the option value can be given by a simple
formula. Accordingly, the algorithm devotes resources only to running averages lower than the said threshold.
This idea is from Aingworth et al. [26]. Finally, the algorithm adopts the 4-point polynomial interpolation
instead of the common 1-point (nearest), 2-point (linear), or 3-point (quadratic) interpolation scheme. The
advantages of higher-order interpolation have been documented before by, for instance, Hull and White
[13], Boyle and Tian [27], Wei [28], and Zvan et al. [15].

This paper focuses on European-style fixed-strike continuously sampled Asian options. But our lattice algo-
rithm can be modified to price discretely sampled Asian options [29]. In reality, Asian options are discretely
sampled [30], but the continuously sampled version is much more intensively studied in the literature. Our
algorithm can also be used to price floating-strike Asian options by a result of Henderson and Wojakowski
[31]. Although this paper focuses on binomial lattices, its results can be carried over to trinomial lattices.

This paper is organized as follows. Section 2 reviews basic terms and facts. Section 3 surveys the notion of
interpolation and proves properties that will become pivotal in subsequent analysis. Section 4 describes the
proposed algorithm. Section 5 analyzes the algorithm’s error behavior theoretically and evaluates it numeri-
cally. Section 6 compares it to other popular numerical methods. Section 7 concludes. The two appendices
contain the proofs for highly technical claims stated in the main text.
2. Terminology and basic facts

Let r P 0 denote the continuously compounded risk-free interest rate. The continuous-time stock price
dynamics is the lognormal diffusion
dS
S
¼ r dt þ rdW t
in a risk-neutral economy, where Wt is the Wiener process and r is the volatility. The risk-neutral economy
allows us to calculate the option price by taking expectation of the option’s payoff function and then discount-
ing it by the risk-free interest rate [32]. The lattice model is a discrete-time version of the above model. Let s
denote the time to maturity in years. For lattice algorithms, s is partitioned into n discrete time steps. Each
time (step) has a duration of Dt � s=n years. Let Si stand for the stock price at time i (hence iDt years from
now). In particular, S0 is the known current price. The CRR binomial model of Cox, Ross, and Rubinstein
approximates the lognormal diffusion as follows [33]. First, Siþ1 equals Siu with probability p and Sid with
probability 1� p, where
u ¼ er
ffiffiffiffi
Dt
p
;

d ¼ e�r
ffiffiffiffi
Dt
p
:

Second, the probability p for the up move is set to
R� d
u� d

;

where R � erDt denotes the gross riskless return per period. Both d 6 R 6 u and 0 6 p 6 1 must hold to avoid
arbitrage opportunities, which can be satisfied with n > r2s=r2. Fig. 2a depicts a 2-period binomial model. We
shall assume that the stock does not pay dividends for ease of presentation. We remark that our general con-
clusion does not depend on the particular binomial or even trinomial model chosen to approximate the log-
normal diffusion.

The node at time i that results from j down moves and i� j up moves will be denoted by Nði; jÞ. This node
is associated with the stock price S0ui�jdj at maturity. By the binomial model, the stock price can move from
node Nði; jÞ to node Nðiþ 1; jÞ with probability p and to node Nðiþ 1; jþ 1Þ with probability 1� p. This is
the lattice structure illustrated in Fig. 2b. The root node is of course Nð0; 0Þ. Let Bði; j; pÞ denote the proba-
bility of getting j heads when tossing a coin i times with p being the probability of getting heads. Then
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Fig. 2. A 2-period binomial model. (a) The probability of reaching each node is under the node. Note that the bulk of the probability is
concentrated on the middle nodes. (b) The naming of the nodes.
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Bði; j; pÞ �
i

j

� �
pi�jð1� pÞj:
Node Nði; jÞ can be reached from the root node with probability Bði; j; pÞ.
A path from the root node to a node at maturity contains nþ 1 prices S0; S1; . . . ; Sn. In the binomial model,

there are 2n such price paths as 2 outcomes are available for each of the n time steps. Let X P 0 be the strike
price. The European-style Asian call has a payoff of
1

nþ 1

Xn

i¼0

Si � X

 !þ
at maturity, where ðxÞþ means maxðx; 0Þ. Its arbitrage-free price is therefore
E 1
nþ1

Pn
i¼0Si � X

� �þ� �
Rn : ð1Þ
The European-style Asian put can be priced via the put-call parity in [34].
The option value can be evaluated by averaging the payoffs of all possible 2n price paths ðS0; S1; . . . ; SnÞ.

This value converges to the true value under the continuous-time lognormal diffusion model at a rate of
Oðn�1Þ as n goes to infinity [32]. This brute-force pricing methodology results in the exponential-time algo-
rithm alluded to in the introduction.

A price path ðS0; S1; . . . ; SiÞ, 0 6 i 6 n, has the price sum to date equal to
P i � S0 þ S1 þ � � � þ Si;
which will be called the running sum. Its corresponding running average is P i=ðiþ 1Þ. In particular, P 0 ¼ S0.
The tuple ði; Si; P Þ captures the state in pricing the Asian option: The first element refers to the time, the second
to the prevailing stock price, and the third to the running sum. Sometimes, we drop i and Si from ði; Si; P Þ and
simply refer to the running sum or even the corresponding running average as the state when the context is
unambiguous. The successor state ðiþ 1; Siþ1;QÞ is related to the current state ði; Si; P Þ via
Q ¼ P þ Siþ1: ð2Þ

For the binomial model, the state transition is:
ðiþ 1; Siu; P þ SiuÞ for an up move

%
ði; Si; PÞ

&
ðiþ 1; Sid; P þ SidÞ for a down move
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To each state ði; Si; P Þ corresponds the option value V ði; Si; P Þ. The backward-induction pricing formula stip-
ulates that the current option value equals the discounted expected future option value
V ði; Si; PÞ ¼
pV ðiþ 1; Siu; P þ SiuÞ þ ð1� pÞV ðiþ 1; Sid; P þ SidÞ

R
: ð3Þ
The sought-after option value is V ð0; S0; S0Þ at time 0. Formula (3) requires evaluating all possible states (that
is, running sums); it yields the exponential-time brute-force algorithm.

Fortunately, for European-style Asian options, there is no need to evaluate the full range of states. A state
ði; Si; P Þ with a running sum P > ðnþ 1ÞX must end with an average price larger than X at maturity, thus in
the money, because the average price at maturity equals
P þ Siþ1 þ � � � þ Sn

nþ 1
>
ðnþ 1ÞX þ Siþ1 þ � � � þ Sn

nþ 1
P X :
We next derive the option value corresponding to this state under the risk-neutral probability first given in
[26]. If R > 1, the expected value of the average price at maturity, E½P þ Siþ1 þ � � � þ Sn�=ðnþ 1Þ, equals
P þ SiRþ SiR2 þ � � � þ SiRn�i

nþ 1
¼ P þ SiR

1� Rn�i

1� R

� �	
ðnþ 1Þ:
Because every path extending from ði; Si; P Þ will end up in the money, the expected option payoff equals the
above minus X. The case of R ¼ 1 can be handled similarly. In summary, when P > ðnþ 1ÞX ,
V ði; Si; P Þ ¼
½P þ ðn� iÞSi�=ðnþ 1Þ � X if R ¼ 1;

R�ðn�iÞ ½P þ SiR 1�Rn�i

1�R �=ðnþ 1Þ � X

 �

if R > 1:

�
ð4Þ
Two immediate consequences follow from formula (4). First, we only need to deal with states with a running
sum in the range ½0; ðnþ 1ÞX �. This is because a state with a higher running sum can be given an option value
by the formula. Second, high volatilities do not impair the accuracy of our algorithm, which is not the case
with some other algorithms (see [4,35]). The reason is straightforward. A higher volatility makes it more likely
for running sums to exceed ðnþ 1ÞX , which can be priced exactly by the formula. In fact, without the upper
limit of ðnþ 1ÞX , lattice algorithms for European-style Asian options in general may have difficulty converg-
ing for large r and/or s unless k scales at least with n [36].
3. Polynomial Interpolation

Although formula (4) enhances the efficiency of a lattice algorithm, it alone does not render the backward-
induction formula (3) practical because the number of states remains exponential. The next idea is to allocate
much fewer states per node and to use interpolation to obtain V ði; S; P Þ if the state ði; S; PÞ does not corre-
spond to any state allocated by the algorithm.

We now review the notion of polynomial interpolation. Given m distinct points ðx1; y1Þ; ðx2; y2Þ; . . . ; ðxm; ymÞ
with x1 < x2 < � � � < xm, there exists a polynomial pðxÞ of degree at most m� 1 that goes through them. This
polynomial is actually unique among the set of all polynomials of degree at most m� 1. It can be expressed as
pðxÞ ¼ a1ðxÞy1 þ a2ðxÞy2 þ � � � þ amðxÞym;
where the interpolation coefficients a1ðxÞ; a2ðxÞ; . . . ; amðxÞ are polynomials of degree at most m� 1. (See [37]
for more information.) The interpolation polynomial pðxÞ can be derived either by Lagrange’s interpolation
formula or Newton’s divided-difference formula. The former is easier to work with in proofs, whereas the lat-
ter is usually more efficient algorithmically. But as we will be working with m ¼ 4, the difference is minor. We
remark that nearest interpolation corresponds to m ¼ 1, linear interpolation corresponds to m ¼ 2, and qua-
dratic interpolation corresponds to m ¼ 3.

Suppose we are given four points ðx1; y1Þ; ðx2; y2Þ; ðx3; y3Þ; ðx4; y4Þ with x1 < x2 < x3 < x4. In this paper, the
xi’s are running averages, and the yi’s are the corresponding option values. Dai shows that the option price
is convex with respect to the running average [36]; hence the four points are convex in shape. Furthermore,
because the option value increases with the running average, 0 6 y1 6 y2 6 y3 6 y4. In our algorithm, the xi
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Fig. 3. Interpolation of the option value. The four data points are depicted as filled circles. They are increasing and convex. The interpolated
option value at x ¼ 2:5 is in gray.
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are equally spaced (equidistant), which will be critical in the analysis. Let the interpolation polynomial be pðxÞ.
The algorithm will be seeking pðxÞ for x 2 ½x2; x3�.

It will be proved below that pðxÞ is convex for x 2 ½x2; x3�. In Fig. 3, for example, the interpolation polyno-
mial is convex for 2 6 x 6 3 (but not for 1 6 x 6 2). Therefore, the interpolated option value (in gray) must lie
beneath any linear combination of the option values at x ¼ 2 and x ¼ 3. This property is consistent with the
fact that the option price is convex with respect to the running average.

We next prove that pðxÞ is indeed convex in the interval ½x2; x3�. As the running averages are equidistant, we
can without loss of generality let the four points be ð1; y1Þ; ð2; y2Þ; ð3; y3Þ; ð4; y4Þ, where 0 6 y1 6 y2 6 y3 6 y4

throughout the rest of the section. Given that the four points are convex,
y1 þ y3 P 2y2; ð5Þ
y2 þ y4 P 2y3: ð6Þ
The interpolation polynomial that passes through the four points is
pðxÞ ¼ a1y1 þ a2y2 þ a3y3 þ a4y4; ð7Þ

where the interpolation coefficients are
a1 �
ðx� 2Þðx� 3Þðx� 4Þ
ð1� 2Þð1� 3Þð1� 4Þ ¼

�ðx3 � 9x2 þ 26x� 24Þ
6

;

a2 �
ðx� 1Þðx� 3Þðx� 4Þ
ð2� 1Þð2� 3Þð2� 4Þ ¼

3ðx3 � 8x2 þ 19x� 12Þ
6

;

a3 �
ðx� 1Þðx� 2Þðx� 4Þ
ð3� 1Þð3� 2Þð3� 4Þ ¼

�3ðx3 � 7x2 þ 14x� 8Þ
6

;

a4 �
ðx� 1Þðx� 2Þðx� 3Þ
ð4� 1Þð4� 2Þð4� 3Þ ¼

x3 � 6x2 þ 11x� 6

6
:

Next,
p0ðxÞ ¼ �y1ð3x2 � 18xþ 26Þ þ 3y2ð3x2 � 16xþ 19Þ � 3y3ð3x2 � 14xþ 14Þ þ y4ð3x2 � 12xþ 11Þ
6

¼ ð�3y1 þ 9y2 � 9y3 þ 3y4Þx2 þ ð18y1 � 48y2 þ 42y3 � 12y4Þx� 26y1 þ 57y2 � 42y3 þ 11y4

6
;

and
p00ðxÞ ¼ 2ð�3y1 þ 9y2 � 9y3 þ 3y4Þxþ 18y1 � 48y2 þ 42y3 � 12y4

6
:
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Observe that
Fig. 4.
ðnþ 1Þ
p00ð2Þ ¼ 6y1 � 12y2 þ 6y3

6
P 0 by inequality ð5Þ;

p00ð3Þ ¼ 6y2 � 12y3 þ 6y4

6
P 0 by inequality ð6Þ:
Since p00ðxÞ is a linear function in x, the above two inequalities imply p00ðxÞP 0 for 2 6 x 6 3. Hence pðxÞ is
indeed convex in 2 6 x 6 3.

A second key property is that the interpolation coefficients lie within ð�1; 1Þ for x 2 ð2; 3Þ. Indeed, it can be
easily checked that
� 0:06415 6 a1 < 0;

0 < a2 < 1;

0 < a3 < 1;

� 0:06415 6 a4 < 0:
As
1 ¼ a1 þ a2 þ a3 þ a4;
pðxÞ is a linear weighted average of y1; y2; y3, and y4 with a total weight of 1 and with the absolute value of
each weight less than 1. As we will see later, this property ensures that our theoretical analysis can be built on
that of Forsyth et al. in their analysis of the Hull–White algorithm that uses linear interpolation [17]. The
Hull–White algorithm that uses quadratic interpolation, however, cannot follow the same analysis as the abso-
lute values of the interpolation coefficients may exceed 1. The reason is that their running averages xi are not
equidistant.

4. Description of the algorithm

Each running sum P at a node Nði; jÞ corresponds to the state ði; S0ui�jdj; P Þ. Ideally we should allocate a
state at each node Nði; jÞ for each possible running sum. But the resulting exponential state count undermines
this idea. Instead, the far fewer kij þ 1 states will be allocated for node Nði; jÞ, leading to an approximation
algorithm. The kij will be determined later. In view of formula (4), only states with running sums up to
ðnþ 1ÞX need be allocated. Thus we allocate kij þ 1 states with running sums equally spaced between 0
and ðnþ 1ÞX . Two adjacent running sums therefore differ by ðnþ 1ÞX=kij. See Fig. 4 for illustration.
Running sums and states. Each node Nði; jÞ has kij þ 1 states, starting from the running sum 0 and ending with the running sum
X . The increments equal ðnþ 1ÞX=kij.
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The number of allocated states (kij þ 1) varies with the nodes. We need to determine the optimal numbers
kij that minimize the total error given that only kn2=2 states are available. For that purpose, we analyze every
node’s contribution to the total error. Once this is accomplished, an optimization technique is invoked to min-
imize that error. Earlier papers usually use the maximum interpolation error per time step as a node’s contri-
bution to the total error. But this worst-case analysis ignores that individual nodes’ probability weights differ
widely. The unequal weights to individual nodes’ errors will be exploited by our scheme.

Appendix A applies the Lagrangian multipliers to determine kij as
Fig. 5.
scheme
kij ¼
kn2

2

Bði;j;pÞ
i4

� �1
5

Pn
s¼1

Ps
t¼0

Bðs;t;pÞ
s4

� �1
5

: ð8Þ
To calculate the kij numerically, the bulk of the computation is spent on figuring out Bði; j; pÞs, 0 6 j 6 i 6 n.
They can be easily calculated by the following recurrence formula:
Bði; j; pÞ ¼

1; if i ¼ j ¼ 0;

pBði� 1; j; pÞ; if i P 1 and j ¼ 0;

ð1� pÞBði� 1; j� 1; pÞ; if i ¼ j and i P 1;

pBði� 1; j; pÞ þ ð1� pÞBði� 1; j� 1; pÞ; if i > j P 1:

8>>><
>>>:
Hence it takes Oðn2Þ time to compute the kijs. Interestingly, kij is proportional to Bði; j; pÞ0:2 and inversely pro-
portional to i0.8. Recall that Bði; j; pÞ denotes the probability of reaching node Nði; jÞ and i denotes how distant
node Nði; jÞ is from today. The allocation scheme is clearly nonuniform.

Fig. 5 plots the kij for the case of n ¼ 20 and k ¼ 50. It shows how the roughly kn2=2 ¼ 10; 000 states are
distributed among the nodes for uniform and nonuniform allocation schemes. For the nonuniform allocation
scheme, at any given time i, more states are given to the center nodes than the peripheral ones. This is con-
sistent with the intuition that nodes with a heavier probability weight should be given more states. Although
nodes with small probability weights are given fewer states, resulting in potentially larger errors, this negative
impact will be counterbalanced by their smaller probabilities. It turns out that the choice of kij in Eq. (8)
strikes the right balance.

The algorithm computes the option value for each allocated state via backward induction. Suppose the
option value V ði; S; P Þ for the state ði; S; PÞ at node Nði; jÞ is desired. Consider the up move from the node
to the node Nðiþ 1; jÞ with stock price Su. From Eq. (2), the next running sum equals P þ Su, and the option
value V ðiþ 1; Su; P þ SuÞ needs to be calculated. In the event that P þ Su equals the running sum of some allo-
cated state of node Nðiþ 1; jÞ, then V ðiþ 1; Su; P þ SuÞ is already available. On the other hand, if
i i

k kij

Distribution of kij, the number of states for each node on the binomial lattice under the uniform and the nonuniform allocation
s. For this plot, p ¼ 0:486961; n ¼ 20, and k ¼ 50.



Fig. 6. Interpolation. Each of the kij þ 1 states at Nði; jÞ moves up to a running sum of node Nðiþ 1; jÞ and down to a running sum of
node Nðiþ 1; jþ 1Þ. Typically, neither running sum corresponds to any allocated state.
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P þ Su > ðnþ 1ÞX , apply formula (4) to obtain the option value. Finally, if P þ Su does not correspond to any
running sum associated with an allocated state at node Nðiþ 1; jÞ, interpolation is used to obtain the desired
option value as follows. If P þ Su is sandwiched by two running sums whose corresponding option values are
zero, we set V ðiþ 1; Su; P þ SuÞ ¼ 0. Otherwise, let P þ Su be bracketed by four running sums, two from below
and two from above (see Fig. 6)
ðx� 2Þ ðnþ 1ÞX
kiþ1;j

< ðx� 1Þ ðnþ 1ÞX
kiþ1;j

< P þ Su < x
ðnþ 1ÞX

kiþ1;j
< ðxþ 1Þ ðnþ 1ÞX

kiþ1;j
: ð9Þ
Apply the 4-point polynomial interpolation from the four bracketing running sums’ corresponding option val-
ues to obtain V ðiþ 1; Su; P þ SuÞ, i.e.,
V ðiþ 1; Su; P þ SuÞ ¼ a1V iþ 1; Su; ðx� 2Þ ðnþ 1ÞX
kiþ1;j

� �
þ a2V iþ 1; Su; ðx� 1Þ ðnþ 1ÞX

kiþ1;j

� �

þ a3V iþ 1; Su; x
ðnþ 1ÞX

kiþ1;j

� �
þ a4V iþ 1; Su; ðxþ 1Þ ðnþ 1ÞX

kiþ1;j

� �
; ð10Þ
where x is defined in Eq. (9). Similarly, repeat the steps for the down move to obtain the option value
V ðiþ 1; Sd; P þ SdÞ
V ðiþ 1; Sd; P þ SdÞ ¼ a01V iþ 1; Sd; ðy � 2Þ ðnþ 1ÞX
kiþ1;jþ1

� �
þ a02V iþ 1; Sd; ðy � 1Þ ðnþ 1ÞX

kiþ1;jþ1

� �

þ a03V iþ 1; Sd; y
ðnþ 1ÞX
kiþ1;jþ1

� �
þ a04V iþ 1; Sd; ðy þ 1Þ ðnþ 1ÞX

kiþ1;jþ1

� �
: ð11Þ
Finally, set V ði; S; P Þ by formula (3). Recall that j ai j< 1 and ja0ij < 1. Hence the error introduced at a node
will not explode during backward induction.

In the literature, both linear and quadratic interpolations have been used. It is also common to apply inter-
polation in the logarithmic domain. However, as we shall see, our higher-order interpolation combined with
the right choice of kij achieves the desired goal of a convergent quadratic-time algorithm.

Other lattice models than the CRR binomial model are known, e.g., the binomial model of Jarrow and
Rudd [38], the binomial model of Trigeorgis [39], the MOT binomial model, which makes the strike price
lie at the middle of the lattice at maturity [40], and the various trinomial models surveyed in Lyuu [41]. Each
of these alternative models enjoys certain advantages over the CRR model in pricing specific options. How-
ever, they yield qualitatively and quantitatively similar numerical results as our CRR-based algorithm. This
finding is consistent with those in [16] and lends further support to the correctness of our analysis.
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5. Error analysis

Throughout this paper, the computer is equipped with a 2.4 GHz Intel Pentium-4 CPU running Linux and
the GNU C compiler. We start with X ¼ 0 as exact option values are then available from [18]. From formula
(4), the option value under the discrete-time CRR binomial model equals
Fig. 7.
and r ¼

Fig. 8.
in Fig.
V ð0; S0; S0Þ ¼ R�n S0 þ S0R
1� Rn

1� R

� �� 	
ðnþ 1Þ



:

Fig. 7 considers a scenario whose exact option value is 98.76035189. The calculated option values under the
CRR model do indeed decrease nicely towards the exact value. Fig. 8 depicts the convergence in terms of the
magnitude of error. The CRR model clearly converges to the continuous-time model at the convergence rate
of Oðn�1Þ.

In general, with only Oðn2Þ states (that is, a constant k), our algorithm has an error of Oðn�1Þ even for non-
zero strike prices. See Appendix B for the proof. (In that appendix, we also apply the same methodology to
analyze our algorithmic idea with quadratic interpolation instead of cubic interpolation. This results in a run-
ning time of Oðn2:167Þ.) To confirm the convergence rate, Fig. 9 plots the convergence behaviors of our algo-
rithm with the nonzero strike prices of 95 and 100, respectively, for 25 6 n 6 3000. The plots support the
theoretical claim of a convergence rate of Oðn�1Þ.

Klassen has demonstrated that extrapolation can speed up the convergence dramatically [16]. Let fkðnÞ
denote the option value calculated by our algorithm with n periods and kn2=2 states. The first-order Richard-
son’s extrapolation says the formula
2f kð2nÞ � fkðnÞ
Select option values as n!1: the zero-strike case. The parameters are from Table 1 of [17]: S ¼ 100; X ¼ 0; s ¼ 0:25; r ¼ 0:1,
0:1. The exact option value is 98.76035189.

1⁄n

Error

n

Error

Convergence of the binomial model to the exact option value as n!1: the zero-strike case. The parameters are identical to those
7.
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n
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0.001

0.005

0.01

Error

50 100 500 1000
n
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0.001
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Error

Fig. 9. Convergence to the exact option value as n!1: two positive strike cases. The parameters are from [43]: S ¼ 100; X ¼ 95 (left)
and 100 (right), s ¼ 1; r ¼ 0:5, and r ¼ 0:09. Our algorithm uses 25 6 n 6 3000 and k ¼ 50.

n

Seconds

Fig. 10. Running times. The parameters are from case 1 of Table 4 in [3]: S ¼ 1:9; X ¼ 2:0; s ¼ 1; r ¼ 0:5; r ¼ 0:05, and k ¼ 50.

1110 W.W.-Y. Hsu, Y.-D. Lyuu / Applied Mathematics and Computation 189 (2007) 1099–1123
provides a good estimate of the desired f1ð1Þ [42]. After extensive numerical experiments, we will eventually
settle for k ¼ 50.

Recall that the running time is Oðn2Þ. Fig. 10 confirms the quadratic growth of the algorithm’s running
time. The algorithm is furthermore memory efficient as it can run for very large n without difficulties. For
example, the running time is under 4 minutes even at n ¼ 3000. The space complexity equals Oðn1:4Þ. This fact
can be proved by counting the number of states per time step and noting that only states at a given time step
need to be allocated space, not the entire kn2=2 states.

We now investigate the impacts of k, n, and r on the convergence of the algorithm. Increasing k has the
expected effect of improved accuracy and convergence speed at the expense of more running time, which is
proportional to k. This phenomenon is illustrated in Fig. 11, where we find k ¼ 50 yields satisfactory results.
Hence all option values quoted for our algorithm are calculated based on this choice of k unless stated other-
wise. The state count equals 25� n2. Next we fix n and see how increasing k affects the convergence. As
expected, the error drops quickly with increasing k as shown in Fig. 12. Overall, we find
2f 50ð400Þ � f50ð200Þ gives highly accurate extrapolated option values with reasonable running times. Hence
all extrapolated option values are given by this formula, which has a total state count of about
25� 2002 þ 25� 4002 ¼ 5� 106:
We argued earlier that a high r should not affect the accuracy of the algorithm. Fig. 13 supports this claim
with r ranging from 5% to 100%.

6. Numerical evaluation

The Hull–White algorithm runs in Oðn3:5Þ time and uses linear interpolation, whereas the PDE method of
Forsyth et al. runs in Oðn3Þ time and uses quadratic interpolation [17]. Both are convergent, but neither is as



Fig. 11. Convergence as n!1. The parameters are from case 1 of Table 4 in [3]: S ¼ 1:9; X ¼ 2:0; s ¼ 1; r ¼ 0:5, and r ¼ 0:05. The
prices given in [3] range from 0.193 to 0.195. Select extrapolated option values of our algorithm are 0.193149 (k ¼ 30), 0.193149 (k ¼ 40),
0.193155 (k ¼ 50), 0.193155 (k ¼ 60), and 0.193157 (k ¼ 70).

Fig. 12. Convergence as k !1. The parameters are identical to those in Fig. 11. The prices given in [3] range from 0.193 to 0.195.
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efficient as our Oðn2Þ time bound. Table 1 compares the performance of the Hull–White algorithm, the PDE
method, and our algorithm. The exact value for case 1 in Table 1 is conjectured to be 1:8515� 0:0001 based on
1.8514 (the extrapolated option value by the PDE method) and 1.8516 (the extrapolated option value by the
Hull–White algorithm). Our algorithm’s 1.8515402 falls within the band. The exact value for case 2 in Table 1
is conjectured to be 28:40525� 0:00015 based on 28.4051 (the extrapolated option value by the Hull–White
algorithm) and 28.4054 (the extrapolated option value by the PDE method). Our algorithm’s 28.4052033 again
falls within their band. In contrast, the forward-shooting-grid (FSG) method of [18] fails to converge to within
either band whether it uses nearest interpolation or linear interpolation [17].

We next compare our algorithm with analytical and semi-analytical approaches. As Fu et al. [3], Ju [4] and
Zhang [1,43] have assessed the methods thoroughly, we will only deal with Ju’s method and Zhang’s various



Fig. 13. Convergence to the exact option values at various r. The parameters are: S ¼ 100; X ¼ 100; s ¼ 1, and r ¼ 0:09.

Table 1
Comparison with the Hull–White and PDE methods

Algorithms

Hull–White PDE Ours

n Option value Time (s) Option value Time (s) Option value Time (s)

Case 1: S ¼ 100; X ¼ 100; r ¼ 0:1; r ¼ 0:1; s ¼ 0:25
50 1.8486 18.0 1.8478 4.8 1.8714720 0.06

100 1.8501 204.0 1.8492 55.0 1.9095930 0.25
200 1.8508 2293.0 1.8503 313.0 1.8891953 1.04
400 1.8512 25918.0 1.8509 2540.0 1.8703678 4.23

1 1.8516 1.8514 1.8515402

Case 2: S ¼ 100;X ¼ 100; r ¼ 0:1;r ¼ 0:5; s ¼ 5
50 28.3899 15.0 28.3573 5.5 28.3893142 0.06

100 28.3972 168.0 28.3842 36.0 28.3973455 0.26
200 28.4011 1893.0 28.3952 280.0 28.4013633 1.07
400 28.4031 21370.0 28.4003 2278.0 28.4032833 4.31

1 28.4051 28.4054 28.4052033

The parameters are from Tables 3 and 4 of [17]. The numbers quoted for the Hull–White are based on calculations using the finest grids.
The ‘‘1’’ row lists the extrapolated option values. The CPU times of [17] are based on a Sun Ultrasparc workstation (model not specified
in their paper).
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methods for their superior convergence behavior. Zhang is a semi-analytical method that requires the numer-
ical evaluation of an inhomogeneous linear diffusion equation [43]. It is generally accepted that the numerical
results given in [43] are exact. Ju [4] and Zhang [1] in contrast are analytical approximations.

Table 2 shows that our algorithm runs for about 5.4 s and obtains results extremely close to the exact
results of [43]. The third-order approximate formula AA2 and the fourth-order approximate formula AA3

of [1] are more accurate than ours for small r. However, their accuracy deteriorates with increasing r, whereas
ours does not. Table 3 investigates a wider range of volatilities. Zhang [1] says that Table 3 is not favorable to
his formulas (though they are still better than others) because the series converges slower when the volatility is



Table 2
Comparison with [1,43]

X r r Exact AA2 AA3 Ours Time (sec)

95 0.05 0.05 7.1777275 7.1777244 7.1777279 7.178812 5.30
100 2.7161745 2.7161755 2.7161744 2.715613 5.37
105 0.3372614 0.3372601 0.3372614 0.338863 5.47
95 0.09 8.8088392 8.8088441 8.8088397 8.808717 5.39
100 4.3082350 4.3082253 4.3082331 4.309247 5.30
105 0.9583841 0.9583838 0.9583841 0.960068 5.34
95 0.15 11.0940944 11.0940964 11.0940943 11.093903 5.44
100 6.7943550 6.7943510 6.7943553 6.795678 5.31
105 2.7444531 2.7444538 2.7444531 2.743798 5.52

RMSE: 0.0000041 0.0000007 0.001062

90 0.10 0.05 11.9510927 11.9509331 11.9510871 11.951610 5.36
100 3.6413864 3.6414032 3.6413875 3.642325 5.38
110 0.3312030 0.3312563 0.3311968 0.331348 5.42
90 0.09 13.3851974 13.3851165 13.3852048 13.385563 5.41
100 4.9151167 4.9151388 4.9151177 4.914254 5.42
110 0.6302713 0.6302538 0.6302717 0.629843 5.30
90 0.15 15.3987687 15.3988062 15.3987860 15.398885 5.39
100 7.0277081 7.0276544 7.0277022 7.027385 5.39
110 1.4136149 1.4136013 1.4136161 1.414953 5.33

RMSE: 0.0000670 0.0000072 0.000678

90 0.20 0.05 12.5959916 12.5957894 12.5959304 12.596052 5.37
100 5.7630881 5.7631987 5.7631187 5.763664 5.35
110 1.9898945 1.9894855 1.9899382 1.989962 5.43
90 0.09 13.8314996 13.8307782 13.8313482 13.831604 5.38
100 6.7773481 6.7775756 6.7773833 6.777748 5.35
110 2.5462209 2.5459150 2.5462598 2.546397 5.34
90 0.15 15.6417575 15.6401370 15.6414533 15.641911 5.39
100 8.4088330 8.4091957 8.4088744 8.408966 5.38
110 3.5556100 3.5554997 3.5556415 3.556094 5.29

RMSE: 0.00063735 0.0001190 0.000301

90 0.30 0.05 13.9538233 13.9555691 13.9540973 13.953937 5.36
100 7.9456288 7.9459286 7.9458549 7.945918 5.44
110 4.0717942 4.0702869 4.0720881 4.071945 5.39
90 0.09 14.9839595 14.9854235 14.9841522 14.984037 5.35
100 8.8287588 8.8294164 8.8289978 8.829033 5.40
110 4.6967089 4.6956764 4.6969698 4.696895 5.34
90 0.15 16.5129113 16.5133090 16.5128376 16.512963 5.38
100 10.2098305 10.2110681 10.2101058 10.210039 5.36
110 5.7301225 5.7296982 5.7303567 5.730357 5.33

RMSE: 0.0011016 0.0002383 0.000193

The parameters are from Table 1 of [1]. The options are calls with S ¼ 100 and s ¼ 1.
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greater. Our algorithm does not suffer from the same problem; in fact, the RMSEs in Tables 2 and 3 show that
it improves with increasing volatility.

It is illuminating to compare the complexity of our algorithm with that of [43]. In [43], the PDE is solved
with the Crank–Nicolson scheme, which has a linear-time complexity when dealing with a constant-bandwidth
linear system. Zhang employs 4000 grid points in the spatial dimension and Dt ¼ 1=800 in the time dimension
for his choice of options in Table 2. Hence the total time is proportional to 4000� s=Dt ¼ 3:2� 106 � s. In
general, Zhang suggests 40; 000� rs1:5 grid points in the spatial dimension. The overall running time is then
proportional to



Table 3
Comparison with [1,43] with a wide range of volatilities

X r Exact AA2 AA3 Ours Time (sec)

95 0.05 8.8088392 8.80884 8.80884 8.808717 5.23
100 4.3082350 4.30823 4.30823 4.309247 5.19
105 0.9583841 0.95838 0.95838 0.960068 5.10

RMSE: 0.00000 0.00000 0.001136

95 0.1 8.9118509 8.91171 8.91184 8.912238 5.16
100 4.9151167 4.91514 4.91512 4.914254 5.28
105 2.0700634 2.07006 2.07006 2.072473 5.07

RMSE: 0.00008 0.00001 0.001494

95 0.2 9.9956567 9.99597 9.99569 9.995661 5.21
100 6.7773481 6.77758 6.77738 6.777748 5.16
105 4.2965626 4.29643 4.29649 4.297021 5.13

RMSE: 0.00024 0.00005 0.000351

95 0.3 11.6558858 11.65747 11.65618 11.656062 5.21
100 8.8287588 8.82942 8.82900 8.829033 5.11
105 6.5177905 6.51763 6.51802 6.518063 5.21

RMSE: 0.00100 0.00026 0.000245

95 0.4 13.5107083 13.51426 13.51182 13.510861 5.35
100 10.9237708 10.92507 10.92474 10.923943 5.20
105 8.7299362 8.72936 8.73089 8.730102 5.29

RMSE: 0.00221 0.00101 0.000164

95 0.5 15.4427163 15.44890 15.44587 15.442822 5.24
100 13.0281555 13.03015 13.03107 13.028271 5.12
105 10.9296247 10.92800 10.93253 10.929736 5.25

RMSE: 0.00387 0.00299 0.000111

95 0.6 – – – 17.406402 5.21
100 – – – 15.128426 5.10
105 – – – 13.113874 5.13

95 0.8 – – – 21.349949 4.98
100 – – – 19.288780 5.06
105 – – – 17.423935 5.09

95 1.0 – – – 25.252051 5.13
100 – – – 23.367535 5.15
105 – – – 21.638238 5.13

The parameters are from Table 2 of [1]. The options are calls with S ¼ 100, r ¼ 0:09, and s ¼ 1.
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40; 000� rs1:5 s
Dt
¼ 3:2� 107 � rs2:5:
As a comparison, our algorithm’s running time is proportional to 25� n2. Suppose we take Dt ¼ 1=800 as in
[43], then the running time of our algorithm becomes proportional to
25� s
Dt

� �2

¼ 1:6� 107 � s2:
The above two running-time formulas indicate that Zhang’s method is expected to lag in speed compared with
ours as s increases. Methods that deteriorate for small r2s are mentioned in [3].

Volatilities never exceed 50% in [1,4]. But as shown in Fig. 13, our algorithm has no difficulties handling
volatilities as large as 100%; it actually improves with higher r. To our best knowledge, [26] is the only other
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work that calculates European-style Asian option prices for r > 50%. Not surprisingly, it also takes advantage
of formula (4).

Table 4 compares our algorithm with the exact one of [43] and the approximate formula of [4] for the case
of the longer maturity of 3 years. Our algorithm obtains lower RMSEs here than in Table 3. The explanation
is straightforward: Longer maturity means more paths will have running sums exceeding ðnþ 1ÞX , thus eligi-
ble for the exact pricing formula (4). Our algorithm again enjoys an advantage over others as r increases.

One-dimensional PDEs result in much more efficient algorithms than the two-dimensional PDE used in
Table 1. We will focus on the following one-dimensional PDE of [21]:
Table
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with the terminal condition uðs; zÞ ¼ maxðz; 0Þ and the Neumann bundary conditions o2u=oz2 ¼ 0 at z ¼ a and
z ¼ 1, where a < 0. To discretize Eq. (12), we employ n grid points in the time dimension and m grid points in
4
rison with [4,43]

r Exact TE6 Ours Time (s)

0.05 15.1162646 15.11626 15.116230 5.17
11.3036080 11.30360 11.304034 5.29
7.5533233 7.55335 7.554073 5.25

RMSE: 0.00002 0.000498

0.1 15.2138005 15.21396 15.213921 5.10
11.6376573 11.63798 11.637813 5.09
8.3912219 8.39140 8.391189 5.19

RMSE: 0.00023 0.000115

0.2 16.6372081 16.63942 16.637276 5.25
13.7669267 13.76770 13.767043 5.20
11.2198706 11.21879 11.220047 5.19

RMSE: 0.00149 0.000128

0.3 19.0231619 19.02652 19.023236 5.29
16.5861236 16.58509 16.586222 5.18
14.3929780 14.38751 14.393083 5.04

RMSE: 0.00375 0.000093

0.4 21.7409242 21.74461 21.740973 5.28
19.5882516 19.58355 19.588307 5.16
17.6254416 17.61269 17.625501 5.23

RMSE: 0.00813 0.000055

0.5 24.5718705 24.57740 24.571913 5.32
22.6307858 22.62276 22.630828 5.18
20.8431853 20.82213 20.843226 5.27

RMSE: 0.01340 0.000042

0.6 – – 27.425278 5.26
– – 25.655297 5.13
– – 24.013011 5.18

0.8 – – 33.031740 5.02
– – 31.535716 5.05
– – 30.133505 5.04

1.0 – – 38.361352 5.01
– – 37.085174 5.04
– – 35.881483 5.04

act values are based on and quoted from Table 7 of [43]. Ju’s Taylor expansion method is denoted as TE6. The parameters are from
2 of [4] and Table 7 of [43]. The options are calls with S ¼ 100; r ¼ 0:09, and s ¼ 3.
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the spatial dimension. Following [21], we use a Crank–Nicolson discretization scheme and obtain an OðnmÞ
running time. Table 5 compares (1) the method of [43], (2) the PDE method with n ¼ 100, m ¼ 2000, and
t � z 2 ½0; s� � ½�1; 1� (called PDE1), (3) the PDE method with n ¼ 100, m ¼ 10; 000, and
t � z 2 ½0; s� � ½�9; 1� (called PDE2), and (4) our lattice algorithm. PDE1 is very accurate for low to medium
volatility levels. For high volatility levels and/or long maturities, however, m must be increased to obtain accu-
racy comparable to our lattice algorithm. For example, PDE2 contains m ¼ 10; 000 grid points in the spatial
dimension and over a wider range of ½�9; 1� vs. PDE1’s ½�1; 1�. Observe that PDE2 contains 106 grid points,
whereas our lattice algorithm contains 5� 106 states. Our implementation of PDE2 takes about 9.62 s to com-
plete, whereas our lattice algorithm takes about 5.5 s to complete. The data again confirm the extreme accu-
racy achieved by our lattice algorithm for high volatility levels and/or long maturities.

Rogers and Shi give very efficient lower and upper bounds for the Asian option [6]. The lower bounds in
particular are known to be extremely accurate. Table 6 compares our algorithm with the lower bounds of [6].
Table 5
Comparison with the one-dimensional PDE method of [21]

X r s ¼ 1 s ¼ 3

Exact PDE1 PDE2 Ours Exact PDE1 PDE2 Ours

95 0.05 8.8088392 8.8088241 8.8088241 8.808717 15.1162646 15.1162526 15.1162526 15.116230
100 4.3082350 4.3080602 4.3080602 4.309247 11.3036080 11.3035792 11.3035792 11.304034
105 0.9583841 0.9583277 0.9583277 0.960068 7.5533233 7.5531978 7.5531978 7.554073

RMSE: 0.0001064 0.0001064 0.001136 0.0000747 0.0000747 0.000498

95 0.1 8.9118509 8.9118054 8.9118054 8.912238 15.2138005 15.2137661 15.2137661 15.213921
100 4.9151167 4.9150253 4.9150253 4.914254 11.6376573 11.6376011 11.6376011 11.637813
105 2.0700634 2.0700251 2.0700251 2.072473 8.3912219 8.3911498 8.3911498 8.391189

RMSE: 0.0000630 0.0000630 0.001494 0.0000564 0.0000564 0.000115

95 0.2 9.9956567 9.9956323 9.9956323 9.995661 16.6372081 16.6371770 16.6371770 16.637276
100 6.7773481 6.7773279 6.7773279 6.777748 13.7669267 13.7668950 13.7668950 13.767043
105 4.2965626 4.2964614 4.2964614 4.297021 11.2198706 11.2198412 11.2198412 11.220047

RMSE: 0.0000612 0.0000612 0.000351 0.0000307 0.0000307 0.000128

95 0.3 11.6558858 11.6558892 11.6558892 11.656062 19.0231619 19.0230953 19.0231388 19.023236
100 8.8287588 8.8287699 8.8287699 8.829033 16.5861236 16.5860134 16.5861083 16.586222
105 6.5177905 6.5178134 6.5178134 6.518063 14.3929780 14.3927638 14.3929591 14.393083

RMSE: 0.0000148 0.0000148 0.000245 0.0001443 0.0000194 0.000093

95 0.4 13.5107083 13.5107373 13.5107373 13.510861 21.7409242 21.7359140 21.7409067 21.740973
100 10.9237708 10.9238047 10.9238049 10.923943 19.5882516 19.5801909 19.5882367 19.588307
105 8.7299362 8.7299785 8.7299789 8.730102 17.6254416 17.6129231 17.6254290 17.625501

RMSE: 0.0000355 0.0000357 0.000164 0.0090699 0.0000151 0.000055

95 0.5 15.4427163 15.4427436 15.4427631 15.442822 24.5718705 24.5164835 24.5718583 24.571913
100 13.0281555 13.0281668 13.0282104 13.028271 22.6307858 22.5534589 22.6307744 22.630828
105 10.9296247 10.9295940 10.9296853 10.929736 20.8431853 20.7378307 20.8431724 20.843226

RMSE: 0.0000246 0.0000544 0.000111 0.0819487 0.0000122 0.000042

95 0.6 – 17.4057119 17.4063840 17.406402 27.1922830 27.4252385 27.425278
100 – 15.1272033 15.1284092 15.128426 25.3547907 25.6552489 25.655297
105 – 13.1117954 13.1138637 13.113874 23.6323908 24.0129680 24.013011

95 0.8 – 21.3206229 21.3500057 21.349949 31.8446547 33.0316957 33.031740
100 – 19.2465024 19.2888389 19.288780 30.1240393 31.5356736 31.535716
105 – 17.3646285 17.4239955 17.423935 28.4742281 30.1334450 30.133505

95 1.0 – 25.0465250 25.2521580 25.252051 35.4451734 38.3595938 38.361352
100 – 23.1006194 23.3676388 23.367535 33.7509030 37.0830464 37.085174
105 – 21.2980435 21.6383464 21.638238 32.1020703 35.8789184 35.881483

PDE1 is based on the 100� 2000 grid over ½0; s� � ½�1; 1�. PDE2 is based on the 100� 10; 000 grid over ½0; s� � ½�9; 1�. The parameters and
numerical data for Exact and Ours are from Tables 3 and 4. The numerical data for PDE1 and PDE2 are from [35]. The options are calls
with S ¼ 100 and r ¼ 0:09:



Table 6
Comparison with the lower bounds of [6]

X r Lower bound Ours Fusai Exact Monte Carlo

95 0.05 8.8088 8:808717 8.80885 8.8088392 8.81
100 4.3082 4.309246 4.30824 4.3082350 4.31
105 0.9583 0.960069 0.95839 0.9583841 0.95

95 0.10 8.9118 8.912238 8.91185 8.9118509 8.91
100 4.9150 4:914254 4.91512 4.9151167 4.91
105 2.0699 2.072473 2.07007 2.0700634 2.06

90 0.30 14.9827 14.984037 14.98396 – 14.96
100 8.8275 8.829033 8.82876 8.8287588 8.81
110 4.6949 4.696895 4.69671 – 4.68

90 0.50 18.1829 18.188933 18.18885 – 18.14
100 13.0225 13.028271 13.02816 13.0281555 12.98
110 9.1179 9.124414 9.12432 – 9.10

90 0.60 19.9542 19.964542 – – 19.94
100 15.1186 15.128426 – – 15.13
110 11.3323 11.342769 – – 11.36

90 0.80 23.5980 23.622784 – – 23.61
100 19.2655 19.288780 – – 19.33
110 15.7164 15.739790 – – 15.74

90 1.00 27.2565 27.305012 – – 27.25
100 23.3220 23.367535 – – 23.36
110 20.0069 20.051542 – – 20.03

The parameters, lower bounds, and Monte Carlo results for r 6 0:5 are from Table 3 of [6], Table 1 of [7] and Table 3 of [9]. The Monte
Carlo results for r > 0:5 are based on 2� 106 simulation paths. The options are calls with S ¼ 100, r ¼ 0:09, and s ¼ 1. Our algorithm’s
computed option values and the exact option values are from Table 3. Fusai is based on the data in Table 3 of [5] computed using the
most computing times. The two boxed numbers are slightly lower than the lower bounds.
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The values from [5] are listed for comparison. Exact values, wherever available, are copied from Table 3. The
numbers in the table affirm the numerical accuracy of the various algorithms. Our algorithm produces values
slightly lower than those of Rogers and Shi in two cases (one at r ¼ 0:05 and the other at r ¼ 0:1). The sit-
uations can be rectified with a slightly higher k of 70 and 65, respectively.

A way to raise our algorithm’s accuracy further at low volatilities without increasing k starts with two
observations. First, the maximum running sum at each node, ðnþ 1ÞX , is unlikely to be breached for most
nodes. Second, the minimum running sum at each node is likely to be much higher than zero. In other words,
for most nodes, the minimum running sum and the maximum running sum can be considerably tighter than
the current algorithm’s ½0; ðnþ 1ÞX � particularly when r is small. This is because the sizes of stock price moves
are more constrained. The numerical accuracy can thus be improved by allocating the kij þ 1 states at node
Nði; jÞ for running sums between the actual minimum running sum,
Table 7
Comparison with the lower bounds of [6] using the revised algorithm

X r Lower bound Ours Ours (revised) Exact

95 0.05 8.8088 8:808717 8.808855 8.8088392
100 4.3082 4.309246 4.308307 4.3082350
105 0.9583 0.960069 0.958552 0.9583841

RMSE: 0.001136 0.000106

95 0.10 8.9118 8.912238 8.912392 8.9118509
100 4.9150 4:914254 4.916203 4.9151167
105 2.0699 2.072473 2.071247 2.0700634

RMSE: 0.001494 0.000979

The data and parameters are from Table 6 except that the revised algorithm incorporates tighter running-sum ranges.
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S0
1� diþ1

1� d
þ S0diu

1� uj�i

1� u
and the smaller of ðnþ 1ÞX and the actual maximum running sum,
S0

1� uj�iþ1

1� u
þ S0uj�id

1� di

1� d
(see [41] for the straightforward derivations of the above formulas). The added complexity to calculate the two
running sums is minuscule. When the low-volatility cases of Table 6 (r ¼ 0:05; 0:1) are calculated with the re-
vised algorithm, the results are shown in Table 7. Not only are all the lower bounds observed, the prices are
also more accurate than those in Table 6.
7. Conclusions

We have presented an extremely accurate lattice algorithm. It is furthermore provable to run in quadratic
time and approach the true value with a linear convergence rate. The algorithm is also faster than other lattice
algorithms and two-dimensional PDE methods. Compared with the most efficient one-dimensional PDE
methods, it is competitive in running time and overall accuracy. The algorithm relies on a novel methodology
to choose the number of states for each node based on the Lagrange multipliers. This idea analyzes how indi-
vidual nodes’ error and probability contribute to the overall interpolation error. In contrast, previous efforts
analyze the worst-case error without taking into account its probability, which exaggerates the effects of the
error. Extensive numerical comparisons with highly accurate PDE, analytical, and lattice methods confirm the
claims about our algorithm’s performance. The Lagrange-multiplier methodology has also yielded highly effi-
cient convergent lattice algorithms for discretely sampled Asian options (see [29]).
Appendix A. Derivation of the nodes’ state sizes

We shall make the following plausible assumptions along the directions of [17]. The exact solution has con-
tinuous bounded derivatives up to the fourth-order (in contrast to second order in [17]) with respect to the
stock price S and the running average A, and up to the second order with respect to time t. These derivatives
are independent of Dt but may depend on s and r.

When deriving explicit error bounds, we shall discard the R�n factor in formula (1) for convenience. This
omission serves only to overstate our algorithm’s error. The distance between two adjacent states’ running
averages at node Nði; jÞ is
Da � ðnþ 1ÞX
ðiþ 1Þkij

6
nX 0

ikij
; ð13Þ
where we let X 0 � 2X . The error term of the interpolation polynomial pðxÞ to the desired f ðxÞ with m points
ðx1; y1Þ; ðx2; y2Þ; . . . ; ðxm; ymÞ, x1 6 x 6 xm, is given by
ðx� x1Þðx� x2Þ � � � ðx� xmÞ
m!

f ðmÞðeÞ
����

���� ð14Þ
for some e between x1 and xm, where f ðmÞ represents the mth derivative [37]. For our algorithm, x1; x2; . . . ; xm

are equidistant running averages with
x2 � x1 ¼ x3 � x2 ¼ � � � ¼ xm � xm�1 ¼ Da
by virtue of Eq. (13). Although our algorithm adopts m ¼ 4, we will continue to use m for generality.
By our assumption on the boundedness of the fourth derivative of the option value, j f ðmÞðxÞ j6 M for some

positive constant M. Define Dx � nX 0=ikij. Inequality (14) is now bounded above by
ðx� x1Þðx� x2Þ � � � ðx� xmÞ
m!

M

����
���� 6 ðDaÞmM 6 ðDxÞmM :
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(The upper bound can be lowered to ð6=19ÞðDxÞ4M as our algorithm adopts m ¼ 4 and x2 6 x 6 x3; see [37], p.
156.) The error for each state at node Nði; jÞ is hence at most
ðDxÞmM ¼ M
nX 0

ikij

� �m

¼ MðX 0Þm n
ikij

� �m

: ð15Þ
Any option value V ði; S; P Þ at node Nði; jÞ is the discounted value of
p a1V iþ 1; Su; ðx� 2Þ ðnþ 1ÞX
kiþ1;j

� �
þ a2V iþ 1; Su; ðx� 1Þ ðnþ 1ÞX

kiþ1;j

� ��

þ a3V iþ 1; Su; x
ðnþ 1ÞX

kiþ1;j

� �
þ a4V iþ 1; Su; ðxþ 1Þ ðnþ 1ÞX

kiþ1;j

� ��

þ ð1� pÞ a01V iþ 1; Sd; ðy � 2Þ ðnþ 1ÞX
kiþ1;jþ1

� �
þ a02V iþ 1; Sd; ðy � 1Þ ðnþ 1ÞX

kiþ1;jþ1

� ��

þ a03V iþ 1; Sd; y
ðnþ 1ÞX
kiþ1;jþ1

� �
þ a04V iþ 1; Sd; ðy þ 1Þ ðnþ 1ÞX

kiþ1;jþ1

� ��
ð16Þ
from Eqs. (10) and (11). As 0 < jaij; ja0ij < 1, the contribution of V ði; S; P Þ to the total interpolation error is at
most
pMðX 0Þm n
ikij

� �m

þ ð1� pÞMðX 0Þm n
ikij

� �m

¼ MðX 0Þm n
ikij

� �m
by Eqs. (15) and (16). Forsyth et al. show that we can ignore the truncation error, which is Oðn�1Þ, and con-
centrate on the interpolation error [17]. Because node Nði; jÞ has probability Bði; j; pÞ, the total error of our
algorithm is now
error 6
Xn

i¼1

Xi

j¼0

Bði; j; pÞMðX 0Þm n
ikij

� �m

¼ MðX 0Þm
Xn

i¼1

Xi

j¼0

Bði; j; pÞnm

imkm
ij

: ð17Þ
Note that we account for each node’s contribution to the overall interpolation error weighted by its probability.
In contrast, most papers in the literature work out only the maximum error per time step, which is much coarser.

The running time of our algorithm is proportional to the total state count. Thus the time complexity can be
measured as
Xn

i¼1

Xi

j¼0

kij ¼
kn2

2
: ð18Þ
We must solve the following optimization problem:
minimize
Xn

i¼1

Xi

j¼0

Bði; j; pÞnm

imkm
ij

s:t:
Xn

i¼1

Xi

j¼0

kij ¼
kn2

2
:

We next introduce the Lagrangian multiplier k and rewrite our objective function as
f ¼
Xn

i¼1

Xi

j¼0

Bði; j; pÞnm

imkm
ij

þ k
Xn

i¼1

Xi

j¼0

kij �
kn2

2

 !
: ð19Þ
Set the partial derivatives of the objective function (19) to zeros
of
okij
¼ 0; ð20Þ

of
ok
¼ 0: ð21Þ
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Eq. (20) yields
of
okij
¼ �m

Bði; j; pÞnm

im k�ðmþ1Þ
ij þ k ¼ 0;
which implies
kij ¼
mnmBði; j; pÞ

imk

� � 1
mþ1

: ð22Þ
Eq. (21) gives equality (18). Substitute kij from Eq. (22) into Eq. (18) to obtain
Xn

i¼1

Xi

j¼0

mnmBði; j; pÞ
imk

� � 1
mþ1

¼ kn2

2
:

Hence
Xn

i¼1

Xi

j¼0

mnmBði; j; pÞ
im

� � 1
mþ1

¼ kn2

2
k

1
mþ1;
which yields
k ¼
Pn

i¼1

Pi
j¼0

mnmBði;j;pÞ
im

� � 1
mþ1

kn2

2

0
B@

1
CA

mþ1

: ð23Þ
Substitute k from Eq. (23) into Eq. (22) to obtain
kij ¼
mnmBði; j; pÞ

imk

� � 1
mþ1

¼ mnmBði; j; pÞ
im

� � 1
mþ1 kn2

2Pn
s¼1

Ps
t¼0

mnmBðs;t;pÞ
sm

� � 1
mþ1

¼ kn2

2

mnmBði;j;pÞ
im

� � 1
mþ1

Pn
s¼1

Ps
t¼0

mnmBðs;t;pÞ
sm

� � 1
mþ1

¼ kn2

2

Bði;j;pÞ
im

� � 1
mþ1

Pn
s¼1

Ps
t¼0

Bðs;t;pÞ
sm

� � 1
mþ1

: ð24Þ
Finally, substitute m ¼ 4 to obtain the desired result.

Appendix B. Analysis of the error bound

Substitute kij in Eq. (24) into the error term (17) to obtain
error 6 MðX 0Þm
Xn

i¼1

Xi

j¼0

Bði; j; pÞnm

im kn2

2

Bði;j;pÞ
imð Þ

1
mþ1Pn

s¼1

Ps

t¼0

Bðs;t;pÞ
smð Þ

1
mþ1

 !m

¼ MðX 0Þm nm

kn2

2

� �m

Xn

i¼1

Xi

j¼0

Bði; j; pÞ

im
Bði;j;pÞ

imð Þ
1

mþ1Pn

s¼1

Ps

t¼0

Bðs;t;pÞ
smð Þ

1
mþ1

 !m

¼ MðX 0Þm 2

nk

� �mXn

i¼1

Xi

j¼0

Bði; j; pÞ
Pn

s¼1

Ps
t¼0

Bðs;t;pÞ
sm

� � 1
mþ1

� �m

im Bði;j;pÞ
im

� � m
mþ1
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¼ MðX 0Þm 2

nk

� �m Xn

s¼1

Xs

t¼0

Bðs; t; pÞ
sm

� � 1
mþ1

 !mXn

i¼1

Xi

j¼0

Bði; j; pÞ

im Bði;j;pÞ
im

� � m
mþ1

¼ MðX 0Þm 2

nk

� �m Xn

i¼1

Xi

j¼0

Bði; j; pÞ
im

� � 1
mþ1

 !mXn

i¼1

Xi

j¼0

Bði; j; pÞ
im

� � 1
mþ1

¼ MðX 0Þm 2

nk

� �m Xn

i¼1

Xi

j¼0

Bði; j; pÞ
im

� � 1
mþ1

 !mþ1

: ð25Þ
We will take advantage of the following asymptotic result of [44]:
Xn=2

k¼0

n

k

� �r

	 2nr�1 2

np

� �r�1
2

r�1=2: ð26Þ� � �

As

n
k

�
¼ n

n� k
, relation (26) implies" #
Xn

k¼0

n

k

� �r

	 2 2nr�1 2

np

� �r�1
2

r�1=2 ¼ 2nr 2

np

� �r�1
2

r�1=2 ¼ O 2nrn�
r�1

2

� �
: ð27Þ
The summation
Pi

j¼0Bði; j; pÞ
1

mþ1 is maximized when p ¼ 1=2. So the error (25) can be upper-bounded by
choosing p ¼ 1=2. Now,
Xi

j¼0

B i; j;
1

2

� � 1
mþ1

¼
Xi

j¼0

i

j

� �
2�i

� � 1
mþ1

¼ 2�
i

mþ1

Xi

j¼0

i

j

� � 1
mþ1

¼O 2�
i

mþ12i 1
mþ1i�

1
mþ1
�1

2

� �
by formula ð27Þ ¼O i

m
2ðmþ1Þ

� �
:

ð28Þ
Formula (25) now becomes
error 6 MðX 0Þm 2

nk

� �m Xn

i¼1

Pi
j¼0B i; j; 1

2

� � 1
mþ1

i
m

mþ1

0
@

1
A

mþ1

¼ MðX 0Þm 2

nk

� �m Xn

i¼1

O i
m

2ðmþ1Þ
� �

i
m

mþ1

0
@

1
A

mþ1

by formula ð28Þ ¼ O MðX 0Þm 2

nk

� �m Xn

i¼1

i
m

2ðmþ1Þ

i
m

mþ1

 !mþ1
0
@

1
A

¼ O MðX 0Þm 2

nk

� �m Xn

i¼1

i�
m

2ðmþ1Þ

 !mþ1
0
@

1
A:
We next upper-bound the summation above
MðX 0Þm 2

nk

� �m Xn

i¼1

i�
m

2 mþ1ð Þ

 !mþ1

6 MðX 0Þm 2

nk

� �m Z n

i¼0

x�
m

2ðmþ1Þ dx
� �mþ1

¼ MðX 0Þm 2

nk

� �m
2ðmþ 1Þ

mþ 2
n

mþ2
2ðmþ1Þ

� �mþ1

¼ MðX 0Þm 2

nk

� �m
2 mþ 1ð Þ

mþ 2

� �mþ1

n
mþ2

2

¼ MðX 0Þm 2

k

� �m
2ðmþ 1Þ

mþ 2

� �mþ1

n
�mþ2

2 :
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Hence,
error ¼ O MðX 0Þm 2

k

� �m
2 mþ 1ð Þ

mþ 2

� �mþ1

n�0:5mþ1

 !
: ð29Þ
Recall m ¼ 4 and X 0 ¼ 2X to obtain
error ¼ O 16�MX 4 2

k

� �4
5

3

� �5

n�1

 !
¼ Oðn�1Þ:
Hence 4-point interpolation results in the desired convergence rate of Oðn�1Þ.
It does not pay to pick m > 4 to reduce the interpolation error below Oðn�1Þ as the discretization error

alone is Oðn�1Þ. Suppose we adopt the familiar quadratic interpolation (m ¼ 3). It is easy to show that the
absolute values of the interpolation coefficients are less than 1 as long as the xi are equidistant. With
m ¼ 3, we pick k ¼ n1=6 in Eq. (29) to obtain an error of Oðn�1Þ. This results in an excellent running time
of Oðn2:167Þ. Hence even quadratic interpolation benefits from our optimization methodology.
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