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Membrane-interaction quantitative structure-activity relationship (MI-QSAR) models for two skin penetration
enhancer data sets of 61 and 42 compounds were constructed and compared to QSAR models constructed
for the same two data sets using only classic intramolecular QSAR descriptors. These two data sets involve
skin penetration enhancement of hydrocortisone and hydrocortisone acetate, and the enhancers are generally
similar in structure to lipids and surfactants. A new MI-QSAR descriptor, the difference in the integrated
cylindrical distribution functions over the phospholipid monolayer model, in and out of the presence of the
skin penetration enhancer, ∆∑ h(r), was developed. This descriptor is dominant in the optimized MI-QSAR
models of both training sets studied and greatly reduces the size and complexity of the MI-QSAR models
as compared to those QSAR models developed using the classic intramolecular descriptors. The MI-QSAR
models indicate that good penetration enhancers make bigger “holes” in the monolayer and are less aqueous-
soluble, so as to preferentially enter the monolayer, than are poor penetration enhancers. The skin penetration
enhancer thus alters the structure and organization of the monolayer. This space and time alteration in the
structure and dynamics of the membrane monolayer is captured by ∆∑ h(r) and is simplistically referred to
as “holes” in the monolayer. The MI-QSAR models explain 70-80% of the variance in skin penetration
enhancement across each of the two training sets and are stable predictive models using accepted diagnostic
measures of robustness and predictivity.

INTRODUCTION

In a previous paper,1 a combination of classic and 4D-
fingerprint2 intramolecular quantitative structure-activity
relationship (QSAR) descriptors was used to build skin
penetration enhancer QSAR models. Four distinct data sets
were modeled in which the polarity and size of the enhancer
was varied as well as the size and polarity of the reference
penetrant. The resultant QSAR models for each data set are
different from one another and suggest that different mech-
anisms of enhanced skin transport are at play as a function
of both size and polarity of the enhancer and the penetrant.
The differences in the QSAR models and, correspondingly,
in mechanisms of transport appear to be largest between polar
and nonpolar penetrants.

In this current study, we have expanded the trial descriptor
set used to build skin penetration enhancer QSAR models
to both refine the current models and seek a better under-
standing of the mechanisms of enhanced transport. A limited
form of structure-based QSAR analysis, called membrane-
interaction QSAR, MI-QSAR, analysis2 has been carried out
in this study. MI-QSAR analysis models the transport of an

organic compound through a phospholipid monolayer, or
bilayer, assembly using molecular dynamics simulation,
MDS.3 The simulation properties and features determined
from the MDS trajectories are included as members of the
QSAR descriptor pool used in building the QSAR models.
As such, the majority of descriptors from these MDS studies
are intermolecular descriptors describing interactions be-
tween the skin penetration enhancer, in this case, and
phospholipids composing the model mono- or bilayer
assembly.

Some experimental studies of penetration enhancement
have measured the lipophilicity (nonpolarity) of enhancers
and also have investigated the corresponding relationships
between enhancer nonpolarity and penetration enhancement
potency.4,5 There is limited evidence to support the view
that a common set of physicochemical properties governs
the penetration enhancement of nonpolar drugs that are
different from those of polar drugs.6

The design and implementation of penetration enhancers
to facilitate the transport of compounds of limited percuta-
neous absorption is of high interest for delivery systems in
both the cosmetic and pharmaceutical industries. The stratum
corneum (SC) is known to be the rate-limiting barrier in skin
for the percutaneous absorption of drugs and other organics.
The SC consists of the remains of dead cells surrounded by
multilamellar lipid bilayer membranes. Small hydrophobic
or nonpolar molecules can partition into the SC and then
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diffuse across the lipid bilayer membranes, which is referred
to as the intercellular route. However, hydrophilic (polar)
molecules can best penetrate the SC through the transcellular
route or pre-existing aqueous pathways associated with sweat
gland ducts and hair follicles. Many experimental studies1

have probed the action of penetration enhancers, and three
major enhancement mechanisms have been suggested: (1)
interactions with intercellular lipids of the SC, which leads
to a disorganization of these highly ordered structures and,
thus, enhances the paracellular diffusivity through the SC;
(2) interactions with intracellular proteins of the corneocytes
to increase transcellular permeation; and (3) increasing the
partitioning of the drug into the SC.

METHODS

1. Selection of Training Sets. MI-QSAR analysis focuses
upon the uptake and transport of organic compounds in a
phospholipid monolayer or bilayer assembly, which are
normally used as models for cellular membranes, and/or
lipid-rich media. In other words, MI-QSAR analysis focuses
upon the behavior of organic compounds in a nonpolar,
lipidlike medium like the SC. Thus, the MI-QSAR skin
penetration enhancer studies carried out in this work have
been limited to nonpolar skin penetration enhancers, but both
hydrocortisone (HC) and hydrocortisone acetate (HCA) as
reference penetrants have been considered. Specifically, two
of the skin penetration enhancer data sets used in our
previous study1 were also employed in this study. These data
sets are as follows.

Training Set 1. The training set consists of 61 surfactant-
like and nonpolar enhancers for which penetration enhance-
ment was measured using HC as a master reference
penetrator.5,7–14 The measure of skin penetration enhance-
ment, denoted by ER(J), is the ratio of the HC penetration
with, and without, a common fixed concentration of the test
enhancer. The first ER(J) entry for these enhancers in Table
1 was used to build the QSAR models. The first listed
measurements of ER(J) reported in Table 1 represent self-
consistent data because they come from the same laboratory
or, at the very least, from one common experimental protocol
so as to minimize measured end-point variations in the data.
log ER(J) was the actual representation for penetration
enhancement used in constructing the QSAR models of our
original study, but ER(J) could be used directly in the MI-
QSAR analyses reported in this paper.

The in vitro skin penetration enhancement measurement
method has been described in refs 7–16 and is only
summarized here. The skin permeation parameters were
determined by plotting the cumulative drug amount perme-
ated through the skin versus time. The slope of the linear
portion of the permeation curve provided the flux value (J;
mg cm-2 h-1) at a steady state. The ER(J) for flux was
calculated as

ER(J))
[flux for skin treated with enhancer] ⁄ [flux for control] (1)

for which the flux for control denotes when the skin is
untreated with the enhancer.

Training Set 2. This training set consists mainly of
surfactant-like and nonpolar enhancers for which penetration
enhancement was measured using HCA as a master reference

penetrator.9,13–16 The measure of penetration enhancement
is the same as for training set 1.

Again, the first ER(J) entry for each enhancer was used
to build the QSAR models for the same reason as explained
for Table 1. There are 42 skin penetration enhancers in this
training set, which are given in Table 2.

2. The MI-QSAR Paradigm. A. Modeling of the
Penetration Enhancer Molecules and the DMPC Phos-
pholipid Monolayer. The MI-QSAR paradigm has been
discussed in detail previously and is only summarized
here.2,3,17–19 Currently, this methodology uses a model
membrane monolayer, or bilayer, composed of packed
dimyristoylphosphatidylcholine (DMPC) molecules. Only
monolayers have been considered in this work. The DMPC
molecule is modeled from available crystal structure data.20

The structure of a DMPC molecule is shown in Figure 1.
An assembly of 25 DMPC molecules (5 × 5 × 1) in x, y,
and z directions, respectively, forms the model membrane
monolayer (Figure 2). Additional information regarding the
construction of the monolayer model can be found in refs 2,
3, and 17–19.

The DMPC molecule and the penetration enhancers of both
training sets were built using the HyperChem program.21 The
AM1 Hamiltonian in Mopac 6.022 was used to estimate the
partial atomic charge distribution over each molecule.

B. Molecular Dynamic Simulations. The conditions used
in the MDS were established in previous MI-QSAR
analyses2,3,17–19 and are only summarized here. An initial
MDS was carried out on the model membrane, without a
solute molecule present, to allow structural relaxation and
the distribution of the kinetic energy over the monolayer. In
order to prevent unfavorable van der Waals interactions
between a penetration enhancer and the DMPC molecules
of the membrane, one of the “center” DMPC molecules was
removed from the equilibrated monolayer. The penetration
enhancer under consideration was then inserted into the space
vacated by the DMPC molecule that was removed. Typically,
each of the penetration enhancers of the two data sets in
Tables 1 and 2 was inserted at three different positions
(depths) into the DMPC monolayer with the most polar group
of the enhancer “facing” toward the headgroup region of the
monolayer. Three corresponding MDS trajectory sets were
generated for each skin penetration enhancer with regard to
the trial positions it was assigned in the monolayer. The three
trial positions are (1) the penetration enhancer in the
headgroup region, (2) the penetration enhancer in between
the headgroup region and the aliphatic chains, and (3) the
penetration enhancer in the tail region of the aliphatic chains.

The lowest-energy geometry of the penetration enhancer
in the monolayer was sought using each of the three trial
solute positions. These lowest-energy geometries of the
penetration-enhancer-monolayer complex are normally used
as the starting points in each of three respective MDSs.
However, virtually all of the skin penetration enhancers in
training sets 1 and 2 are similar in size and shape to DMPC.
Therefore, it was only necessary to explore the penetration
enhancer-DMPC monolayer assembly corresponding to the
first trial solute position described above. Only a single
penetration enhancer molecule was explicitly considered in
each MDS, and this embedded molecule was aligned within
the DMPC monolayer assembly such that the most polar
portion of the penetration enhancer was “facing” toward the
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Table 1. Training Set 1, Consisting of 61 Nonpolar Enhancers Using Hydrocortisone (HC) as a Master Reference Penetrator
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Table 1. Continued
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headgroup region. The energetically most favorable geometry
of a potent penetration enhancer, HC-5 of Table 1, in the
DMPC monolayer, taken from its MDS trajectory, is shown
in Figure 3.

The MDSs were carried out using the Molsim package
with an extended MM2 force field.23 The simulation tem-
perature was set at 311 K and was held constant in the MDS
by coupling the system to an external fixed-temperature
bath.24 The trajectory step size was 0.001 ps over a total
simulation time of 100 ps for each penetration compound.
Two-dimensional periodic boundary conditions, correspond-
ing to the “surface plane” of the monolayer, were employed
(a ) 50 Å2, b ) 50 Å2, c ) 80 Å2, and γ ) 90°) for the
DMPC molecules of the monolayer model, but not the
inserted penetration enhancer molecule. The angle γ is the

angle an extended conformation DMPC molecule makes with
the “planar surface” of the monolayer.

C. Calculation of Descriptors. The descriptors used in MI-
QSAR analysis can be divided into (a) general intramolecu-
lar solute descriptors, (b) solute aqueous dissolution and
solVation descriptors, and (c) solute-membrane intermo-
lecular descriptors. Each of these three classes of descriptors
is described below.

The general intramolecular and intermolecular solute
dissolution and solVation descriptors included as part of the
trial descriptor pool are listed and defined in Table 3. The
set of descriptors given in Table 3 is often considered the
classic QSAR descriptors and often used in QSAR analyses.
There may be some additional descriptors that other re-
searchers consider “classic” which are not included in Table

Table 1. Continued
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Table 2. Training Set 2, Consisting of 42 Nonpolar Enhancers Using Hydrocortisone Acetate (HCA) as a Master Reference Penetrator
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3, but those most often used in traditional QSAR studies
are listed and have been used in this work. Table 3 is divided
into intramolecular and intermolecular descriptor sets as a
reminder that, although all of these descriptors are computed
from a methodology based solely on the structure of an

individual molecule, some of these descriptors are actually
measures of intermolecular interactions. F(H2O), F(oct), and
LogP, the aqueous and 1-octanol solvation free energies and
the corresponding 1-octanol/water partition coefficient of the
penetration enhancer, respectively, are intermolecular proper-

Table 2. Continued

Figure 1. The chemical structure of a DMPC phospholipid molecule with an arbitrary atom numbering assignment. C1 and C2 denote the
two aliphatic chains of a DMPC molecule.
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ties relating to solute solvation. E(coh), TM, and TG, are the
cohesive energy and the hypothetical crystal-melt and glass
transition temperatures of the penetration enhancers, respec-
tively, which are used to estimate solute dissolution behavior.

The intermolecular solute-membrane interaction descrip-
tors are extracted directly from the MDS trajectories and
are listed in Table 4. These particular intermolecular descrip-
tors are calculated using the most stable (lowest total potential
energy) penetration enhancer-membrane geometry realized

from the MDS sampling of each penetration enhancer. But
we have now come to recognize the need in MI-QSAR
models for descriptors which capture the time-average change
in the structure of the monolayer molecular assembly due
to the presence of an embedded molecule, in this case, a
penetration enhancer. A descriptor which meets this need is
the integrated difference in the monolayer cylindrical dis-
tribution function, CDF, for the monolayer in and out of the
presence of the embedded molecule.

Figure 2. Top view of the DMPC monolayer assembly before MDS relaxation.

Figure 3. The energetically most favorable geometry of a potent penetration enhancer, HC-5 of Table 1, in the DMPC monolayer, taken
from its MDS trajectory.
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The radial distribution function (RDF)25 is an example of
a pair correlation function which describes how, on average,
the “particles” in a multiparticle system are spherically
packed around one another. This proves to be a particularly
effective way of describing the average structure of semi-
and disordered molecular systems such as liquids. Also, in
molecular systems like liquids, there is continual movement
of the constituent atoms, and a single snapshot of the system
provides only a single instantaneous structural representation
of the system. In such cases, it is extremely useful to be
able to deal with representations of the average structure of
the system over time, which the RDF makes possible.
Usually, when using MDS, the RDF is calculated by using
following equation:

g(r)) n(r) ⁄ (F*4πr2*dr) (2)

in which g(r) is the RDF, n(r) is the mean number of particles
(atoms) in a shell of width dr at distance r from an arbitrary
particle or position, and F is the mean particle density. In a
previous study,26 the RDF for a pure DMPC monolayer
assembly and the RDF of a mixed DMPC-DMTAP (dimyris-
toyltrimethyl-ammonium propane) monolayer assembly were
determined and compared. The location and shapes of the
main peaks of these two RDFs are much different from one
another, reflecting the different average molecular packing
behavior of these two monolayer assemblies. But the RDFs
also demonstrate the sensitivity of a time-averaged distribu-
tion function to the structure and dynamics of the phospho-
lipid assemblies being sampled.

Still, the DMPC molecules forming the monolayer have
long “cylindrical” axes and pack together with respect to
these long cylindrical axes. Thus, this type of molecular
assembly is characterized by cylindrical symmetry, and
hence, a corresponding CDF is defined and employed to
estimate and represent the average structure of the system
over time. The DMPC CDF used in this study is defined as

h(r)) n(r) ⁄ (F*2πr*dr) (3)

where h(r) is the CDF, n(r) is the mean number of atoms in
a cylindrical-shaped shell of width dr (0.2 Å in this study)
at distance r from an arbitrary helical axis, and F is the mean

DMPC monolayer density. A schematic top view of the
monolayer assembly with the cylindrical shell used to
compute n(r) is shown in Figure 4. The CDF in this particular
application offers the opportunity to obtain a finer spatial
resolution than can be had from the RDF by taking advantage
of the inherent cylindrical symmetry of the molecular
assemblies being studied.

The CDF by itself simply portrays the time-average spatial
distribution of the DMPC molecules of the monolayer with,
or without, in this case, a skin penetration enhancer embed-
ded within the monolayer. While both are useful and
insightful, this representation of the behavior of the mono-
layer cannot be used in a QSAR analysis. What is needed is
a composite scalar measure of the change in the average
spatial structure of the monlayer due to the presence of an
embedded molecule (skin penetration enhancer in this case)
as compared to when the embedded molecule is absent. The
integrated spatial difference, ∆∑ h(r), between the embedded
molecule, present CDF, and the CDF of the embedded
molecule, absent, is such a scalar measure and a correspond-
ing MI-QSAR descriptor:

∆ ∑ h(r))∫
ri

rf

|hS(r)- hM(r)|dr (4)

In eq 4, hS(r) is the CDF with the embedded molecule
and hM(r) the CDF without any embedded molecule in the
monolayer. The terms ri and rf are the initial and final
distances, respectively, from an arbitrary center axis, nor-
mally one of the DMPC molecular axes, in which the
integration of the difference in the CDFs is carried out. A
combined inspection of eq 4, along with an inspection of a
typical difference CDF, shown in Figure 5 for the fourth
entry in Table 1, SL-LACTAM-ACETIC-ESTER/HC-3,
reveals that ∆∑ h(r) is nothing more than the area within
the difference CDF plot with respect to the r axis. The greater
the area under the curve, relative to the r axis, the greater
is the value of ∆∑ h(r) and the greater is the change in the
time-averaged monolayer structure due to the embedded
molecule.

To be clear, the ∆∑ h(r) values are computed using the
composite MDS profile from the resultant trajectories of all
three initial MDS positions of the embedded molecule
(penetration enhancer) in the monolayer. In this application,
however, only the initial position of the penetration enhancer
in the headgroup region of the monolayer needs to be
considered, owing to the similar sizes and shapes of the
penetration enhancers to lipids and surfactants. The difference
CDF integration is carried out from the “steric surface” of
the center DMPC molecule, ri ≈ 6 Å, to the end of the
second nearest-neighbor DMPC molecule of the monolayer,
rf ≈ 23 Å. Perhaps the most simple interpretation of ∆∑ h(r)
is that it is measuring how big of “holes” are formed in the
monolayer structure due to the presence of the skin penetra-
tion enhancer.

3. Construction and Validation of the MI-QSAR
Models. MI-QSAR models were built and optimized using
multidimensional linear regression fitting and the genetic
function approximation (GFA),27,28 which is a multidimen-
sional optimization method based on the genetic algorithm
paradigm. Both linear and quadratic representations of each
of the descriptor values were included in the trial descriptor

Table 3. The Classic Set of QSAR Descriptors

Intramolecular
HOMO highest occupied molecular orbital energy
LUMO lowest unoccupied molecular orbital energy
Dp dipole moment
Vm molecular volume
SA molecular surface area
Ds density
MW molecular weight
MR molecular refractivity
N(hba) number of hydrogen bond acceptors
N(hbd) number of hydrogen bond donors
N(B) number of rotatable bonds
JSSA (X) Jurs-Stanton surface area descriptors
Chi-N, Kappa-M Kier and Hall topological descriptors
Rg radius of gyration
PM principle moment of inertia
PSA polar surface area
Se conformational entropy
Q(I) partial atomic charge densities

Intermolecular
F(H2O) aqueous solva aqueous solvation free energy
F(oct) 1-octanol solvation free energy
LogP 1-octanol/water partition coefficient
Ecoh cohesive packing energy
TM hypothetical crystal-melt transition temperature
TG hypothetical glass transition temperature
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pool, and MI-QSAR models were built as a function of the
number of descriptor terms in a model. Statistical significance
in the optimization of a QSAR model was judged jointly by
the correlation coefficient of fit, R2, and the leave-one-out
cross validation correlation coefficient, Q2. In addition, GFA
uses Friedman’s lack of fit measure to resist overfitting,

which is a problem often encountered in constructing
statistical models.29

Each of the two original training sets was repeatedly
subdivided, on a random selection basis, into a subtraining
set and a test set. Each test set was restricted to 15% of the
compounds in the original training set. A total of 70 different
subtraining sets and test sets were constructed for training
set 1 and 50 such sets for training set 2 to provide a sampling
greater than the size of each respective original training set.
MI-QSAR models were constructed in an identical fashion
to those in the original training set for each corresponding

Table 4. The MI-QSAR Intermolecular Solute-Membrane Descriptors

<F(total)> average total free energy of interaction of the solute and membrane
<E(total)> average total interaction energy of the solute and membrane
EINTER(total) interaction energy between the solute and the membrane at the total intermolecular system minimum potential energy
EXY(Z)E Z ) 1,4-nonbonded, general van der Waals, electrostatic, hydrogen bonding, and torsion energies and combinations

thereof at the total intermolecular system minimum potential energy
X, Y can be the solute, S, and/or membrane, M, and if E ) free, then X ) Y ) S and the energies are for the solute

not in the membrane, but isolated by itself
∆EXY(Z) change in the Z ) 1,4-nonbonded, general van der Waals, electrostatic, hydrogen bonding, and torsion energies and

combinations thereof due to the uptake of the solute to the total intermolecular system minimum potential energy
X, Y can be the solute, S, and/or membrane, M

ETT(Z) Z ) 1,4-nonbonded, general Van der Waals, electrostatic, hydrogen bonding, torsion and combinations thereof
energies of the total [solute and membrane model] intermolecular minimum potential energy

∆ETT(Z) change in the Z ) 1,4-nonbonded, general van der Waals, electrostatic, and hydrogen bonding energies and
combinations thereof of the total [solute and membrane model] intermolecular minimum potential energy

∆S change in entropy of the membrane due to the uptake of the solute
S absolute entropy of the solute-membrane system
∆F change in density of the model membrane due to the permeating solute

Figure 4. A schematic top view of the monolayer geometry used
to derive the CDF. The open and darkened small circles represent
DMPC molecules, and the large ring represents the cylinder
integration area of thickness dr at a distance r from an arbitrarily
chosen DMPC cylindrical center.

Figure 5. The difference CDF for the fourth entry in Table 1, SL-LACTAM-ACETIC-ESTER/HC-3.

Table 5. The Results of the Random Scrambling Experiments and
the Findings from the Test Set Predictions Studies for the Two
Training Sets

data seta <R2>b <Q2>

original training set 1: N ) 61 0.23 - scrambled
original training set 2: N ) 42 0.29 - scrambled
test training set 1: N ) 52 0.794 0.736
test training set 2: N ) 37 0.828 0.758
test set 1: N ) 9 0.69
test set 2: N ) 7 0.71

a The “test training sets” are those data sets constructed from
randomly extracting 15% of the compounds in the original training
set and using the resultant data set to build a QSAR model. The
“test sets” are the 15% of the compounds extracted from the
original training set and whose activities are predicted using QSAR
models built from the remaining 85% of the compounds in the
original training set. N in each case is the number of compounds in
the data set. b The <R2> are for the 3000 random scrambling level
as described in the test.
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subtraining set. Each resulting MI-QSAR model was then
used to predict the corresponding test set compounds. The
average R2 and Q2 of the subtraining set MI-QSAR models,
and the average R2 of prediction for the test set compounds,
are reported in Table 5.

Random scrambling experiments were performed to further
validate the MI-QSAR models. The dependent variables,

ER(J), of each of the two original training sets were randomly
scrambled, with respect to the trial descriptor set, in
increments of 1000, beginning with 1000 random scram-
blings. In each instance, a MI-QSAR model was constructed
to test for chance correlations. By the 3000 random scram-
bling level, there was no meaningful change in the average
R2 value, or its mean deviation, across the MI-QSAR models

Table 6. The ER(J) and Descriptor Values for the MI-QSAR Model Given by eq 5

compound code # FH20 Dipole ER(J) ∆∑ h(r)

REF-AZONE/HC-1 0.46 0.13 19.51 0.873
SL-LACTAM-ACETIC-ESTERS/HC-1 -2.18 0.18 18.89 1.235
SL-LACTAM-ACETIC-ESTERS/HC-2 -1.98 0.19 17.55 1.106
SL-LACTAM-ACETIC-ESTERS/HC-3 -1.78 0.19 38.22 1.744
SL-LACTAM-ACETIC-ESTERS/HC-4 -1.57 0.19 15.33 1.192
SL-LACTAM-ACETIC-ESTERS/HC-5 -1.37 0.19 67.33 1.805
SL-LACTAM-ACETIC-ESTERS/HC-6 -1.17 0.18 18.00 1.168
SL-LACTAM-ACETIC-ESTERS/HC-7 -0.96 0.18 25.78 1.255
SL-LACTAM-ACETIC-ESTERS/HC-8 -1.98 0.21 18.44 1.452
SL-LACTAM-ACETIC-ESTERS/HC-9 -1.78 0.21 13.33 1.2
SL-LACTAM-ACETIC-ESTERS/HC-10 -1.57 0.21 12.67 1.15
SL-LACTAM-ACETIC-ESTERS/HC-11 -1.37 0.21 36.44 1.527
SL-LACTAM-ACETIC-ESTERS/HC-12 -1.17 0.21 23.78 1.321
SL-LACTAM-ACETIC-ESTERS/HC-13 -0.96 0.21 12.00 1.045
SL-LACTAM-ACETIC-ESTERS/HC-14 -0.76 0.21 37.77 1.427
SL-LACTAM-ACETIC-ESTERS/HC-15 -0.96 0.2 1.13 0.455
SL-LACTAM-ACETIC-ESTERS/HC-16 -0.56 0.2 1.96 0.511
SL-PYRROLIDINE/HC-3 2.48 0.16 25.70 1.205
SL-PYRROLIDINE/HC-4 2.89 0.16 27.50 1.145
SL-PYRROLIDINE/HC-5 3.29 0.16 40.50 1.238
SL-PYRROLIDINE/HC-6 3.7 0.16 12.80 0.582
SL-PYRROLIDINE/HC-9 -2.27 0.26 5.90 0.965
SL-PYRROLIDINE/HC-10 -1.87 0.26 10.90 0.872
SL-PYRROLIDINE/HC-11 -1.46 0.26 15.00 0.922
SL-PYRROLIDINE/HC-12 -1.05 0.27 16.10 0.95
SL-AMIDE/HC-1 0.26 0.12 18.90 0.873
SL-AMIDE/HC-2 0.06 0.13 45.50 1.2
SL-AMIDE/HC-3 -0.59 0.22 8.60 0.825
SL-AMIDE/HC-4 -0.8 0.23 12.80 0.91
SL-AMIDE/HC-5 2.53 0.1 10.30 0.522
SL-AMIDE/HC-6 2.33 0.1 8.20 0.57
SL-AMIDE/HC-7 -1.6 0.1 32.90 1.163
SL-AMIDE/HC-8 3.27 0.13 9.20 0.781
SL-AMIDE/HC-11 -3.82 0.11 5.00 0.443
SL-AMIDE/HC-12 -3.9 0.1 56.40 1.351
SL-AMIDE/HC-13 0.05 0.13 60.10 1.362
SL-AMIDE/HC-14 0.26 0.13 48.30 1.348
SM-DIOXOLANES/HC-1 -5.76 0.04 0.93 0.45
SL-DIOXOLANES/HC-2 -5.35 0.04 6.13 0.83
SL-DIOXOLANES/HC-3 -4.95 0.04 2.63 0.559
SM-DIOXOLANES/HC-4 -5.41 0.04 0.70 0.37
SL-DIOXOLANES/HC-5 -5.01 0.04 2.17 0.751
SL-DIOXOLANES/HC-6 -4.6 0.04 1.57 0.71
SM-DIOXOLANES/HC-7 -5.45 0.03 1.03 0.802
SL-DIOXOLANES/HC-8 -5.04 0.03 2.40 0.596
SL-DIOXOLANES/HC-9 -4.64 0.04 2.50 0.703
SM-DIOXOLANES/HC-10 -5.1 0.04 0.63 0.488
SL-DIOXOLANES/HC-11 -4.7 0.04 1.40 0.51
SL-DIOXOLANES/HC-12 -4.29 0.04 4.17 0.662
SL-UREA/HC-2 -12.55 0.17 1.10 0.35
SL-UREA/HC-3 -8.73 0.17 1.10 0.37
SL-UREA/HC-4 -8.41 0.26 6.60 0.592
SL-UREA/HC-5 -6.5 0.18 2.40 0.781
SL-UREA/HC-6 -6.18 0.28 1.40 0.822
SL-UREA/HC-9 -10.37 0.13 1.70 0.793
SL-UREA/HC-10 -10.05 0.09 2.40 0.67
SM-ARO-SULFURANES/HC-4 -1.33 0.21 1.16 0.493
SM-ARO-SULFURANES/HC-5 -0.92 0.21 6.75 0.706
SL-DIDODECYLAMINE/HC-1 0.1 0.01 34.66 1.225
SL-DODECYLAMINE/HC-2 -5.95 0.02 16.29 1.39
SL-STEARYLAMINE/HC-3 -4.74 0.02 18.42 1.175
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of the random scramblings as compared to the corresponding
measures from the models of the 1000 and 2000 random
scrambling levels for both training sets. The average R2

values, from the 3000 random scrambling experiments done
for both training sets 1 and 2, are 0.23 and 0.29, respectively.
Thus, 3000 random scramblings are considered sufficient to
establish that the models generated in this study are not due
to chance. These validation results, in terms of the average
R2 value across the MI-QSAR models of the random
scramblings, at the 3000 random-scrambling level, are also
given in Table 5.

RESULTS

An inspection of Tables 1 and 2 along with Figure 3
suggests that most of the skin penetration enhancers in both
training sets have the size and general shape of a DMPC
molecule. Moreover, Figure 3 also indicates they “fit into”
the DMPC monolayer in much the same way as does a
typical DMPC molecule. Thus, these particular skin penetra-
tion enhancers are not expected to cause individual huge
disruptions in the local DMPC monolayer structure but might
cause significant alterations in the average structure and
dynamic behavior of the monolayer.

Moreover, since the skin penetration enhancers within and
between the two training sets are rather similar, and HC and
HCA are analogs to one another, it was thought that the
“mechanism” of penetration enhancement might be the same
for the two training sets. Thus, the two training sets were
combined to see if a single “master” corresponding MI-
QSAR model could be built. But no significant single MI-
QSAR model could be built by combining these two training
sets. Hence, this finding may be indicative of a somewhat
different mechanism, or transport path, of HC versus HCA
through the stratum corneum even when there is marked
structural similarity among the two sets of enhancers and
the two reference penetrants.

The best MI-QSAR model that could be built for training
set 1 is

ER(J))-11.03+ 35.13 × ∆ ∑ h(r)+

0.93 × FH20- 22.76 × Dipole

N) 61, R2 ) 0.731, Q2 ) 0.672
(5)

By comparison, the optimum non-MI-QSAR model1 that
could be constructed for this training set using classic QSAR
descriptors is

log ER(J)) 2.04+ 0.039 × (ClogP- 8.33)2 -
0.0001 × (HOMO+ 242.46)2 + 0.004 × (Kappa5- 10)2 -

0.008 × (FH20- 2.48)2 - 0.019 × Kappa4- 15.71)2 -
3.259 × Dipole

N) 61, R2 ) 0.732, Q2 ) 0.661 (6)

The values of ER(J) and those of the descriptors used in eq
5 are given in Table 6. The definitions of the classic QSAR
descriptors found in eqs 5 and 6 are given in Table 3, and
∆∑ h(r) is the integrated difference of the monolayer CDFs
with, and without, each of the skin penetration enhancers
present in the monolayer, as defined by eq 4.

There are several significant points to make regarding the
MI-QSAR given by eq 5, both by itself and in comparison
to the optimum classic QSAR model given by eq 6:

1. Only three linear descriptor terms are needed to generate
the optimal MI-QSAR models for training set 1, consisting
of 61 skin penetration enhancers. The quality of this model
cannot be increased, in terms of both larger R2 and larger
Q2 values, by increasing the number of descriptor terms in
a model.
2. The MI-QSAR model is relatively straightforward to
interpret. ∆∑ h(r) suggests that the bigger the “holes” created
in the monolayer by the penetration enhancer, the greater
the value of ER(J). The more positive the aqueous solvation
free energy (less aqueous solubility), FH2O, the greater is
the skin penetration enhancement. And the smaller the
average dipole moment of the skin penetration enhancer in
the monolayer, the greater is ER(J).
3. ER(J) can be directly used to build the MI-QSAR model,
eq 5, while the log ER(J) form of skin penetration enhancer
potency was needed to construct the classic QSAR model,
eq 6.
4. The models given by eqs 5 and 6 are virtually identical
in statistical measures of quality. However, eq 5 has only
three linear terms, while eq 6 has six descriptor terms, five
of which are quadratic as opposed to linear.
5. Both QSAR models, eqs 5 and 6, contain FH20 and Dipole
as descriptors. Therefore, it is reasonable to suggest that the
descriptor terms involving ClogP, HOMO, Kappa4, and
Kappa5 of the classic QSAR model are needed to capture
the information residing in the MI-QSAR descriptor ∆∑ h(r)
of eq 5.

The best MI-QSAR model that could be built for training
set 2 is

ER(J)) 14.10- 0.286 × PSA+ 32.74 ×

∆∑h(r)- 1.423 × Kappa5

N) 42, R2 ) 0.788, Q2 ) 0.711
(7)

The corresponding optimum non-MI-QSAR model1 that
could be constructed for this training set using classic QSAR
descriptors is

log ER(J)) 1.85- 0.002 × TG - 0.0002 × (PSA- 21.7)2 -

0.0001 × (LUMO- 111.2)2 - 0.00001 × (TM - 444.7)2 -

2.519 × (�11- 0.27)2 + 0.781 × Dipole+
0.011 × (Kappa5- 11.23)2

N) 42, R2 ) 0.738, Q2 ) 0.621 (8)

The values of ER(J) and those of the descriptors used in eq
7 are given in Table 7. The definitions of the classic QSAR
descriptors in eqs 7 and 8 are given in Table 3. Once again,
∆∑ h(r) is the integrated difference of the monolayer CDFs
with, and without, each of the skin penetration enhancers
embedded in the monolayer.

The five points made about eq 5 by itself, and in
comparison to eq 6, also generally hold regarding eq 7 and
its comparison to eq 8. However, for eqs 7 and 8, the
following distinctive points have been identified:
1. The MI-QSAR model given by eq 7 is relatively
straightforward to interpret. ∆∑ h(r) suggests that the bigger
the “holes” created in the monolayer by the penetration
enhancer, the greater the value of ER(J) in the same manner
as seen in eq 5. The aqueous solvation free energy descriptor,
FH2O, of eq 5 is replaced in eq 7 by polar surface area,
PSA. However, the interpretation of these two QSAR
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descriptors is basically the same. As PSA increases, which
corresponds to increased aqueous solubility, skin penetration
enhancement decreases. The most significant difference
between eqs 5 and 7 is the replacement of the Dipole
descriptor in eq 5 with Kappa5, a molecular connectivity
shape descriptor. It is not at all clear why there is a need to
replace a polar and electrostatic descriptor (Dipole) for
modeling training set 1 with a shape descriptor which, in
particular, captures molecular branching within a molecule
(Kappa5) for training set 2. But both the Dipole and Kappa5
descriptors are inversely related to ER(J), so the lower their
values, the better is the penetration enhancement. One
possible interpretation of these inverse relationships is that
both high branching and a large dipole moment may make
it more difficult for the enhancer to get fully into the
membrane bilayer. Presumably, if the penetration enhancer
is not integrated into the bilayer, it cannot fully exert its
penetration enhancement potential.
2. Equation 7, with only three linear descriptor terms, is more
significant, as judged by R2 and Q2, than eq 8, which has
seven descriptor terms, five of which are quadratic.
3. Since eqs 7 and 8 both contain PSA and Kappa5 as
descriptors, it is reasonable to suggest that the descriptors

TG, LUMO, TM, Chi11, and Dipole of the classic QSAR
model are all needed to capture the information residing in
the MI-QSAR descriptor ∆∑ h(r) of eq 7.

The results of the random scrambling and test set valida-
tion studies for the MI-QSAR models of both training sets
are given in Table 5. The random scrambling studies lead
to models with average R2 values of about 0.23 and 0.29,
respectively, for training sets 1 and 2. The corresponding
R2 values of the optimum MI-QSAR models, namely, eqs 5
and 7, for the two training sets are 0.731 and 0.788,
respectively. Thus, the random scrambling studies suggest
that the MI-QSAR models are significant and not the result
of chance correlations.

The test set validation studies indicate that test training
set models constructed from random samplings, using 85%
of the compounds from the original training sets, are quite
comparable in both R2 and Q2 to the optimum models
developed for their respective training sets (eqs 5 and 7).
Moreover, the ability to build consistent models across
subsets of the two original training sets suggests that all of
these models are stable and robust with respect to the range
of the chemistry sampled in each of the individual training
sets.

Table 7. The ER(J) and Descriptor Values for the MI-QSAR Model Given by eq 7

compound code # PSA Kappa5 ER(J) ∆∑ h(r)

SL-ACYCLIC-AZONE-AMIDES/HCA-1 40.54 12.25 13.62 0.935
SL-ACYCLIC-AZONE-AMIDES/HCA-2 29.54 13.19 20.80 0.949
SL-ACYCLIC-AZONE-AMIDES/HCA-3 38.77 12.96 20.02 1.047
SL-ACYCLIC-AZONE-AMIDES/HCA-4 40.54 12.76 25.78 1.336
SL-ACYCLIC-AZONE-AMIDES/HCA-5 29.54 13.77 35.22 1.537
SL-ACYCLIC-AZONE-AMIDES/HCA-6 38.77 13.19 24.53 1.203
SL-ACYCLIC-AZONE-AMIDES/HCA-7 66.84 14.08 14.22 1.184
SL-ACYCLIC-AZONE-AMIDES/HCA-8 77.84 14.37 5.67 0.726
SL-ACYCLIC-AZONE-AMIDES/HCA-9 37.38 11.22 5.87 0.531
SL-ACYCLIC-AZONE-AMIDES/HCA-10 37.38 11.52 14.24 0.594
SL-ACYCLIC-AZONE-AMIDES/HCA-11 29.1 13.29 57.38 1.833
SL-ACYCLIC-AZONE-AMIDES/HCA-12 29.1 15.08 29.38 1.48
SL-ACYCLIC-AZONE-AMIDES/HCA-13 38.33 13.94 6.51 1.033
SL-ACYCLIC-AZONE-AMIDES/HCA-14 60.77 12.49 10.02 1.285
SL-AZONE-AMINES/HCA-1 32.26 15.08 11.80 0.86
SL-AZONE-AMINES/HCA-2 21.26 16 16.00 0.891
SL-AZONE-AMINES/HCA-3 30.49 14.22 13.18 0.966
SL-AZONE-AMINES/HCA-4 23.47 13.29 9.16 0.8
SL-AZONE-AMINES/HCA-5 12.47 14.22 30.89 1.107
SL-AZONE-AMINES/HCA-6 21.7 13.39 8.04 0.672
SL-AZONE-AMINES/HCA-7 3.24 7.86 17.80 0.357
SL-AZONE-AMINES/HCA-8 3.24 8.69 9.87 0.308
SL-AZONE-AMINES/HCA-9 3.24 9.6 15.33 0.415
SL-AZONE-AMINES/HCA-10 12.47 9.6 25.56 0.82
SL-AZONE-AMINES/HCA-11 43.7 14.22 16.11 1.055
SL-AZONE-AMINES/HCA-12 12.36 14 13.84 0.743
SL-AZONE-THIO-AMIDE/HCA-3 35.33 7.93 13.71 0.902
SL-AZONE-THIO-AMIDE/HCA-4 35.33 8.71 8.56 0.785
SL-AZONE-THIO-AMIDE/HCA-5 35.33 9.56 4.33 0.493
SL-AZONE-THIO-AMIDE/HCA-7 20.31 9.56 34.02 1.25
SL-AZONE-THIO-AMIDE/HCA-8 44.56 8.71 2.09 0.355
SL-AZONE-THIO-AMIDE/HCA-9 35.33 9.56 7.56 0.399
SL-AZONE/HCA-3 46.61 8.15 7.09 0.503
SL-AZONE/HCA-4 46.61 9.69 5.20 0.627
SL-AZONE/HCA-5 46.61 8 44.96 1.244
SL-AZONE/HCA-6 46.61 9.59 12.67 0.874
SL-AZONE/HCA-7 46.61 8.15 10.20 0.805
SL-AZONE/HCA-8 46.61 9.69 14.07 0.891
SL-AZONE/HCA-9 37.38 7.37 18.80 0.76
SL-AZONE/HCA-10 37.38 7.37 12.24 0.655
SL-AZONE/HCA-11 37.38 8.89 14.38 0.673
SL-AZONE/HCA-12 37.38 10.46 20.00 0.92
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Finally, the average R2 of prediction across the test set
compounds using the MI-QSAR models built from the
original two training sets is consistently about 6-11% less
than the corresponding R2 of the MI-QSAR models. This
finding is indicative of stable and meaningfully predictive
models.

DISCUSSION

The most significant finding from this study is that the
difference in the integrated CDF of the monolayer model,
in and out of the presence of the skin penetration enhancer,
∆∑ h(r), is the dominant descriptor in the optimized MI-
QSAR models of both training sets studied. Not only does
this descriptor dominate the MI-QSAR models but it greatly
reduces the size and complexity of these QSAR models as
compared to those developed using classic intramolecular
descriptors derived solely from the penetration enhancers.
The MI-QSAR models with ∆∑ h(r) are very simple, as well
as intuitively acceptable for the action of nonpolar skin
penetration enhancers.

Overall, the MI-QSAR models indicate that good nonpolar
penetration enhancers make bigger “holes” in the monolayer
[∆∑ h(r)] and are less aqueous-soluble, so as to preferentially
enter the monolayer, than are poor nonpolar penetration
enhancers. The one nonobvious aspect of the MI-QSAR
models for the two training sets is the presence of a negative
Dipole descriptor term in training set 1 for HC as the
reference penetrant and a negative Kappa5 descriptor term
in training set 2 for HCA as the reference penetrant. As noted
above, both high-branching (Kappa 5) and a large dipole
moment (Dipole) may make it difficult for the enhancer to
get fully into the membrane bilayer. And if the penetration
enhancer is not integrated into the bilayer, it may not be
able to fully exert its penetration enhancement potential.
Moreover, these two descriptors are the least significant in
their respective MI-QSAR models and also result from
specific peculiarities, like very high branching or large dipole
moments, of specific compounds in each of the two training
sets.

The skin penetration enhancers of both training sets are
lipidlike (and surfactant-like) in shape and take up preferred
positions in the monolayer, as shown in Figure 3. In essence,
the skin penetration enhancers act as surrogate DMPC
molecules in the monolayer. Consequently, the bigger “holes”
in the monolayer due to a skin penetration enhancer arise in
two major ways. First, steric “bumps” on the skin penetration
enhancer, due to, for example, structure branching as seen
for the SL-ACYCLIC-AZONE-AMIDES in Table 2, can
induce “holes”. But more importantly, adverse electrostatic
interactions involving head groups on the skin penetration
enhancers with the DMPC head groups leads to the formation
of “pores” and “holes” in the monolayer.

The changes in the structure of the DMPC monolayer due
to the uptake of a skin penetration enhancer have been
referred to above as making “pores” and “holes” in the
monolayer. The reason for using quotes around holes and
pores is that these terms provide a simplistic and static view
of what is actually going on in the monolayer, which is
captured by ∆∑ h(r). The skin penetration enhancer is
altering the structure and organization of the monolayer,
which, in turn, is changing with time. At one given time, a

specific, relatively large pore may open up, which is lost at
a later time. A large number of small “holes” may be created,
on average, for one type of skin penetration enhancer, while
another enhancer may have the effect of producing a few
relatively large “holes” in the monolayer. The ∆∑ h(r)
descriptor captures all of these structural variants over time
and presents a time and space averaged representation of
the influence of each embedded skin penetration enhancer
upon both the structure and dynamics of the monolayer.

The skin penetration enhancer MI-QSAR models contain
only one intermolecular MI-QSAR descriptor, namely,
∆∑ h(r), with none of the other MI-QSAR descriptors
reported in Table 4 being found to be significant. However,
some of the descriptors in Table 4 have been found to be
very important in MI-QSAR models for other adsorption,
distribution, metabolism, excretion, and toxicity (ADMET)
end points, such as for eye irritation17,18 and caco-2 cell
permeation.3 ∆∑ h(r) was not available as a trial descriptor
in these earlier ADMET MI-QSAR studies. Hence, it may
be worthwhile to include ∆∑ h(r) in the trial descriptor pool
and to rebuild the MI-QSAR models for these training sets
to see if the resultant optimized models include this descriptor
and are also of a simplified form like that found in eqs 5
and 7.
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