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Abstract

This work proposes a two-stage immune algorithm that embeds the compromise programming to perform multi-objective optimal
capacitor placement. A new problem formulation model that involves fuzzy sets to reflect the imprecise nature of objectives and incor-
porates multiple planning requirements is presented. The proposed approach finds a set of non-inferior (Pareto) solutions rather than any
single aggregated optimal solution. Additionally, this developed approach eliminates the need for any user-defined weight factor to
aggregate all objectives. Comparative studies are conducted on an actual system with encouraging results, demonstrating the effectiveness

of the proposed approach.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Typical distribution systems operate in a radial configu-
ration; they are supplied from substations and feed to dis-
tribution transformers. The spatial density of the load is
high in urban areas, where underground cables and large
transformers are used, but lower in mixed and rural areas,
where overhead lines and smaller transformer units are
used. Numerous shunt capacitors are installed along distri-
bution feeders to compensate for reactive power to regulate
the voltage, reduce energy, correct the power factor, and
release system capacity for both urban and rural areas.
The general capacitor placement problem is to locate and
determine the sizes of capacitors to be installed at the nodes
of a radial distribution system under various loading
conditions.

* Corresponding author. Tel.: +886 2 3366 5341; fax: +886 2 2362 7620.
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Various attempts from different perspectives have been
made to solve the capacitor placement problem. For
instance, the problem has been formulated as a mixed inte-
ger programming problem in which power flows and volt-
age constraints were applied [1]. Heuristic approaches have
also been presented to identify sensitive nodes from the
strengths of the effects on system losses and, then, optimiz-
ing the net savings of system losses [2]. An equivalent cir-
cuit of a lateral branch has been used to simplify the
distribution loss analysis. In so doing, capacitor operating
strategies were elucidated according to the reactive load
duration curve and the sensitivity index [3]. Optimal capac-
itor planning has been implemented based on the fuzzy
algorithm in practical distribution systems [4]. A solution
technique based on simulated annealing (SA) has been
developed, which was implemented in a software package
and tested on a real distribution system with 69 buses
[5,6]. The Tabu Search (TS) technique has been applied
to determine the optimal capacitor planning in the distribu-
tion system used in [7], and the results of the TS compared
with those of the SA. Genetic algorithms (GA) have been
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used to determine the optimal selection of capacitors [8,9].
In [9], genetic algorithms (GAs) were implemented to opti-
mize the selection of capacitors, but the objective function
considered only the cost of the capacitors and the power
losses, without imposing operation constraints.

Notably, most of these approaches treat the capacitor
placement problem as a single objective problem. However,
in recent years, customers have made strong demands of
electrical utility companies [10]. Various problems have
multiple and conflicting objectives (such as simultaneously
minimizing the cost of fabrication and maximizing the reli-
ability of the system), which make the optimization prob-
lem interesting to solve. No single solution is an optimal
solution to a problem with multiple conflicting objectives,
so a multi-objective optimization problem has a number
of trade-off optimal solutions. Classical optimization meth-
ods can at best find one solution in one simulation run, so
such methods are inconvenient when they are used to solve
multi-objective optimization problems.

In light of the above, this study formulates the capacitor
placement problem as a multiple objective problem, includ-
ing operational requirements. The problem formulation
presented herein considers four objectives — minimizing
the cost of installing capacitors, real power loss and devia-
tion of the bus voltage, and maximizing the capacity mar-
gin of the feeders and the transformer. The imprecise
nature of each objective function is incorporated by mod-
eling these objective functions using fuzzy sets. This work
also presents a two-staged immune algorithm to solve the
constrained multiple objectives problem.

The rest of this article is organized as follows. Section 2
describes a novel formulation of the capacitor placement
problem. Section 3 introduces the immune algorithm for
solving optimal problems. Section 4 briefly reviews multi-
objective optimization, and develops the two-stage immune
algorithm for multi-objective programming. Section 5
describes how to apply the proposed method to the capac-
itor placement problem. Section 6 then demonstrates the
effectiveness of the solution algorithm when applied to
power distribution systems. Section 7 draws conclusions.

2. Problem formulation

This study formulates the capacitor allocation problem
to determine the locations and size of capacitors to be
installed in the nodes of a radial distribution system under
various loading conditions. The problem formulation con-
siders four objective functions, to minimize the total cost of
capacitors to be installed, the energy loss and the deviation
of bus voltage, and to maximize the system security margin
of transformer capacity. These objective functions are for-
mulated as fuzzy sets to incorporate their imprecise nature.
A fuzzy set is typically represented by a membership func-
tion pg(x) for the ith objective function f{(x). A membership
function with higher value implies greater satisfaction with
the solution. The membership function usually consists of
lower and upper boundary values and is strictly monoton-

ically decreasing and continuous. Without loss of general-
ity, a membership function of a minimizing problem can
be defined by

Lor =1, if fi(x) < fmin

hi(fi(x)), if S < filx) < S (1)
0or —0, if f™ < fi(x)

The lower and upper bounds, /™" (x) and f™*(x) on each
objective function under given constraints are established
to elicit a membership function u4(x) for each objective
function, f{x). In general, the lower and upper bounds of
fuzzy set depend on the constraints of the problem being
considered. Then, a strictly monotonically decreasing and
continuous function /,(f{(x)), which can be linear or non-
linear, is determined. In the following, objective functions
with fuzzy models are introduced to formulate the capaci-
tor placement problem.

upn(x) =

2.1. Minimizing capacitor construction expenditure

The cost of capacitors includes two terms. The first term
represents the purchase cost while the second represents the
installment and maintenance cost.

min f. = 3 lky(g) + k() @
1S4
where a; is a 0-1 decision variable: a; = 1 if the ith bus is
selected for capacitor installation; otherwise a; = 0; ¥ rep-
resents the set of candidate locations of buses to be consid-
ered for capacitor injection; y denotes the life time (years)
of the capacitors; k, represents the purchased cost of
capacitors of capacitance ¢; k, denotes the fixed install-
ment and maintenance cost. Notably, the cost function f.
is a non-differentiable step- like function since the capaci-
tors are grouped by the specific size. Fig. 1 plots the fuzzy
membership function f. of the cost where f. .« represents
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Fig. 1. Fuzzy membership function of the cost, f..
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the cost of the maximum allowable number of capacitors to
be installed in the system of interest.

2.2. Minimizing real power loss

The total cost of the real power loss from line branches,
is defined as,

minf;? = Zkeitfploss,j (3)
=

where 1, represents the total number of load levels; k,; rep-
resents the cost of power under load j; #; represents the
duration of the application of load j, and pj.s ; is the total
real power loss of the considered system under load ;. Fig. 2
displays the fuzzy membership function of power loss
where f; hax represents the real power lost without capaci-
tor compensation; f,9, is 80% of the fimax and fomin 1S
the expected real power loss in the considering system.

2.3. Minimizing deviation of bus voltage

The bus voltage, an important index, characterizes the
security and power quality of a distribution system.
Accordingly, an index is defined that quantifies the defi-
ciency in the system caused by the bus voltage.
i=1,2,3,...,m 4)

min f, = max|v; — vR*|,
where n, is the total number of buses; v; and vR# denote
the real and rated voltages of bus i, respectively, and £, rep-
resents the maximal deviation of the bus voltage in the sys-
tem. A lower f, corresponds to a higher quality voltage
profile and better system security. Fig. 3 plots the fuzzy
membership function of the deviation of the bus voltage
where f,n.x 1S the maximum allowable deviation of bus
voltage.
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Fig. 2. Fuzzy membership function of power loss.
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Fig. 3. Fuzzy membership function of the deviation of the bus voltage.

2.4. Maximizing the security margin of feeders and
transformers

A simple index to assess the system security is the capac-
ity margin of feeders and transformers. The security index
is defined as follows

2 2
IiRated — ]iLoad

2
iRated

min f; = 1 — min; , =123 ...mn (5

where ;1 0aq and I;jraieq are the current flow and the rate
flow of branch (transformer) i, respectively; n;, represents
the total number of branches (transformers), and f; denotes
the security and system capacity index of the feeders.
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Fig. 4. Fuzzy membership function of the security margin of feeders and
transformers.
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Lower f; implies more secure system capacity. In (5), the
“Security Margin” is defined as a function (f;) with being
the inverse proportion to “rate current — load current (sys-
tem capacity)”. In other word, lower f; implies more secure
system capacity. Hence, “Lower f; implies more secure sys-
tem capacity” is the same meaning with “Maximizing the
Security Margin of Feeders and Transformers”. Fig. 4
plots the fuzzy membership function of the feeders (trans-
formers) where f; h.x denotes the rating of the considering
feeders (transformers) and f; in 1s the maximum expected
security margin.

3. Immune algorithm

The immune system is a natural, fast and effective
defense mechanism for a host against infection. It includes
a complex set of cells and molecules that protect our bodies
against infection. Our bodies are under constant attack by
antigens that can stimulate the adaptive immune system.
Antigens might be foreign, such as surface molecules pres-
ent on pathogens, or self-antigens, which are composed of
cells or molecules of our own bodies [11,12].

The immune system has a fundamental ability to pro-
duce new types of antibody or find the best-fitting antibody
to attack an invading antigen. The immune system pro-
duces very many antibodies against innumerable, unknown
antigen, by trial and error. The diversity of the immune sys-
tem can be mathematically formulated as a multi-objective
function optimization problem, with multiple solutions
rather than single solution, to elucidate the diversity of
antibodies that is essential to adaptability against foreign
viruses and bacteria in the environment. The presented
algorithm uses parallel search vectors to find multiple solu-
tions. The index of diversity is introduced and multiple
solution vectors maintained as a memory cell mechanism
in the immune system. The antigen can be regarded as a
problem to be solved and the antibody a solution vector
that best fits to solve the problem. The immune system in
a higher mammal eliminates antigens by the genetic evolu-
tion of a lymphocyte population that can produce antibod-
ies. Genes produce numerous types of antibody by trial and
error because the type of antigen is not known a priori. The
best antibody among numerous candidates is selected to
destroy the antigen by bio-chemical pattern matching
between the antigen and the antibody. Accordingly, the
immune system can be regarded as a combinatorial optimi-
zation process, which is to select the type of antibody (solu-
tion vector) from among a great many solution candidates,
that best fits the antigen.

A measure of diversity of antibodies produced from a
lymphocyte population is required and must be defined.
Lymphocytes recognize an invading antigen and produce
the antibodies to eliminate the antigen. Notably, the anti-
gen and antibody in the immune algorithm are represented
as the objective and the feasible solution in the optimiza-
tion problem, respectively. Fig. 5 depicts a model of a lym-
phocyte population consisting of antibodies, where j is the
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Fig. 5. Informative entropy of antigens.

candidate solution. For the N antigens (antibodies) with L
genes in the pool, according to information theory, the
entropy H{N) of the jth gene is defined as [11,12]

N
Hj(N) = *Zpi,jlogpi,j (6)
i=1

where p; ; represents the probability that locus j is allele 7. If
all alleles at the jth gene are the same, then the entropy of
the jth gene equals zero. The mean of the informative
entropy in a lymphocyte population is represented by

H) = 3,0 )

where H(N) denotes the mean of the informative entropy
for all antibodies and L is the size of the genes in an anti-
body. This entropy specifies the diversity of the lymphocyte
population. Two expressions for affinity are considered in
the presented approach. One (A4b),,, is used to determine
the diversity between two antibody v and w and can be rep-
resented as,

1
Ab), = —~— 8
where H(2) quantifies the diversity between two antibodies,
according to Eq. (7) for N = 2. For H(2) =0, the genes of
the two antibodies are identical. The other affinity (Ag); is
that between antigen 4, and antibody Ay, and is defined by

N¢
(Ag)i:nuf,'(Abi) 7Zugl-(Abi) i= 1727"'7N0 (9)
=

where p,.(4y;) is the value of the membership function for
antibody Ay; on objective i Zﬁ.vz“'l My, (Ady;) are the values of
the membership function with all applied constraints for
antibody Ay, and N, and N, are the numbers of constraints
and objectives, respectively. The antibody is perfectly
matched with the antigen when the affinity (Ag); equals
one. Antibodies that have high affinities toward an antigen
are selected to proliferate, while antibodies with low con-
centrations are suppressed. The concentration ¢, of each
antibody can be defined as

1
c, = N, ; acyy (10)
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{ 1 (dg), = ¢
acy, = .
' 0 otherwise

where ¢ is a preset threshold. If ¢ (v=1,2,...,N,) is
greater than a given threshold J., then this antibody
becomes a memory antibody; else, it is suppressed.
The goal of this step is to eliminate surplus solution
candidates.

From the schema of the natural immune system, the
mathematical optimization framework can be modeled as
an algorithm, realized by the following steps.

(11)

Step 1: Identify the optimization problem.

Step 2: Generate random antibodies (candidate solu-
tions).

Step 3: Calculate the affinity (Ag); between the antibody
and the antigen according to Eq. (9).

Step 4: Determine the concentration ¢, of each antibody
in the repertoire according to Eq. (10).

Step 5: If ¢, exceeds a given threshold J,, then proceed to
the next step; else, proceed to step 8.

Step 6: Calculate the affinity (A4b),,, using Eq. (8) for each
antibody v =1,2,..., N, to the antibody w, which
has the highest concentration.

Step 7: If all affinities (A4b),,, exceed a threshold J,, then
this antibody becomes a memory antibody; pro-
ceed to step 10; else, proceed to step 8.

Step 8: Suppress (eliminate) antibodies with low concen-
tration (affinity).

Step 9: Generate new antibodies using genetic variation
operators, such as crossover and mutation, to
replace the antibodies eliminated in the previous
steps.

Step 10: Repeat steps 3-9 until a certain stopping criterion
is fulfilled.

Notably, in the above immune algorithm, the number of
generated antibodies and the number of iterations can be
experimentally determined. The rate of the crossover and
mutation are also determined on a trial basis.

4. Multi-objective optimization

A multiple objective problem can be considered to have
the following form.

Minf;(x),i=1,2,...,N, (12)
subject to

gj(X):O,jzl,Z,...,Ncg (13)
h(x) <0,k=1,2,...,Na (14)

where f(x) are N, distinct objective functions of the deci-
sion vector x, and g(x) =0 and /(x) < 0 are constraints.
In most cases, the objective functions of the multi-objective
optimization problem are in conflict with one another, so

no objective function can be improved upon without wors-
ening at least one of the other objective functions. This
concept is known as Pareto optimality (or non-inferior
solutions, or non-dominated solutions, alternative solu-
tions) [13,14].

Definition:

The feasible region, 2, in the decision vector space X is
the set of all decision vectors x that satisfy the constraints,
such that

Q= {xlg(x) = 0,h(x) < 0} (15)

The feasible region, A, in the objective function space F
is the image of f'in the feasible region 2 in the decision vec-
tor space:

A={fIf =f(x),x € Q} (16)

A point x € Q is a local non-inferior point if and only if
for some neighborhood of %, there does not exist Ax such
that (X + Ax) € Q and,

filx +Ax) < fi(®), i=1,2,...,N, (17)
fi(x+ Ax) < f;(%), forsome ;e {1,2,...,N,} (18)

A point x € Q is a global non-inferior point if and only if
there no other point x € Q exists such that,

filx) < fi(x), i=1,2,...,N, (19)
fi(x) < f;(x), forsome ;e {1,2,...,N,} (20)

Restated, X is a local non-inferior point in a neighbor-
hood N(%,¢), such that for any other point X € N(%,¢), at
least one component of f exceeds its value at x or
filx) = fi(x), i=1,2,...,N,. A global non-inferior solution
of the multi-objective problem is one for which any
improvement of one objective function can be achieved
only at the expense of at least one of the other objectives.
In multi-objective optimization, as opposed to single-objec-
tive optimization, an unambiguous optimal solution may
not exist. Characteristic of multi-objective optimization
problems is a very large set of acceptable solutions that
are superior to the tested solutions in search space when
all objectives are considered. They are simultaneously not
optimal with respect to any single objective. These solu-
tions are known as the non-inferior solutions. The rest of
the solutions are referred to as inferior solutions. Fig. 6
plots the global non-inferior solutions for a two-objective
optimization problem. None of the solutions in a non-infe-
rior set is absolutely better than any other, so any one of
them is acceptable. The choice of one particular solution
depends on the features of the problem and a number of
related factors.

The notion of non-inferiority is only the first step
toward solving a multi-objective problem. Compromise
programming is also necessary to find non-inferior alterna-
tives. Compromise programming has been described else-
where [15,16]. This study presents a two-stage immune
algorithm embedded the compromise program to solve
multi-objective problems.
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Globally non-inferion set

Locally non-inferion set

fi :minof f

fz :min of f,

> /i

Fig. 6. Global non-inferior solutions to two-objective optimization
problem.

Stage 1: Build decision region

Firstly, the multi-objective optimization problem is
transformed to a single objective optimization problem
by selecting the kth objective as the primary objective func-
tion in turns k=1,2,...,N, and converting the other
objectives to_constraints with individual maximum allow-
able values f; where i=1,2,...,N, and i # k. Then, the
resulting single-objective optimization problem is solved
as follows.

Minf; (x) (21)
such that

F)Sfi=1,2,...,Noand i #k (22)
XEQ (23)
gx)=0 (24)
h(x)<0 (25)

In solving the above single objective optimization problem
by turns k=1,2,...,N,,

fe=fil®),k=1,2,....No (26)

where f'x represents the ideal value of the single objective k
and f; denotes the worst value of the objective i. For illus-
tration, Fig. 7 explains the decision region in a two-objec-
tive space. The decision region is bounded by the ideal and
worst values of each objective. Fig. 7 demonstrates that no
optimal solution exists in areas 1 and 2. Areas 3 and 4 have
worse solutions. Area 5 is the only decision region in which
non-inferior solutions can be found in the second stage. In
general, for multi-objective problems, a solution x such
that f = f;(¥) does not exist for all ke {1,2,...,N,}.
Restated, the ideal values (unattainable best solutions)
are used to determine the search direction for solving a
multi-objective problem, and the hypothetical worst values
are treated as the bottom boundary of the solution space.
Notably, the decision region is not bounded by constraints
but has reasonable limits.
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Fig. 7. Decision region on a two-objective space.

Stage 2: Search for the set of the non-dominant
solutions

In this stage, the non-inferior set for all objectives is
obtained by compromise programming. Compromise pro-
gramming finds the best compromise with respect to all the
objectives by computing a normalized Euclidean distance
measure. (The best compromise is a solution that is “closest™
to the ideal solution and lies on the non-inferior frontier.)

No

D= Z filx) — 1 (27)

= fi—fi

This normalized Euclidean distance is used to evaluate
how close the computed non-inferior solution is to the
Pareto front. A smaller D indicates the current computed
non-inferior solution is closer to the Pareto front. For a
multi-objective problem, the ideal value of each objective
fi (from stage 1) and the maximum allowable value of each
individual objective f; where i and k =1,2,..., N, can be
used to express the overall multi-objective minimizing
objective function, as follows.
No
Z Silx) = fi (28)

— —

=1 fi—fi

minD =

5. Solution algorithm for optimal placement of capacitors

This section presents an efficient two-staged algorithm
to achieve the best compromise among these conflicting
objectives and thus solve the multi-objective capacitor
placement problem. The first stage of the solution algo-
rithm applies the immune algorithm to find the decision
region that is bounded by the ideal and worst solutions
of the individual objective function. The second stage uti-
lizes the compromise programming embedded in the
immune algorithm to search for the trade-off solutions
(non-inferior solutions). The pseudo code of the two-staged
immune algorithm is described below.
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/* Stage 1 */

Input system data and control parameters.

Set the number of antigens to the number of objec-
tives (such that each antigen corresponds to an indi-
vidual objective).For objective =1,2,..., N,, do step
3-12; otherwise, proceed to step 13.

Randomly generate the initial antibodies (solutions,
representing the location and size of capacitors to
be installed).

Calculate the affinity (Ag); between the antigen and
the antibody using Eq. (9). /* Herein, only the affinity
between the antigen and its corresponding antibodies
is calculated. */

Determine the concentration ¢, of each antibody in
the repertoire, according to Eq. (10).

If ¢, exceeds a threshold J. then this antibody
becomes a memory antibody; proceed to the next
step; else, proceed to step 10.

Select the best antibody with the maximum affinity
for each antigen.

Calculate the affinity (A4b),,, between antibody v and
the best antibody w using Eq. (8).

If these affinities (4b),,, are greater than a preset value
d4, then record the optimal solution f; of the current
generation and then proceed to step 12; otherwise
proceed to the next step.

Suppress the antibodies with low concentrations
(affinity).

Reproduce the antibodies by applying

(29)

where Xj max and Xz min are the maximum and mini-
mum values of the antibody respectively, and d is a
random value between 0 and 1.

If a given number of generations is reached, then go
to the next step; otherwise, proceed to step 4.
Output the optimal solution f; of the individual
objective for i = 1,2,..., N, /* The outputs from the
first stage include the unattainable best solutions of
the individual objective f; and the hypothetical worst
solution fx of the individual objective k (and k # i),
where these outputs serve as the boundaries of the
decision region, which is searched to find the global
set of non-inferior solutions in the next stage. *//*
Stage 2 (Compromise programming) */ If the stop
criterion is not met, perform steps 14 and 15; other-
wise, proceed to step 16.

Apply immune algorithm (as in stage 1, so a detailed
description is not presented again here) to minimum
the Euclidean distance, as described in Eq. (28).
Check stop criterion: If over five consecutive genera-
tions, the sampled mean cost function does not
change noticeably, or the number of generations
reaches a preset value, and then stop the compromise
programming.

Output the optimal non-inferior solutions.

Abi,new = (xk max — Xk min) x d + Xk min

6. Simulation results

The presented solution algorithm was implemented and
tested using MATLAB [17]. The testing system includes
seven branches and 69 buses, as presented in [6]. Table 1
lists the parameters of the objective functions, used to cal-
culate the cost of the capacitors and the power loss. The
unit of one capacitor bank is 300 Kvar at a cost of
NT$61,900/bank. The presented method outputs five
non-inferior solutions (options) with different features,
one of which is to be selected by the decision-makers.
Tables 24 compare the results with those in [6,18], in terms
of the capacitor to be installed, the real power loss with and
without compensation, and the cost of construction and
power loss. The total costs of options 1, 2 and 4 are lower
than those in [6,18], and the costs of options 3 and 5 are
similar to those of [6,18]. Table 5 displays the maximum
and minimum bus voltage before and after the capacitors
are installed.

Table 6 compares the results with those in [6,18], in
terms of loading margin under various loads. Tables 5
and 6 demonstrate that the deviations of bus voltage and
loading margin are similar.

In summary, the non-inferior solutions obtained using
the presented method, in terms of voltage deviation,
power loss, cost and loading margin, are better than
(or similar to) those obtained using the methods of
[6,18]. The simulation results reveal that the capacitor
placement algorithm presented herein has the following
merits.

(1) Allows the decision maker to obtain a set of optimal
non-inferior solutions (multiple options) rather than
single solution.

(2) Identifies plans for multi-object problems.

(3) Can be applied to large-scale distribution systems.

(4) Considers a more realistic problem formulation.

Table 1
Energy cost under various loads

Load levels Time interval (h) Cost (NT$/kWh)

Peak-load (1.0) 1000 0.68
Medium-load (0.8) 6760 1.80
Light-load (0.5) 1000 2.85
Table 2
Capacitors (kvar) to be installed
Number of bus Methods

The proposed method Huang Chiang
19 300 1200 300 600 300 600 300
50 300 900 600 900 300 300 1200
53 1200 600 600 600 600 300 0

Total _kvar 1800 2700 1500 2100 1200 1200 1500
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Table 3
The results of the real power loss (kW) with and without installing capacitors
Loadlevel Without compensation With compensation
The proposed method Huang Chiang
Light 538 393 457 347 401 337 458 345
Medium 1715 1019 995 1042 994 1116 1222 1040
Peak 3190 1865 1752 1965 1806 2134 2295 1964
Total loss 5443 3277 3204 3354 3201 3587 3975 3349
Table 4
Cost of real power loss and capacitors
Without compensation With compensation
The proposed method Huang Chiang
Power loss 24,577,362 14,782,935 14,598,169 15,000,331 14,459,379 15,997,953 17,735,196 14,977,768
Capacitor 0 371,400 557,100 309,500 433,300 247,600 247,600 309,500
Total_cost 24,577,362 15,154,335 15,155,269 15,309,831 14,892,679 16,245,553 17,982,796 15,287,268
Table 5
Maximum and minimum voltages of the testing system before and after capacitors are installed
Voltage (pu) Without compensation With compensation
The proposed method Huang Chiang
Maximum 1 1 1 1 1 1 1 1
Minimum 0.9092 0.937 0.9388 0.9317 0.9371 0.9271 0.9224 0.9298
Table 6
Comparison of load margins with and without installed capacitors
Load margin (pu) Without compensation With compensation
The proposed method Huang Chiang
Light 0.0992 0.2044 0.224 0.0673 0.0964 0.0673 0.0677 0.1568
Medium 0.2689 0.201 0.2295 0.173 0.1752 0.2018 0.2034 0.2123
Peak 0.4378 0.3364 0.2732 0.2923 0.2742 0.3427 0.3455 0.2948
7. Conclusions References

Multi-objective optimization is of increasing importance
in various fields, and has a diverse range of applications.
Highly effective and efficient multi-objective algorithms
can promote both scientific research and engineering appli-
cations in various areas. This work proposes the two-stage
immune algorithm, embedding compromise programming,
for solving the multi-objective capacitor placement prob-
lem. The concept of the non-inferior set is applied herein
to obtain the set of optimal compromise solutions from
which the decision maker can choose one. The simulation
results indicate that the advantage of using the proposed
technique is that it can find the best compromised solutions
in a single run.
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