
Journal of Biomedical Informatics 41 (2008) 953–961
Contents lists available at ScienceDirect

Journal of Biomedical Informatics

journal homepage: www.elsevier .com/locate /y jb in
A new framework for the selection of tag SNPs by multimarker haplotypes

Yao-Ting Huang a, Kun-Mao Chao b,c,d,*

a Department of Computer Science and Information Engineering, National Chung-Cheng University, Chia-Yi, Taiwan
b Department of Computer Science and Information Engineering, National Taiwan University, #1 Roosevelt Road, Section 4, Taipei, Taiwan
c Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
d Graduate Institute of Networking and Multimedia, National Taiwan University, Taipei, Taiwan

a r t i c l e i n f o a b s t r a c t
Article history:
Received 2 October 2007
Available online 12 April 2008

Keywords:
Algorithm
Haplotype
Linkage disequilibrium
NP-hardness
SNP
1532-0464/$ - see front matter � 2008 Elsevier Inc. A
doi:10.1016/j.jbi.2008.04.003

* Corresponding author. Address: Department of Co
tion Engineering, National Taiwan University, #1 Roo
Taiwan. Fax: +886 2 23628167.

E-mail address: kmchao@csie.ntu.edu.tw (K.-M. Ch
This paper proposes a new framework for the selection of tag SNPs based on haplotypes instead of on a
single SNP. The tag SNPs found by this framework form a set of haplotypes completely predictive of the
alleles of all untyped SNPs. We refer to this problem as MTMH, which is defined as follows: given a set of
SNPs, find a minimum subset of SNPs (called tag SNPs) which defines a set of haplotypes completely pre-
dictive of the alleles of all untyped SNPs. The MTMH problem is solved by dividing into three subprob-
lems, two of which are shown to be NP-hard. Several exact and approximation algorithms are
proposed to solve these subproblems. We describe a framework which integrates these algorithms and
develop a program called HapTagger for finding tag SNPs. HapTagger is compared with existing methods
as well as the official tagging tool (called Haploview) of the International HapMap project using a variety
of real data sets. Our theoretical analysis and experimental results indicate that HapTagger consistently
identifies a smaller set of tag SNPs and runs much faster than existing methods. HapTagger avoids the
need of incorporating a linkage disequilibrium statistic and thus significantly improves the computa-
tional efficiency. We also present an algorithm (specific to HapTagger) for reconstructing alleles of
untyped SNPs. It is worth mentioning that these predictive haplotypes selected by HapTagger can be used
as signatures of recent positive selection or co-evolution.
HapTagger is available at http://www.csie.ntu.edu.tw/~kmchao/tools/HapTagger/.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Single nucleotide polymorphisms (SNPs) are the most abundant
form of genetic variations observed in the human population.
Through recent linkage disequilibrium (LD) analysis across the en-
tire human genome, the SNPs in proximity are shown to usually
have strong correlation with each other [1,9,14,17]. The correlation
structure of entire genome indicates that the human chromosome
can be partitioned into high LD regions interspersed by low LD re-
gions. Within each high LD region, only a small subset of SNPs
(called tag SNPs) is sufficient to be typed, whereas the alleles of un-
typed SNPs can be indirectly predicted by typed tag SNPs, due to
the strong correlation among them [3,6,21,26,33,34]. In 2002, the
International HapMap project is launched to characterize the LD
patterns in the human genome such that this information can be
used to guide the selection of tag SNPs [1,16]. Recently, with the
advent of high-throughput genotyping array (e.g., Affymetrix
500K GeneChip array), the cost of assaying tens of thousands of
ll rights reserved.

mputer Science and Informa-
sevelt Road, Section 4, Taipei,

ao).
SNPs has been greatly reduced [22,24]. As a consequence, gen-
ome-wide association studies using tag SNPs together with geno-
typing array are going to be used for studying complex genetic
diseases presumably induced by multiple unknown genes through-
out the genome [8,19,23]. In contrast to traditional association
studies or linkage analysis, the genome-wide association studies
using tag SNPs make no assumption on the location of disease
genes and is a promising approach for discovering disease suscep-
tibility genes of complex diseases.

However, due to the limited size of the genotyping array, it is
difficult to type all tag SNPs to capture the allele of each common
SNP on the human genome. Therefore, investigators are usually
forced to select a subset of tag SNPs, to prioritize them, or to relax
the threshold of LD [1,10]. But these approaches often sacrifice the
statistical power in subsequent association studies or analysis. In
addition, due to the incompleteness of the HapMap data, less com-
mon SNPs (e.g., minor allele frequencies less than 5%) which may
induce the disease are usually ignored and not captured by existing
algorithms. To capture these less common SNPs, it is expected that
more tag SNPs have to be used. Moreover, a portion of tag SNPs
may not be always successfully typed and these missing data
may greatly decrease the power of using tag SNPs [34]. To avoid
the influence from missing data, it has been shown that additional

http://www.csie.ntu.edu.tw/~kmchao/tools/HapTagger/
mailto:kmchao@csie.ntu.edu.tw
http://www.sciencedirect.com/science/journal/15320464
http://www.elsevier.com/locate/yjbin

Fig. 1. An input example for the MHTP problem. H ¼ fh1; . . . ; h5g, C ¼ fS1; . . . ; S5g
and ST ¼ S6. fS1; S2; S3g is a set of feasible solution but the minimum solution is
C0 ¼ fS1; S3g, since the haplotype (0,0) defined by these two SNPs has perfect LD
with SNP S6.

954 Y.-T. Huang, K.-M. Chao / Journal of Biomedical Informatics 41 (2008) 953–961
tag SNPs have to be included into the solution [6,20]. As a conse-
quence, sophisticated methods for reducing the number of tag
SNPs are still highly demanded.

A number of methods have been proposed to identify the min-
imum tag SNPs using different criteria. Most methods are mainly
based on the pairwise LD between two diallelic SNPs [2,5,17,28].
However, these pairwise-based methods tend to produce numer-
ous tag SNPs having little or no correlation with untyped SNPs.
The singleton tag SNPs (i.e., SNPs having no correlation with oth-
ers) can even account for more than 50% in their solutions [17].
A few initial studies overcome the limitation of pairwise LD be-
tween two diallelic SNPs by further considering the multiallelic
LD between a diallelic SNP and a multimarker (multiallelic) haplo-
type [3,23,30,32]. These approaches can reduce the number of tag
SNPs or increase the statistical power but come at the cost of heavy
computational overhead, due to the exponential number of possi-
ble haplotypes to be tested. Recently, de Bakker et al. use a peel-
back approach and a multiallelic LD statistic for selecting tag SNPs.
The developed program is incorporated into Haploview, which is
the official tagging tool used in the International HapMap project
[4]. However, Haploview is still quite inefficient, because the num-
ber of possible haplotypes to be tested by the LD statistic still
grows exponentially with respect to the number of SNPs. As a con-
sequence, Haploview has to make several restrictions to gain effi-
ciency (e.g., test at most 10,000 haplotypes).

In this paper, we design and implement algorithms for the
selection of tag SNPs by multimarker haplotypes. In contrast to
previous studies using a single tag SNP to predict the alleles of
an untyped SNP, our algorithms search for tag SNPs which define
a set of haplotypes completely predictive of the alleles of all un-
typed SNPs. Moreover, our methods do not rely on any statistic
to measure the LD between tag SNPs and untyped SNPs. We start
by studying a problem called multimarker haplotype tagging by
perfect LD (MHTP), which is defined as follows: given a set of SNPs
and a target SNP to be replaced, find a minimum length haplotype
completely predictive of alleles at the target SNP. We prove that
the MHTP problem is NP-hard and give an approximation algo-
rithm. This algorithm is used as a subroutine for solving the main
problem studied in this paper (referred to as MTMH), which is de-
fined as follows: given a set of SNPs, find a minimum set of tag
SNPs which defines a set of haplotypes completely predictive of
the alleles of all untyped SNPs. The MTMH problem is solved by
dividing into three subproblems, two of which are shown to be
NP-hard. Several exact and approximation algorithms are devel-
oped to solve these subproblems and their extension for tolerating
missing data is also presented. We integrate these algorithms and
develop a program called HapTagger for finding tag SNPs by mul-
timarker haplotypes. The HapTagger is compared with the pairwise
LD-based approach and the official tagging tool Haploview. Our
theoretical and experimental results indicate that HapTagger con-
sistently finds a smaller set of tag SNPs on a variety of real data sets
and runs much faster than existing methods. The efficiency of var-
ious LD statistic and the comparison of distinct methods for recon-
structing untyped SNP alleles are also discussed in this paper. It is
worth mentioning that these predictive haplotypes selected by
HapTagger can be used as the signature of recent positive selection
or co-evolution.

2. Algorithms for the selection of predictive haplotypes

In this section, we study the MHTP problem, which aims to
find a minimum length haplotype completely predictive of the
alleles at a target SNP to be replaced. The algorithm introduced
in this section is used as a subroutine for solving the MTMH
problem studied in the next section. Informally speaking, we
seek for a haplotype which is always observed together with
some alleles at a target SNP. We first formulate the MHTP prob-
lem, show the hardness of this problem, and finally give an
approximation algorithm.

2.1. Formulation and hardness of the MHTP problem

Given a k � ðnþ 1Þ haplotype matrix, where k is the number
of haplotypes and ðnþ 1Þ is the number of SNPs. Denote
C ¼ fS1, S2; . . . ; Sng as the set of n SNPs and ST R C as the target
SNP to be replaced. Let H ¼ fh1;h2; . . . ;hkg denote these k hapl-
otypes, where hi ¼ f0;1; xgnþ1, and 0, 1, or x denote that the al-
lele at this SNP locus is the major type, minor type, or missing
data, respectively. Note that for unphased genotypes, the phased
haplotypes can be inferred by a number of existing methods
[12,21,27,29]. The MHTP problem aims to find a minimum
length haplotype which is defined by a subset of SNPs in C
and is predictive of the alleles of SNP ST . Fig. 1 illustrates an
example for the MHTP problem. There are five haplotypes (i.e.,
h1; . . . ;h5) composed by six SNPs and the target SNP to be re-
placed is S6. In this example, the haplotype (0,0) defined by SNPs
S1 and S3 is predictive of SNP S6, because haplotype (0,0) per-
fectly co-occurs with all minor alleles at SNP S6 (but never with
the major allele). As a consequence, only SNPs S1 and S3 only
need to be typed for predicting the alleles at SNP S6. That is,
if haplotype (0,0) is observed at these two SNPs from a testing
sample, we can predict that this sample contain minor allele
at SNP S6. Otherwise, the allele is predicted as the major type.
We would like to note that the input may not always contain
a feasible solution (i.e., no haplotypes can replace the target
SNP). Then the target SNP will be selected as the tag SNP in
our final solution (see Section 3).

In this paper, we say that this sort of haplotypes has ‘‘perfect
LD” with the target SNP, which is close to the definition of perfect
LD between two diallelic SNPs (i.e., r2 ¼ 1). A formal definition of
the MHTP problem is given below.

[Input:] a k � ðnþ 1Þ haplotypes matrix, where C ¼ fS1,
S2; . . . ; Sng represents a set of n SNPs and ST R C is the target
SNP to be replaced.
[Output:] a minimum subset of SNPs C0 � C which defines a
haplotype having perfect LD with SNP ST .

For the example in Fig. 1, the set of SNPs C0 ¼ fS1, S2, S3g is one
feasible solution for MHTP but the minimum solution is
C0 ¼ fS1; S3g, because the haplotype (0,0) composed of SNPs S1

and S3 perfectly co-occurs with all minor alleles at SNP S6. In this
paper, we also say that a set of SNPs C0 can replace a SNP ST if
there exists a haplotype defined by SNPs in C0 having perfect LD
with SNP ST .

Y.-T. Huang, K.-M. Chao / Journal of Biomedical Informatics 41 (2008) 953–961 955
Theorem 1. The MHTP problem is NP-hard.

Proof. We make a reduction from an NP-hard problem called Set
Cover [15] to the MHTP problem with a reduction technique similar
to Bafna et al. [3]. The set covering (SC) problem is defined as given
a collection C of subsets of k elements, find a minimum subcollec-
tion C0 � C (called set cover) such that each element appears in at
least one subset of C0. Given an instance of the SC problem, a col-
lection C ¼ fC1; C2; . . . ;Cng of elements fE1; E2; . . . ; Ekg, we con-
struct an instance of the MHTP problem by first creating k
haplotypes (h1 to hk) with n SNPs (S1 to Sn). Each element Ei 2 Cj

produces a major allele on haplotype hi at SNP Sj and the remaining
positions are all minor alleles. Then we construct an additional
haplotype hkþ1 with all minor alleles from SNPs S1 to Sn. Finally,
we construct the target SNP to be replaced Snþ1 with major alleles
only occurred in haplotypes h1 to hk and one minor allele occurred
in haplotype hkþ1.

Example. Given an instance of the SC problem C ¼ fC1; C2; C3g
over elements f1;2;3;4;5g, where C1 ¼ f1;2;5g; C2 ¼
f3;4g; C3 ¼ f1;4g, we construct 6 haplotypes composed of 4
SNPs, where h1 ¼ ð0;1;0;0Þ, h2 ¼ ð0;1;1;0Þ, h3 ¼ ð1; 0;1;0Þ,
h4 ¼ ð1;0;0;0Þ, h5 ¼ ð0;1;1;0Þ, and h6 ¼ ð1;1;1;1Þ,

Note that the additional haplotype (i.e., hkþ1) contains all minor
alleles at all SNP loci and the SNP to be replaced (i.e., Snþ1) has only
one minor allele occurred in hkþ1. Thus, the haplotype hkþ1 defined
by SNPs S1 to Sn has perfect LD with the minor allele at Snþ1. For the
above example, the haplotype (1,1,1) defined by the first three
SNPs indicates the occurrence of minor allele at SNP S4 and thus
SNP S4 can be replaced by haplotype (1,1,1). We then show that
the minimum set cover for SC implies a minimum subset of SNPs
which can replace SNP Snþ1 for MHTP, and vice versa.

Example. For the sample example, the minimum set cover for SC
is C0 ¼ fC1;C2g, which covers all elements E ¼ f1;2;3;4;5g. On
the other hand, the minimum subset of SNPs which can replace
SNP S4 in the MHTP problem is C� ¼ fS1; S2g, since haplotype (1,
1) defined by SNPs S1 and S2 can indicate the occurrence of
minor allele at SNP S4 (i.e., haplotype (1, 1) has perfect LD with
SNPs S4).

Consequently, there exists a set cover of size k for the SC prob-
lem if and only if there exists a subset of SNPs of size k which can
replace SNP Snþ1 for the MHTP problem. Therefore, MHTP is NP-
hard. h
2.2. An approximation algorithm for the MHTP problem

In this subsection, we describe an approximation algorithm
which solves MHTP by first removing SNPs impossible to form a
solution, reducing to an existing NP-hard problem, introducing a
greedy algorithm, and finally presenting its extension for handling
missing data. To simplify the presentation, the described algorithm
focuses on identifying a haplotype which perfectly co-occurs with
all minor alleles at SNP ST . The algorithm for capturing major al-
leles is similar. This algorithm starts by removing SNPs impossible
to form the solution using the following two steps.

Step 1. Identify the subset of haplotypes HT � H in which the
minor alleles are observed at the target SNP ST . The set
of haplotypes containing the major alleles for SNP ST is
denoted as HT . For the example shown in Fig. 1,
HT ¼ fh1; h2g and HT ¼ fh3; h4;h5g.

Step 2. Identify the set of SNPs C0 # C which are consistent with
SNP ST . A SNP is said to be consistent to SNP ST if either
only major alleles or minor alleles (but not both) are
observed in haplotypes in HT . On the other hand, a SNP
is said to be inconsistent with SNP ST if it contains mixed
major and minor alleles observed in haplotypes of HT .
For the example shown in Fig. 1, SNP S4 is inconsistent
with SNP S6 because one major and one minor alleles
are both observed in haplotypes h1 and h2, respectively.

The consistent SNPs in C0 have either all major or all minor al-
leles observed in haplotypes in HT . Consequently, the haplotypes
in HT defined by these consistent SNPs have only one pattern
(e.g., {0,0,0} in Fig. 1). Then, for each consistent SNP Si 2 C0, we
identify the set of haplotypes Hi � HT in which the observed allele
is complementary to those observed in HT . For the example shown
in Fig. 1, H1 ¼ fh3; h5g, H2 ¼ fh3g, and H3 ¼ fh4g. The algorithm
proceeds by adopting a greedy method which iteratively selects a
SNP Si 2 C0 that can incur complementary alleles for most haplo-
types in HT (i.e., maxfjHi \ HT j}), until all haplotypes in HT contain
at least one allele complementary to those in HT . After running this
algorithm, the haplotypes in HT defined by SNPs in C0 perfectly co-
occur with all minor alleles at SNP ST , and all haplotypes in HT are
distinguished from those in HT . For example, in Fig. 1, the SNPs S1

and S3 are selected in order by this algorithm. If no feasible solu-
tions exist, this algorithm will return a null symbol which implies
no SNPs can replace the target SNP. The running time of this algo-
rithm is bounded by Oðnk2Þ, where n is the number of SNPs and k is
the number of haplotypes. A pseudo code of this algorithm (re-
ferred to as MHTagger) is given below.

Algorithm: MHTAGGERðC; STÞ

1 Construct HT and HT containing minor and major alleles
for SNP ST , respectively.

2 Identify the set of SNPs C0 # C which are consistent with
SNP ST .

3 For each SNP Si 2 C0, construct Hi � HT containing alleles
complement to those in HT .

4 R /
5 while HT –/ and C0–/ do
6 Let Sj be the SNP Si 2 C0 that maximizes jHi \ HT j.
7 HT HT � Hj

8 C0 C0 � Sj

9 R R
S

Sj

10 end of while
11 if HT –/
12 return /
13 else
14 return R.
Theorem 2. The MHTagger algorithm gives a solution within a factor
of Oðlog kÞ of the optimal solution.

Proof. Note that Lines 1–3 reduce MHTP to an instance of the set-
covering (SC) problem [15] and Lines 4–11 solve the instance of SC
by a greedy algorithm. The greedy algorithm for solving the SC
problem has been shown to have Oðlog nÞ approximation [7],
where n is the number of elements to be covered. The number of
elements (to be covered in the SC problem) corresponds to the
number of haplotypes in HT in the MHTP problem, where
jHT j < jHj ¼ OðkÞ. Therefore, the MHTagger algorithm also gives a
solution of Oðlog kÞ approximation for the MHTP problem. h
2.3. Extension for handling missing data

In reality, a portion of SNPs may not be always typed success-
fully and these missing SNPs can greatly reduce the power of using

956 Y.-T. Huang, K.-M. Chao / Journal of Biomedical Informatics 41 (2008) 953–961
tag SNPs for association studies. For the example shown in Fig. 1,
although the minimum solution is C0 ¼ fS1; S3g, we would fail to
predict the allele at SNP S6 if any of the two SNPs is missing. As
pointed out previously [20], the negative effects from missing data
can be avoided by selecting a slightly larger set of SNPs for geno-
typing. Consequently, we extend the MHTagger algorithm for tol-
erating a fixed amount of missing SNPs, because the missing
rates of the genotyping array is usually limited (<�10%).

However, there is a tradeoff between the number of tag SNPs
and ability of tolerating missing data. In the following, we use
the strict requirement which guarantees that if up to m tag SNPs
are missing, it has no effects on predicting the alleles at the target
SNP. With loose requirement, the number of tag SNPs can be re-
duced, but then we will not be able to make the correct prediction
in all circumstances. The detailed discussion of tolerating missing
data can be found in [20]. An extended definition of the MHTP
problem for tolerating missing data is given below.
Input: a k � ðnþ 1Þ haplotypes matrix, where C ¼ fS1, S2; . . . ; Sng
represents a set of n SNPs and ST R C is the target SNP to
be replaced; denote m as the number of missing SNPs to
be tolerated.

Output: a minimum subset of SNPs C0 � C which defines a haplo-
type having perfect LD with SNP ST , even when up to m
SNPs in C0 are missing.

The algorithm is briefly described below. Recall that HT and HT are
two sets of haplotypes containing the minor or major alleles of SNP
ST , respectively. After Line 3 in the MHTagger algorithm, all haplo-
types in HT have the same pattern. The remaining steps (i.e., Lines
5–10) are revised for finding a minimum set of SNPs which defines
a haplotype pattern having Hamming distance at least ðmþ 1Þwith
each haplotype in HT , whereas the original algorithm only requires
the Hamming distance to be at least one. Note that when m SNPs
are missing, the Hamming distance between haplotypes in HT and
HT decreases at most m and thus is at least equal or greater than
one. Therefore, the haplotypes in HT can still be distinguished from
all haplotypes in HT , which still satisfies the requirement of perfect
co-occurrence with all minor alleles at SNP ST .
3. Algorithms for the selection of tag SNPs by predictive
haplotypes

In this section, we study the problem of MTMH defined as fol-
lows: given a set of SNPs, find a minimum set of tag SNPs which
defines a set of haplotypes completely predictive of the alleles of
Table 1
Numbers of tag SNPs on ENCODE data sets numbers of tag SNPs found by HapTagger, Fas

ENCODE Region ENr112 ENr131

No. of SNPs 1157 1221
HapTagger 150 (7 s) 179 (6 s)
FastPerfectLD 424 (2 s) 307 (1 s)
Haploview (pairwise) 424 (5 min) 307 (4 min)
Haploview (aggressive) f f

ENm014 ENr321

No. of SNPs 1124 768
HapTagger 127 (5 s) 136 (5 s)
FastPerfectLD 319 (2 s) 305 (1 s)
Haploview (pairwise) 319 (6 min) 305 (4 min)
Haploview (aggressive) f f

The approximately elapsed time of each program for processing each data set is shown
f: fail to output a solution in ten days.
all untyped SNPs. The MTMH problem is divided into three sub-
problems which are separately solved in the following three
stages: (1) find a minimum set of tag SNPs based on pairwise per-
fect LD between diallelic SNPs; (2) for each of the found tag SNP,
identify a minimum length haplotype having perfect LD with the
tag SNP by solving the MHTP problem; (3) select a minimum sub-
set of tag SNPs which defines a set of haplotypes completely pre-
dictive of alleles of all removed tag SNPs. In the first stage, we
describe a linear-time algorithm for finding a minimum set of tag
SNPs based on pairwise perfect LD. The second stage iteratively
solves the MHTP problem by setting each tag SNP as the target
SNP to be replaced and running the MHTagger algorithm to find
a haplotype predictive of the alleles at the target SNP (see Section
2). The last stage is shown to be another NP-hard problem and two
algorithms are presented.

3.1. Stage 1: finding a minimum set of tag SNPs by pairwise perfect LD

The first stage of our algorithm solves the problem of finding a
minimum set of tag SNPs based on pairwise perfect LD between
diallelic SNPs, which is defined as follows: given a set of SNPs find
a minimum subset of SNPs (called tag SNPs) such that each un-
typed SNP has perfect LD with some tag SNP. A generalization of
this problem with arbitrary LD setting (non-perfect LD) has been
shown to be NP-hard and numerous methods have been proposed
[2,5,28]. Existing methods usually take Oðn2kÞ time, where n is the
number of SNPs and k is the number of haplotypes, due to the need
of computing LD ðr2Þ between all pairs of SNPs. We observe that
SNPs in perfect LD usually have identical 0/1 (major/minor alleles)
encoding in all haplotype samples. Instead of explicitly computing
r2 for all pairs of SNPs, we consider SNPs with identical encoding to
be perfect LD. Although this looks like a more stringent require-
ment, our experimental results indicate that the solution found
by this method is the same as those found by other programs based
on explicitly evaluating r2 ¼ 1 (see Table 1, Section 4). This is
mainly due to the sufficiently large sample size in real data sets,
which lead to different frequencies of major and minor alleles at
each SNP. Thus, any two SNPs with r2 ¼ 1 have identical allele pat-
tern when encoded into 0/1 representation. For example (see Fig.
2), SNPs S1 and S2 are in perfect LD and they contain the same allele
pattern (0,0,1,0) observed at all haplotypes. Note that this stringent
requirement satisfies various definitions of perfect LD (e.g., r2 ¼ 1,
D0 ¼ 1, or no-four-gamete property).

The algorithm (FastPerfectLD) intrinsically uses a technique
similar to the bucket sorting [7] to divide SNPs into bins of perfect
LD and then select a tag SNP from each bin, which is briefly de-
scribed below. The FastPerfectLD algorithm starts by scanning
the first haplotype (e.g., h1) and divide these SNPs into two groups
tPerfectLD, and Haploview on ten HapMap ENCODE data sets

ENr13 ENm010 ENm013

1393 618 1042
128 (5 s) 104 (4 s) 104 (4 s)
4 (2 s) 307 (1 s) 264 (2 s)
4 (5 min) 307 (4 min) 264 (5 min)
f 265 (4 days) f

ENr232 ENr23 ENr213

614 1052 796
136 (5 s) 110 (4 s) 132 (4 s)
293 (1 s) 358 (2 s) 282 (1 sec)
293 (4 min) 358 (5 min) 282 (5 min)
257 (4 days) f f

in parentheses.

Fig. 2. An example for dividing SNPs into bins of perfect LD. The left-hand side is the input example which contains four haplotypes composed of six SNPs. The right-hand side
illustrates each execution stage of this algorithm. The black nodes represent the intermediate groups of SNPs during the algorithm. The white nodes at the leaves of the tree
represent the bins of SNPs having perfect LD with each other.

Y.-T. Huang, K.-M. Chao / Journal of Biomedical Informatics 41 (2008) 953–961 957
according to the major or minor alleles observed at this haplotype.
The algorithm recursively divides SNPs in each group into sub-
groups according to the major and minor alleles observed in the
next haplotype, until all haplotypes are tested. The black nodes
in Fig. 2 illustrates the intermediate groups of SNPs during the exe-
cution of this algorithm. After finishing testing all haplotypes, each
resulting group (i.e., the white node in Fig. 2) stands for a bin of
SNPs having perfect LD with each other, whereas the SNPs in dis-
tinct bins do not have perfect LD. As a result, we can select any
SNP from each bin as the tag SNP and construct a set of tag SNPs
as the solution. Note that if we wish to tolerate m missing tag SNPs,
we can select arbitrary mþ 1 SNPs from each bin as the solution.
This algorithm only needs to test at most n SNPs for each of the
k haplotypes. The running time of FastPerfectLD is thus bounded
by OðnkÞ.

3.2. Stage 2: identifying a minimum length haplotype for replacing
each tag SNP

The input of the second stage is the tag SNPs found in the first
stage. The subproblem solved in the second stage is defined as fol-
lows: given a set of tag SNPs C ¼ fS1; . . . ; Sng, for each tag SNP Si

ð1 6 i 6 nÞ, find a minimum set of SNPs from C � Si which defines
a haplotype having perfect LD with the tag SNP Si. In other words,
this stage iteratively solves the MHTP problem (see Section 2) by
setting each of the n SNPs as the target SNP to be replaced. We ap-
ply the MHTagger algorithm for solving MHTP to identify a subset
of tag SNPs for replacing the target tag SNP Si. If the MHTagger sub-
routine returns no feasible solution for a target SNP Si, this irre-
placeable tag SNP will be included in the final solution. Let Ri be
the subset of tag SNPs found by the MHTagger algorithm which
can replace tag SNP Si. We formulate the dependency of replace-
ment among all SNPs as a directed graph called ‘‘replacement
graph” (Fig. 3). The vertices in the replacement graph represent
each SNP and vertex Si is connected to vertex Sj with a directed
edge if Si 2 Rj. That is, SNP Si is in the set of tag SNPs which can re-
place SNP Sj.

The replacement graph is the output of the second stage. Note
that the replacement graph may contain cycles (e.g., S4, S5, and S6
Fig. 3. The replacement graph defined by tag SNPs S1 to Sn . Note that there exists a
cycle defined by SNPs S4, S5, and S6.
in Fig. 3). The following lemma describes an additional property
of the replacement graph.

Lemma 1. Each vertex in the replacement graph has at most k� 1
incoming edges.

Proof. Recall that the incoming edges in the replacement graph
are resulted from the output of running the MHTagger algorithm.

The worst case of the MHTagger algorithm takes place when the
target SNP to be replaced ST has only one haplotype carrying the
minor allele at this locus, and all other haplotypes carrying major
alleles. Thus, we have to select a set of SNPs which produces
complementary alleles for remaining ðk� 1Þ haplotypes. Note that
the greedy manner of MHTagger guarantees that each selected SNP
incurs at least one complementary allele for those ðk� 1Þ haplo-
types. Therefore, MHTagger outputs at most k� 1 SNPs as the
solution. As a consequence, there are at most k� 1 incoming edges
produced for each vertex in the replacement graph. h
3.3. Stage 3: reserving a minimum subset of tag SNPs based on the
replacement graph

The input of the last stage is the replacement graph produced in
the second stage. Denote the set of all tag SNPs in the replacement
graph as C. The replacement graph gives us the information as to
which tag SNPs in C can be replaced. Hence, we can select a mini-
mum subset of tag SNPs C0 # C such that the alleles of each re-
moved tag SNP (i.e., C � C0) can be predicted by a haplotype
defined by tag SNPs in C0. However, not all SNPs can be safely re-
moved because tag SNPs of these removed SNPs may be also re-
moved (e.g., SNPs S4, S5, and S6 in Fig. 3). That is, the alleles of
these dependent SNPs can not be completely reconstructed if all
of them are removed from the final solution. The Haploview re-
solves this problem by sequentially removing a tag SNP on the ba-
sis of the remaining SNPs in a peel-back manner [10]. However, the
tag SNPs removed in the early stage could be used to replace more
tag SNPs, and this global dependent relation is not considered. In
the last stage, we introduce an improved algorithm which consid-
ers the overall dependency among all tag SNPs and selects a smal-
ler set of tag SNPs based on the replacement graph as the final
solution. In the following, we describe two lemmas regarding the
set of tag SNPs which can be safely removed.

Lemma 2. A tag SNP with incoming edges can be safely removed if it
is not contained within a cycle in the replacement graph.

Proof. A tag SNP with incoming edges in the replacement graph
implies that there exist some other tag SNPs which can replace it.
For example, SNP S1 in Fig. 3 can be directly removed from the final
solution since it can be replaced by SNPs S2 and S3. On the other
hand, if the tag SNP is contained in a directed cycle, it can not be

958 Y.-T. Huang, K.-M. Chao / Journal of Biomedical Informatics 41 (2008) 953–961
safely removed, because each SNP is dependent on others in the
cycle for predicting its alleles. For example, SNPs S4, S5, S6 form a
directed cycle. If all of them are removed, we can not reconstruct
the alleles of these SNPs even though we type all other tag SNPs. h

Lemma 3. For each cycle, only one tag SNP needs to be kept while the
other tag SNPs in this cycle can be safely removed, if they are not con-
tained in other cycles.

Proof. If a tag SNP within a cycle is kept, we can remove its incom-
ing edges from the graph since the allele of this SNP will be directly
typed and known. Therefore, the cycle can be broken and becomes
a simple path, if the remaining tag SNPs are not contained in other
cycles. By Lemma 2, the remaining tag SNPs in this simple path can
now be safely removed since all of them have incoming edges and
are not contained in any cycle. h

By Lemmas 2 and 3, we have to reserve at least one tag SNP in
each cycle and to remove its incoming edges from the replacement
graph. Note that the outgoing edges cannot be removed. Other-
wise, we will fail to reconstruct the alleles of untyped tag SNPs. Re-
call that MTMH asks for a minimum set of tag SNPs as the final
solution. Therefore, the last stage is solving a problem (referred
to as MTSR) defined as follows: given a replacement graph, find a
minimum set of vertices such that the removal of their incoming
edges breaks all cycles in the replacement graph.

Theorem 3. The MTSR problem is NP-hard.

Proof. Without loss of generality, we assume that the number of
incoming edges of each vertex in the replacement graph is
bounded by an integer k (see Lemma 1). We make a reduction from
a variant of the vertex cover problem referred to as k� VC [15,25].
The k� VC problem is known to be NP-hard and is defined as fol-
lows: given a graph G=(V,E) with degrees bounded by an integer
k P 3, find a minimum subset of vertices V 0 # V (called vertex
cover) such that each edge ðu; vÞ 2 E has at least one of u and v
belonging to V 0.

Given an instance of the k� VC problem, we construct a new
graph eG ¼ ðUv [Ue; ~EÞ, where vertices of Uv ¼ V correspond to
original vertices of G and vertices of Ue correspond to each edge of
G. For each edge e ¼ ðv1; v2Þ in G, we construct three edges in eG
which form a directed cycle: an edge from ðv1 to v2Þ, an edge from
v2 to e, and an edge from e to v1. Note that since the degree of each
vertex in G is bounded by k, there are at most k directed cycles
created for each vertex in eG, which produces at most k incoming
edges. It is easy to observe that a vertex cover in G implies a set of
vertices in eG which can break all cycles by removing their
incoming edges, because each edge in G corresponds to one cycle
in eG. Therefore, G has a minimum vertex cover of size c if and only
if eG has a minimum set of vertices of size c such that the removal of
their incoming edges breaks all cycles. In summary, MTSR is NP-
hard. h

The MTSR problem can be solved by reducing to an NP-hard
problem called ‘‘minimum feedback vertex set” (MFVS) [15]. The
MFVS problem is defined as given a directed graph G ¼ ðV ; EÞ, find
a minimum subset of vertices V 0 # V such that V 0 contains at least
one vertex for every directed cycle in G. Let V 0 be a minimum solu-
tion of the MFVS problem. Note that each vertex in a directed cycle
of G has one incoming and one outgoing edges both contained in
this cycle. The removal of incoming edges of all vertices in V 0 can
also break all cycles in G, which implies that V 0 is also a minimum
solution of MTSR. Therefore, MTSR can be solved by applying exist-
ing algorithms for MFVS.

The best approximation algorithm for the MFVS problem gives a
solution within a factor of Oðlog v � log log vÞ of the optimal solu-
tion, where v is the number of vertices [13]. However, it requires
solving a linear-programming instance with exponential number
of constraints, which is impractical when applying on genome-
wide data sets with millions of SNPs. To efficiently break all cycles
in the replacement graph, we turn to solve a relaxed problem
which asks for a minimum subset of vertices such that the removal
of their incoming edges eliminates all back edges in the replace-
ment graph. An edge ðu; vÞ connecting from vertex u to vertex v
is said to be a back edge if vertex v is the ancestor of vertex u in
the depth-first-search (DFS) traversal of the graph [7]. Note that
the DFS traversal in a graph produces back edges if and only if
the graph has cycles, which implies that all cycles can be indirectly
broken by removing all back edges. Consequently, the solution of
this relaxed problem is a feasible solution to MTSR.

This relaxed problem can be solved in polynomial time since
each back edge ðu; vÞ uniquely corresponds to one incoming edge
of the vertex v and we require that only incoming edges of a vertex
can be removed. In the following, we describe an algorithm which
removes all back edges in the replacement graph by revising the
DFS algorithm. During the DFS traversal, all incoming edges of a
vertex v are removed once a back edge ðu; vÞ connecting from a
descendant vertex u to an ancestor vertex v is found. Therefore,
the removal of incoming edges of vertex v eliminates the back edge
ðu; vÞ and indirectly breaks cycles associated with this back edge.
We repeat this process until all back edges in this replacement
graph are found and removed.

We integrate this algorithm with the FastPerfectLD and MHTag-
ger algorithms introduced in previous subsections and develop a
program called HapTagger to solve all subproblems of MTMH in
three stages. After the last stage, the set of vertices in the replace-
ment graph without incoming edges indicate those tag SNPs of the
output. A pseudo code of HapTagger is given below.

Algorithm: HAPTAGGER ðCÞ

1 Run FastPerfectLD to find a minimum set of tag SNPs
C0 # C

2 Construct a replacement graph G with vertices corre-
sponding to SNPs in C0

3 for each SNP Si 2 C0

4 Run MHTaggerðC0 � Si; SiÞ to obtain a set of tag SNPs Ri

which can replace Si

5 Add directed edges connecting from vertices in Ri to Si in
the replacement graph G

6 end of for
7 for each vertex Si in G
8 Conduct a DFS traversal starting from vertex Si

9 if a back edge ðu; vÞ is found during the traversal
10 remove all incoming edges of vertex v from G
11 end of for
12 Identify the set of vertices T in G without incoming edges
13 Return T.

The time complexity of HapTagger is analyzed as follows. Line 1
is bounded by the FastPerfectLD algorithm which takes OðnkÞ. Lines
3–6 take Oðn2k2Þ time since for each of the n SNPs, we have to run
the MHTagger algorithm which takes Oðnk2Þ. Lines 7–11 is
bounded by the time of running DFS to traverse the entire graph,
which takes OððV þ EÞÞ ¼ Oðn2Þ time, where V and E are the num-
bers of vertices and edges, respectively. Therefore, the entire HapT-
agger algorithm runs in Oðn2k2Þ time.

4. Experimental results

We implement the HapTagger algorithm in JAVA for finding tag
SNPs by multimarker haplotypes. HapTagger is freely available on

Y.-T. Huang, K.-M. Chao / Journal of Biomedical Informatics 41 (2008) 953–961 959
http://www.csie.ntu.edu.tw/~kmchao/HapTagger/. Due to the inef-
ficiency of pairwise-LD based methods, the FastPerfectLD algo-
rithm in Section 3 is separately implemented and used as a
reference for the solutions of pairwise-LD based approaches. These
programs along with the official tagging tool Haploview [10] used
by the International HapMap project are tested on a variety of real
data sets. The Haploview can identify tag SNPs in two modes: pair-
wise or aggressive modes. The Haploview in pairwise mode finds
tag SNPs only based on pairwise LD between two diallelic SNPs.
The Haploview in aggressive mode identifies tag SNPs by first find-
ing tag SNPs using pairwise LD and then reduce the tag SNPs using
a peel-back approach with a multiallelic LD statistic. In the follow-
ing experiments, the minimum LD threshold required for Haplo-
view in both modes is set to 1.0. We download the phased
haplotype data from HapMap and choose the population of Utah
residents with ancestry from northern and western Europe (CEU)
as our experimental target [1]. The following experiments are con-
ducted under the hardware environment with Pentium 3.2 GHz
CPU and with 8 GB RAM.

4.1. Experiments on HapMap ENCODE data sets

We first test these programs on ten ENCODE data sets (corre-
sponding to ten 500-kilobase regions) resequenced and genotyped
in the HapMap project. Each data set contains 180 haplotype sam-
ples originated from 30 CEU trios. Table 1 lists the number of tag
SNPs found by HapTagger, FastPerfectLD, and Haploview (in pair-
wise or aggressive modes) on each ENCODE data set. The Haplo-
view in aggressive mode fails to output a solution in most data
sets within a reasonable period of time (e.g., longer than ten days).
The results indicate that HapTagger consistently finds a smaller set
of tag SNPs with size less than half of other programs. The Fast-
PerfectLD and Haploview in pairwise mode identify the same num-
ber of tag SNPs in all data sets. Recall that FastPerfectLD requires
that SNPs in perfect LD have identical allele pattern, which is more
stringent than the requirement of r2 ¼ 1 used by Haploview in
pairwise mode. However, the results indicate that this stringent
requirement produces the same number of tag SNPs as Haploview
in pairwise mode. This phenomenon is mainly due to the suffi-
ciently large samples in HapMap data and SNPs with r2 ¼ 1 all
have identical allele pattern when encoded into 0/1 representation.
The Haploview in aggressive mode outperforms FastPerfectLD and
pairwise mode as expected, because it further refines the solution
(i.e., the solutions of pairwise mode) by multimarker haplotypes.
However, the improvement is not significant in comparison with
HapTagger. The reason is that Haploview has several default con-
straints (e.g., allowing up to three SNPs in a haplotype and testing
Table 2
Numbers of tag SNPs found by Hap Tagger, FastPerfectLD, and Haploview on HapMap chr

Chromosome No. Chr1 Chr2 Chr3

No. of SNPs 61814 69753 56737
HapTagger 14660 14819 12325
FastPerfectLD 37526 40262 33234
Haploview (pairwise) 38731 40993 33860

Chr9 Chr10 Chr11

No. of SNPs 47682 38940 36287
HapTagger 10066 10207 8325
FastPerfectLD 27448 24189 21650
Haploview (pairwise) 27903 24790 22055

Chr17 Chr18 Chr19

No. of SNPs 19767 32177 14175
HapTagger 5255 6235 4254
FastPerfectLD 12647 16820 9694
Haploview (pairwise) 12870 17066 9849

Haploview in aggressive (multimarker) mode failed to output a solution within a reason
at most 10,000 haplotypes) which prevent it from finding a better
solution. It should be noted that the Haploview in aggressive mode
fails to output a solution in all data sets within a reasonable period
of time when we relax all of its default constraints.

In terms of efficiency, FastPerfectLD is the fastest program be-
cause of the internal linear-time algorithm. The HapTagger is able
to output a solution in several seconds, whereas Haploview in pair-
wise mode requires a bit longer time (from four to six minutes).
Although the theoretical time complexity of these two programs
are the same (i.e., Oðn2Þ), the HapTagger internally employs the
FastPerfectLD algorithm to group SNPs in perfect LD and avoid
the heavy computation of r2 values for each pair of SNPs. Thus, it
is slightly faster than Haploview in pairwise mode in practice.
The Haploview in aggressive mode is the slowest program which
takes at least four days for outputting a solution.

4.2. Experiments on HapMap chromosome data sets

We then test these programs on a number of large genome-
wide data sets. We download 22 phased haplotype data sets corre-
sponding to human Chromosome 1 to Chromosome 22 from the
Phase I release of HapMap data. The Haploview in aggressive mode
fails to output a solution for all data sets within a reasonable period
of time. The Haploview in pairwise mode also fails to output a solu-
tion due to out-of-memory error when we relax all the default con-
straints but is able to output a solution when all default constraints
are retained. Thus we only report the results of Haploview in pair-
wise mode with its default constraints retained. The Haploview in
pairwise mode takes one to four hours to finish processing each
data set. The HapTagger returns a solution from one to two hours
for each data set. The FastPerfectLD is the fastest program which
returns a solution only in several minutes on all data sets.

Table 2 lists the number of tag SNPs found by each program. The
HapTagger consistently outperforms Haploview and FastPerfectLD
on all data sets as expected, since it further considers the LD be-
tween a diallelic SNP and a multimarker haplotype instead of only
pairwise LD between diallelic SNPs. The FastPerfectLD also consis-
tently outperforms Haploview in pairwise mode since its solution
is not restricted by any constraint. The number of tag SNPs found
by HapTagger is less than half of the numbers outputted by Haplo-
view or FastPerfectLD. In summary, the HapTagger only requires
23% of original SNPs to be typed as tag SNPs, whereas the tag SNPs
identified by Haploview and FastPerfectLD account for roughly 60%
of original SNPs. Most tagging programs reduce the number of tag
SNPs by relaxing the threshold of LD (e.g., r2 P 0:8). It is worth
mentioning that HapTagger not only runs faster but also reduces
the number of tag SNPs under the requirement of perfect LD.
omosome data sets

Chr4 Chr5 Chr6 Chr7 Chr8

48952 48831 53458 41046 60234
11055 11075 11894 9919 10641
28761 28810 30884 25469 30161
29332 293 31663 26077 30589

Chr12 Chr13 Chr1 4 Chr15 Chr16

39189 28816 24128 21138 19922
9462 6920 5957 5512 5733
24149 17412 14788 13721 13914
24782 17799 15016 13959 14169

Chr20 Chr21 Chr22 Total

17096 16199 15548 811889 (100%)
4885 3689 3893 186781 (23%)
11493 9190 9417 481639 (59%)
11697 9247 9513 491283(61%)

able period of time.

http://www.csie.ntu.edu.tw/~kmchao/HapTagger/

960 Y.-T. Huang, K.-M. Chao / Journal of Biomedical Informatics 41 (2008) 953–961
5. Discussion

5.1. Reconstruction of alleles of untyped SNPs with HapTagger

In previous methods, the alleles of an untyped SNP can be di-
rectly reconstructed by a typed tag SNP. But in HapTagger, the al-
leles of an untyped SNP have to be reconstructed in a more
complex manner. It is because each untyped SNP is now predicted
by a haplotype instead of by a single tag SNP, and the predictive
haplotype itself may also contain partial untyped SNPs. In other
words, we have to resolve the dependency among all SNPs in order
to reconstruct the alleles of all untyped SNPs. Nevertheless, we can
simply apply the algorithm of topological sorting [7] to obtain the
dependency ordering among all SNPs based on the replacement
graph introduced in Section 3. Given an acyclic directed graph,
the topological sorting algorithm sorts a vertex Si precedent to a
vertex Sj if there is a directed edge from Si to Sj and finally gives a
linear ordering of these vertices. Note that the replacement graph
is also acyclic because we have broken all cycles after the last stage.
Consequently, we can reconstruct alleles of all untyped SNPs one by
following the linear ordering of these SNPs, which takes Oðn2Þ time.

5.2. An improved algorithm for breaking cycles in the replacement
graph

The previous algorithm for breaking cycles by removing all
back edges may fail to obtain the optimal solution. Fig. 4(A) illus-
trates an example in which the previous algorithm may not per-
form well. If the DFS traversal starts from vertex S1 (instead of
vertex S5), we would obtain four back edges (i.e., b1, b2, b3, and
b4) and use four SNPs (i.e., S1, S2, S3, and S4) to remove all back
edges. However, the optimal solution is the SNP S5 since the re-
moval of its incoming edge also breaks all cycles in this graph,
even though this edge is not a back edge.

In order to overcome the limitation of only removing back
edges, we consider the removal of other edges which can also
break cycles. Although we do not explicitly enumerate all cycles
in the replacement graph, each back edge is implicitly associated
with some cycles and the removal of this back edge can break these
associated cycles. The following lemma indicates that the cycles
associated with one back edge can be broken by removing incom-
ing edges of either vertex on this back edge.

Lemma 4. For a directed back edge ðu; vÞ, the removal of incoming
edges of either vertex u or of vertex v breaks the same set of cycles
associated with this back edge.

Proof. Denote the set of cycles broken by removing the back edge
ðu; vÞ as Cu;v. The removal of incoming edges of v removes the back
edge ðu; vÞ and thus breaks all cycles in Cu;v. Note that each cycle in
Cu;v must contain an edge which is also the incoming edge of vertex
Fig. 4. An example of a replacement graph composed by five tag SNPs (i.e., S1; . . . ; S5). Th
The back edges and vertices are reformulated to elements and sets in a set covering probl
edge bi .
u, since it has to pass through vertex u to v. As a consequence, the
removal of incoming edges of vertex u also breaks all cycles in
Cu;v. h

By Lemma 4, we can select any of the two vertices on each
back edge and remove its incoming edges to break cycles associ-
ated with this back edge. Denote the set of vertices at two ends
of all back edges as C ¼ fS1; . . . ; Sng (Fig. 4(B)). The problem is
redefined as follows: given a set of back edges B ¼ fb1, . . ., bmg
discovered during DFS traversal of the replacement graph, find
a minimum set of vertices C0 # C such that C0 contains at least
one vertex from either end of a back edge. The removal of all
incoming edges of vertices in C0 can thus break all cycles in
the replacement graph. However, this problem becomes NP-hard,
which can be easily shown by a reduction from the k� VC prob-
lem similar to the proof in Theorem 3. On the positive side, this
problem is just an instance of the set covering problem which
asks for a minimum subcollection C0 # C such that each element
in B is covered by at least one set in C0. Therefore, we can em-
ploy a typical greedy algorithm which iteratively selects a vertex
shared by most back edges, until all back edges have at least one
vertex (from either end) selected. For example, in Fig. 4, only
SNP S5 is selected by this greedy approach as the solution. Fur-
thermore, it is easy to observe that each bi 2 B appears in exactly
two sets in C corresponding to its two end vertices. Therefore,
this is a restricted version of the set covering problem with each
element in B appears in two sets in C, which is shown to be APX-
hard [25] and can be approximated within a factor of 2 of the
optimal solution [18].

5.3. Efficiency of various LD statistic

A number of measures for computing the LD between two diall-
elic SNPs have been widely used for the selection of tag SNPs (e.g.,
r2, D0, or four-gamete property) [5]. On the other hand, only a few
studies consider the LD between a diallelic SNP and a multiallelic
haplotype for selecting tag SNPs (e.g., multiallelic D0 or the relative
information [11]). One major difference between these two direc-
tions is the number of tests required for obtaining a predictive
SNP or a predictive haplotype. For example, on the basis of LD be-
tween diallelic SNPs, we can obtain a SNP which is predictive of an-
other SNP ST by computing the correlation coefficient ðr2Þ between
SNP ST and all other SNPs, which takes OðnÞ time, where n is the
number of SNPs. On the other hand, to obtain a haplotype predic-
tive of SNP ST , one has to compute the multiallelic LD statistic be-
tween a SNP and all possible haplotypes. However, the number of
all possible haplotypes grows exponentially with respect to the
number of SNPs, because a haplotype can be composed by arbi-
trary combination of SNPs. On the contrary, HapTagger implicitly
estimates the multiallelic LD between a SNP and a haplotype using
a combinatorics approach but does not rely on any explicit LD sta-
e DFS traversal starts from SNP S1 and results in four back edges (i.e., b1; . . . ; b4). (B)
em, respectively. The element bi is covered by the set Sj if Sj is one vertex on the back

Y.-T. Huang, K.-M. Chao / Journal of Biomedical Informatics 41 (2008) 953–961 961
tistic. The major advantage of our approach is that approximation
algorithms are allowed for efficiently finding the predictive haplo-
types. As indicated by our theoretical and experiment results,
HapTagger runs much faster than other methods since it avoids
the test of exponential number of haplotypes.

5.4. Signatures of positive selection or co-evolution

Recent large-scale analysis of recent strong selection using
the HapMap data indicates that humans are still under fast evo-
lution [31]. The classical signature of recent positive selection is
the elevating-haplotype homozygosity surrounding the favored
allele at one SNP (i.e., genetic hitchhiking). The haplotypes flank-
ing the favored allele at one SNP locus usually show very low se-
quence diversity. Therefore, it is natural that HapTagger will
identify haplotypes predictive of alleles at one SNP under recent
positive selection. As to alleles not at close loci, they might still
co-evolve through the heredity due to their functional depen-
dency in the biological pathway. Thus HapTagger is also able
to identify haplotypes of coevolving alleles at several SNP loci.
The tag SNPs selected by previous LD-based methods only reflect
the extent of past chromosome recombination. It is worth men-
tioning that the predictive haplotypes selected by HapTagger is
not only used for capturing untyped SNP alleles, but these hapl-
otypes may also indicate the signature of recent positive selec-
tion or co-evolution.

However, the length of haplotypes under positive selection or
co-evolution will be reduced because chromosome recombination
will break the linkage of SNPs in these haplotypes. Thus, HapTagger
seeks for the minimum-length haplotype for replacing a target SNP
in the algorithm. In addition, the requirement of minimum-length
haplotype is helpful in the stage 3 of our algorithm, because the
dependency (i.e., edges in the replacement graph) among these
SNPs can be reduced and less cycles would be generated. Conse-
quently, the number of tag SNPs is expected to be reduced by this
requirement.

6. Conclusion

In this paper, we designed and implemented algorithms for the
selection of tag SNPs using multimarker haplotypes without rely-
ing on any explicit multiallelic LD statistic. The tag SNPs found
by our algorithms define a set of haplotypes completely predictive
of the alleles of all untyped SNPs. Several exact and approximation
algorithms are proposed to efficiently find these tag SNPs. We inte-
grated these algorithms and implemented a program called HapT-
agger. Our theoretical analysis and experimental results indicated
that HapTagger consistently identifies a smaller set of tag SNPs
and runs much faster than existing methods on a variety of real
data sets. We also discussed the efficiency of various LD statistic
and compared distinct approaches for reconstructing untyped
SNP alleles. It is worth mentioning that these predictive haplotypes
selected by HapTagger may be the signature of positive selection or
co-evolution.

Acknowledgments

Yao-Ting Huang and Kun-Mao Chao were supported in part by
NSC Grants 93-2213-E-002-029, 94-2213-E-002-091, and 96-
2218-E-194-006 from the National Science Council, Taiwan.

References

[1] Altshuler D, Brooks LD, Chakravarti A, Collins FS, Daly MJ, Donnelly P. A
haplotype map of the human genome. Nature 2005;437:1299–320.
[2] Ao SI, Yip K, Ng M, Cheung D, Fong PY, Melhado I, et al. CLUSTAG: hierarchical
clustering and graph methods for selecting tag SNPs. Bioinformatics
2004;21(8):1735–6.

[3] Halldórsson BV, Schwartz R, Clark AG, Istrail S. Haplotypes and informative
SNP selection algorithms: don’t block out information. In: Proceedings of the
RECOMB’03; 2003. p. 19–27.

[4] Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD
and haplotype maps. Bioinformatics 2005;21(2):263–5.

[5] Carlson CS, Eberle MA, Rieder MJ, Yi Q, Kruglyak L, Nickerson DA. Selecting a
maximally informative set of single-nucleotide polymorphisms for association
analyses using linkage disequilibrium. Am J Hum Genet 2004;74:106–20.

[6] Chang C-J, Huang Y-T, Chao K-M. A greedier appraoch for finding tag SNPs.
Bioinformatics 2006;22:685–91.

[7] Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction to algorithms. The
MIT Press; 2001.

[8] Crawfod DC, Nickerson DA. Definition and clinical importance of haplotypes.
Annu Rev Med 2005;56:303–20.

[9] Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, Lander ES. High-resolution
haplotype structure in the human genome. Nat Genet 2001;29(2):229–32.

[10] de Bakker PI, Yelensky R, Pe’er I, Gabriel SB, Daly MJ, Altshuler D. Efficiency and
power in genetic association studies. Nat Genet 2005:1217–23.

[11] de Bakker PI, McVean G, Sabeti PC, Miretti MM, Green T, et al. A high-
resolution HLA and SNP haplotype map for disease association studies in the
extended human MHC. Nat Genet 2006:1166–72.

[12] Douglas JA, Boehnke M, Gillanders E, Trent JM, Gruber SB. Experimentally-
derived haplotypes substantially increase the efficiency of linkage
disequilibrium studies. Nat Genet 2001;28(4):361–4.

[13] Even G, Naor J, Schieber B, Sudan M. Approximating minimum feedback sets
and multicuts in directed graphs. Algorithmica 1998;20:151–74.

[14] Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B. The
structure of haplotype blocks in the human genome. Science
2002;296(5576):2225–9.

[15] Garey MR, Johnson DS. Computers and intractability. New York: Freeman;
1979.

[16] Helmuth L. Genome research: map of the human genome 3.0. Science
2001;293(5530):583–5.

[17] Hinds DA, Stuve LL, Nilsen GB, Halperin E, Eskin E, Ballinger DG, et al. Whole-
genome patterns of common DNA variation in three human populations.
Science 2005;307:1072–9.

[18] Houchbaum DS. Approximation algorithms for the set covering and vertex
cover problems. SIAM J Comp 1982;11:555–6.

[19] Hu N, Wang C, Hu Y, Yang HH, Giffen C, Tang Z-Z, et al. Genome-wide
asspciation study in esophageal cancer using genechip mapping 10 K array.
Cancer Res 2005;65(7):2542–6.

[20] Huang Y-T, Zhang K, Chen T, Chao K-M. Selecting additional tag SNPs for
tolerating missing data in genotyping. BMC Bioinform 2005;6:263.

[21] Huang Y-T, Chao K-M, Chen T. An approximation algorithm for haplotype
inference by pure parsimony. J Comput Biol 2005;12:1261–74.

[22] Kennedy GC, Matsuzaki H, Dong S, Liu WM, Huang J, Liu G, et al. Large-scale
genotyping of complex DNA. Nat Biotechnol 2003;21:1233–7.

[23] Lin S, Chakravarti A, Cutler DJ. Exhaustive allelic transmission disequilibirium
tests as a new approach to genome-wide association studies. Nat Genet
2004;36:1181–8.

[24] Liu WM, Di X, Yang G, Matsuzaki H, Huang J, Mei R, et al. Algorithms for large
scale genotyping microarrays. Bioinformatics 2003;19:2397–403.

[25] Papadimitriou CH, Yannakakis M. Optimization, approximation, and
complexity classes. J Comput System Sci 1991;43:425–40.

[26] Patil N, Berno AJ, Hinds DA, Barrett WA, Doshi JM, Hacker CR, et al. Blocks of
limited haplotype diversity revealed by high-resolution scanning of human
chromosome 21. Science 2001;294:1719–23.

[27] Qin Z, Niu T, Liu J. Partitioning-ligation-expectation-maximization algorithm
for haplotype inference with single-nucleotide polymorphisms. Am J Hum
Genet 2002;71:1242–7.

[28] Qin ZS, Gopalakrishnan S, Abecasis GR. An efficient comprehensive search
algorithm for TagSNP selection using linkage disequilibirium criteria.
Bioinformatics 2006;99(11):7335–9.

[29] Stephens M, Donnelly P. A comparison of Bayesian methods for haplotype
reconstruction from population genotype data. Am J Hum Genet
2003;73:1162–9.

[30] Stram DO, Haiman CA, Hirschhorn JN, Altshuler D, Kolonel LN, Henderson BE,
et al. Choosing haplotype-tagging SNPs based on unphased genotype data
using a preliminary sample of unrelated subjects with an example from the
multiethnic cohort study. Hum Hered 2003;55:27–36.

[31] Voight BF, Kudaravalli S, Wen X, Pritchard JK. A map of recent positive
selection in the human genome. PLoS Biol 2006:446–58.

[32] Weal ME, Depondt C, Macdonald SJ, Smith A, Lai PS, Shorvon SD, et al. Selection
and evaluation of tagging SNPs in the neuronal-sodium-channel gene SCN1A:
implications for linkage diequilibrium gene mapping. Am J Hum Genet
2003;73:551–65.

[33] Zhang K, Sun F, Waterman MS, Chen T. Haplotype block partition with limited
resources and applications to human chromosome 21 haplotype data. Am J
Hum Genet 2003;73:63–73.

[34] Zhang K, Qin ZS, Liu JS, Chen T, Waterman MS, Sun F. Haplotype block
partitioning and tag SNP selection using genotype data and their applications
to association studies. Genome Res 2004;14(5):908–16.

	A new framework for the selection of tag SNPs by multimarker haplotypes
	Introduction
	Algorithms for the selection of predictive haplotypes
	Formulation and hardness of the MHTP problem
	An approximation algorithm for the MHTP problem
	Extension for handling missing data

	Algorithms for the selection of tag SNPs by predictive haplotypes
	Stage 1: finding a minimum set of tag SNPs by pairwise perfect LDClarification of Perfect LD and large sample sizes.
	Stage 2: Identifying identifying a minimum length haplotype for replacing each tag SNP
	Stage 3: Reserving reserving a minimum subset of tag SNPs based on the replacement graph

	Experimental results
	Experiments on HapMap ENCODE data sets
	Experiments on HapMap chromosome data sets

	Discussion
	Reconstruction of alleles of untyped SNPs with HapTagger
	An improved algorithm for breaking cycles in the replacement graph
	Efficiency of various LD statistic
	Signatures of positive selection or co-evolution

	Conclusion
	Acknowledgments
	References

