DITERPENOIDS AND STEROIDS FROM TAIWANIA CRYPTOMERIOIDES

Wang-Hong Lin, Jim-Min Fang* and Yu-Shia Cheng
Department of Chemistry, National Taiwan University, Taipei, Taiwan 106, R. O. China

(Received in revised form 25 November 1997)
Key Word Index-Taiwania cryptomerioides; Taxodiaceae; leaves; diterpenes; sterols.

Abstract

Five new diterpenes and four uncommon sterols were isolated from the leaves of Taiwania cryptomerioides. Their structures were determined by chemical, spectroscopic and X-ray diffraction methods. The terpenes are 8,9-epoxy-7-oxoroyleanone methyl ether, 1,13,14-trihydroxypodocarpa-8,11,13-trien-7-one, $7 \alpha, 8 \alpha$ -dihydroxylabda-13(16),14-dien-19-yl cis-4-hydroxycinnamate, $\quad 7 \alpha, 8 \alpha$-dihydroxylabda-13(16),14-dien-19-yl trans-4-hydroxycinnamate and beyer-15-en-18-carboxy β-d-glucopyranoside pentaacetate. The sterols, namely taiwaniasterols A-D, exhibit an uncommon skeleton of 6-5-6-5 fused rings. (C) 1998 Elsevier Science Ltd. All rights reserved

INTRODUCTION

There are several studies on the chemical constituents of Taiwania cryptomerioides [1-6]. We recently found the constituents of diterpenoid quinols (taiwaniaquinols $\mathrm{A}-\mathrm{B}$) and quinones (taiwaniaquinones A-E) of uncommon 6-5-6 fused-ring skeleton [4-6]. A series of $[4+2]$ and $[5+2]$ products (taiwaniadducts A-I) derives from the additions of taiwaniaquinone A with β-myrcene or trans-ozic acid were also isolated [4-6]. In this paper, we report nine novel compounds, including an abietane (1), a trinorabietane (2), two labdanes (3-4), a beyerane (5) and four sterols (6-9) which contain uncommon 6-5-6-5 fused rings.

RESULTS AND DISCUSSION

Compound 1 showed a molecular ion at m / z 360.1937 corresponding to a molecular formula $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{4}$. The ${ }^{1} \mathrm{H}$ NMR spectrum (Table 1) exhibited characteristic signals for an isopropyl group at $\delta 1.11$ $(d, J=6.8 \mathrm{~Hz}), 1.16(d, J=6.8 \mathrm{~Hz})$ and 3.02 (sept, $J=6.8 \mathrm{~Hz}$). Three methyl groups, positioned on tertiary carbons, appeared at $\delta 0.84(s), 0.87(s)$ and 1.27 (s). A methoxy group occurred at a relatively low field of $\delta 3.80(s)$. The carbon resonance at $\delta 197.9$ in the ${ }^{13} \mathrm{C}$ NMR spectrum was attributable to a carbonyl group, whereas the resonances at $\delta 134.1,156.6,187.1$ and 188.3 were attributable to a conjugated 1,4 -dione fragment (Table 1). The signals at $\delta_{\mathrm{C}} 60.7$ and 69.9

[^0]might be ascribed to two epoxy carbons. the structure of compound 1 was assigned to 8,9 -epoxy- 7 -oxoroyleanone methyl ether. The stereochemistry was confirmed by a chemical correlation with a known compound, 7-hydroxyroyleanone [4], which was previously isolated from the leaves of T. cryptomerioides in this laboratory. Thus, 7-hydroxyroyleanone (10, a mixture of 7 -epimers) was treated with diazomethane to give a methyl ether 11 (Scheme 1). Oxidation of 11 with pyridinium dichromate afforded a ketone 12, which reacted with tert-butyl hydroperoxide to give an epoxide identical to abietane 1. Due to the steric hindrance of the C-10 methyl group, the epoxidation should occur at the less hindered α-face.

Based on spectroscopic and X-ray analyses (Fig. 1), the structure of a novel trinorabietane $2\left(\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{4}\right)$ was determined to be 1,13,14-trihydroxypodocarpa-8,11,13-trien-7-one. The UV absorption at $\lambda_{\text {max }} 278$ nm was attributable to the phenone moiety. Two aromatic protons occurred at $\delta 7.03(d J=8.7 \mathrm{~Hz})$ and $7.64(d J=8.7 \mathrm{~Hz})$, indicating their ortho-relationship. H-5 (at $\delta 1.79$) was axially oriented because it appeared as a double of doublet $(J=13.0,4.7 \mathrm{~Hz})$. An NOE experiment indicated that the carbonyl proton (H-1) was oriented on the α-face. Thus, irradiation of H-1 at $\delta 3.98$ caused a significant enhancement (20%) of the $\mathrm{H}-5$ resonance.

The ${ }^{1} \mathrm{H}$ NMR spectrum of compound $3\left(\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{O}_{5}\right)$ showed the proton resonances at $\delta 5.78(d, J=12.5$ $\mathrm{Hz}), 6.82(d, J=12.5 \mathrm{~Hz}), 6.75(d, J=8.6 \mathrm{~Hz})$ and $7.53(d, J=8.6 \mathrm{~Hz})$ attributable to a cis-p-hydroxycinnamic ester. Three olefinic protons of a conjugated diene appeared at $\delta 5.04(d, J=11.0 \mathrm{~Hz}), 5.26(d$, $J=17.5 \mathrm{~Hz}$) and $6.33(d d, J=17.5,11,0 \mathrm{~Hz})$. The

1

3 (cis)
4 (trans)

6

8

2

9
protons of cinnamate in 4 exhibiting a large coupling constant of 16.1 Hz . The structure of 4 was thus assigned as $7 \alpha, 8 \alpha$-dihydroxylabda-13(16),14-dien-19yl trans-4-hydroxycinnamate.

A portion of the plant extract was subjected to peracetylation ($\mathrm{Ac}_{2} \mathrm{O}$, pyridine), after which the product mixture was chromatographed to give a peracetylated diterpene glycoside 5 . The structure of compound 5 was unambiguously determined at 12-ace-toxybeyer-15-ene-18-carboxy β-d-glucopyranoside pentaacetate by an X-ray analysis (Fig. 2). The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectral data (Table 1) are in agreement with this structure, in which two cis olefinic protons occurred at $\delta 5.53$ and 5.74 with a coupling constant of 5.7 Hz . To our knowledge, beyeranes are not so often found in nature [7] as those of ent-beyeranes (also known as stachanes) [8-10].

Compound 6 gave rise to a molecular ion [M] ${ }^{+}$
Table $1 .{ }^{13} \mathrm{C}$ NMR and ${ }^{1} \mathrm{H}$ NMR data of compounds $\mathbf{1 - 4}$ and $5\left(\mathrm{CDCl}_{3}, \delta\right.$ in ppm)

	δ_{C}	$\delta_{\text {H }}$	$\begin{aligned} & \mathbf{2} \\ & \delta_{\mathrm{C}} \end{aligned}$	δ_{H}	$\begin{aligned} & \mathbf{3} \\ & \delta_{\mathrm{C}} \end{aligned}$	$\delta_{\text {H }}$	$\begin{aligned} & \mathbf{4} \\ & \delta_{\mathrm{C}} \end{aligned}$	$\delta_{\text {H }}$	$\begin{aligned} & 5^{b} \\ & \delta_{\mathrm{C}} \end{aligned}$	δ_{H}				
1	34.4	1.42 (m)	76.4	3.98 (br t, 8.3)	39.3	1.05 (m)	39.3	*	$35.9 \dagger^{*}$					
		2.73 (br d, 12.4) \ddagger				1.68 (m)								
2	18.3	1.69 (m)	29.9	$1.80(m) *$	18.0	1.44 (m)	18.0	*	17.4	1.45 (m)*				
		1.62 (m)				1.55 (m)								
3	40.9	1.22 (m)	39.1	1.28 (m)	36.3	1.03 (m)	36.5	*	37.8	0.92 (m)				
		1.46 (m)		1.44 (m)		1.65 (m)				1.52 (m)				
4	33.5		33.1		36.3		36.4		36.6					
5	42.9	1.82 (dd, 12.5, 5.6)	48.7	1.79 (dd, 13.0, 4.7)	46.9	1.63 (m)	47.0	*	49.6	$1.62(\mathrm{~m})$				
6	37.6	$2.29(d d, 17.2,12.5)$	35.8	2.78 (dd, 19.0, 13.0)	26.2	$\begin{aligned} & 1.58(m) \\ & 1.85(d d, 11.8,2.7) \end{aligned}$	26.3	*	22.3	1.04 (m)				
		$2.51(d d, 17.2,5.6)$		2.66 (dd, 19.0, 4.7)						1.42 (m)				
7	197.9 60.7		206.2	(19, 4.7)	74.2	3.62 (br s)	74.3	3.67 (s)	$35.5 \dagger$47.1					
8	60.7		115.3		75.0		75.1							
9 10	69.9 37.5		146.9		54.4	1.42 (m)	$\begin{aligned} & 54.5 \\ & 38.5 \end{aligned}$	*	$\begin{aligned} & 51.5 \\ & 48.4 \end{aligned}$	1.20 (m)				
10	37.5		43.7		38.4									
11	187.1		116.6	7.64 (d, 8.7)	24.1	$\begin{aligned} & 1.41(\mathrm{~m}) \\ & 1.57(\mathrm{~m}) \end{aligned}$	24.1	*	26.5	$\begin{aligned} & 1.10(\mathrm{~m}) \\ & 1.90(\mathrm{~m}) \end{aligned}$				
12	156.6 134.1		121.0	7.03 (d, 8.7)	34.9 147.1	2.28 (m)	147.1		76.2	$\begin{aligned} & 1.90(m) \\ & 4.69(d d, 8.8,6.1) \end{aligned}$				
14	188.3		143.1		147.1 138.7				47.4					
			149.4		138.7	6.33 (dd, 17.5, 11.0)	138.7	6.33 (dd, 17.5, 11.0)		58.1	1.14 (m)			
15	25.6	3.02 (sept, 6.8)			113.5	$5.04(d, 11.0)$	113.5	$5.04(d, 11.0)$	136.8	$5.74(d, 5.7)$				
17	19.5	$1.11(d, 6.8)$			115.8	4.99 (s)	115.823.0	$4.99(s)$	$\begin{array}{r} 134.2 \\ 21.1 \end{array}$	$\begin{aligned} & 5.53(d, 5.7) \\ & 0.94(s) \end{aligned}$				
18	32.9	0.84 (s)	31.9	0.86 (s)	27.0	$1.10(s)$		1.13 (s)						
19	20.90 .87 (s)		21.0	0.96 (s)	67.3	$3.92(d, 11.0)$ 67.3 $4.15(d, 11.0)$		$3.98(d, 11.1)$ $4.23(d, 11.1)$ $16.5 \quad 1.10(s)$						
1^{\prime}	16.0	1.27 (s)	16.9	1.20 (s)	15.3 1269	0.76 (s)	15.3	0.79 (s)	$\begin{aligned} & 15,1 \\ & 017 \end{aligned}$	$0.71(\mathrm{~s})$				
2^{\prime}					126.9		126.4							
$3 '$					115.1	$7.53(d, 8.6)$	$\begin{aligned} & 130.0 \\ & 114.9 \end{aligned}$	$\begin{aligned} & 7.37(d, 8.4) \\ & 6.83(d, 8.4) \end{aligned}$	$\begin{aligned} & 70.0 \\ & 72.4 \dagger \end{aligned}$	$5.18(t, 9.1)$				
4^{\prime}					157.3		158.7		$\begin{aligned} & 68.0 \\ & 72.7 \dagger \\ & 61.5 \end{aligned}$	$5.09(t, 9.1)$				
5^{\prime}					115.1	6.75 (d, 8.6)	114.9	$\begin{aligned} & 6.83(d, 8.4) \\ & 7.37(d, 8.4) \end{aligned}$		$\begin{aligned} & 5.09(t, 9.1) \\ & 3.78(m) \\ & 4.05(d d, 12.1,2.1) \\ & 4.21(d d, 12.1,4.4) \end{aligned}$				
6					132.1	7.53 (d, 8.6)	130.0							
$7{ }^{\prime}$					143.8		$\begin{array}{ll} 144.9 & 7.57(d, 16.1) \\ 116.0 & 6.24(d, 16.1) \\ 168.1 & \end{array}$							
8					116.7	$5.78(d, 12.5)$								
9^{\prime}					167.4									

[^1]

12
1
Scheme 1.

Fig. 1. ORTEP drawing of compound 2.
at $m / z 476.3868$ consistent with a molecular formula $\mathrm{C}_{30} \mathrm{H}_{52} \mathrm{O}_{4}$. This compound had five degrees of unsaturation. Besides a carbonyl group appearing at δ_{C} 210.8, compound 6 contained four rings as those found in steroids. The signal at $\delta_{\mathrm{H}} 2.17(s)$ was attributable to an acetyl group. Two resonances at $\delta_{\mathrm{H}} 0.68$ (s) and 0.90 (s) were attributable to two methyl groups positioned on tertiary carbons. Compound 6, m.p. $89-91^{\circ},[\alpha]_{\mathrm{D}}+80\left(\mathrm{CHCl}_{3} ; c 0.2\right)$, was crystallised from CHCl_{3}-hexane. The X-ray analysis (Fig. 3) revealed that compound 6 has an unprecendented skeleton of 6-5-6-5 fused rings. Accordingly, compound 6 (namely
taiwaniasterol A) has the ($3 S, 5 R, 6 R, 8 S, 9 S, 10 R, 13 S$, $14 S, 17 R, 20 S, 22 R, 24 R$)-configuration (the numbering for compounds 6-9 is used by analogy to that of other steroids). The carbon and proton resonances (Table 2) were assigned by assistance of H-H COSY, HMQC and HMBC spectra.

By comparison of the ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra, the structures of compounds $7\left(\mathrm{C}_{30} \mathrm{H}_{52} \mathrm{O}_{4}\right)$ and 8 $\left(\mathrm{C}_{30} \mathrm{H}_{52} \mathrm{O}_{4}\right)$ appeared to be similar to that of taiwaniasterol A (6), except for the substituents on Brings. Compounds 7 or $\mathbf{8}$ did not give rise to the signal for an acetyl group on the B-ring. Instead, compound 7 showed an ABX pattern of three protons at $\delta 3.83$ ($d d, J=10.0,2.7 \mathrm{~Hz}$), $4.00(d d, J=10.0,4.3 \mathrm{~Hz})$ and 4.18 (m) attributable to a moiety of β-hydroxy tetrahydrofuran. Compound 8 showed an ABX pattern of three protons at $\delta 2.37(d d, J=5.4,3.0 \mathrm{~Hz})$, $2.74(d d, J=4.5,4.5 \mathrm{~Hz})$ and $2.88(d d d, J=9.0,4.5$, 3.0 Hz) attributable to a moiety of oxirane. Thus, the structures of compounds 7 (namely taiwaniasterol B) and 8 (namely taiwaniasterol C) were deduced. Assignments of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ resonances were made according to their H-H COSY, HMQC and HMBC spectra. The stereochemistry was supported by their NOESY spectra. For instance in taiwaniasterol B (7), $\mathrm{H}-19(\delta 0.91)$ was correlated to $\mathrm{H}-8(\delta 1.90)$ and $\mathrm{H}-$ $30 \beta(\delta 3.83), \mathrm{H}-6(\delta 1.80)$ to $\mathrm{H}-30 \alpha(\delta 4.00), \mathrm{H}-18(\delta$ $0.71)$ to $\mathrm{H}-8$ and $\mathrm{H}-20(\delta 1.70)$, as well as $\mathrm{H}-7(\delta 4.18)$ to H-4 ($\delta 1.55$). Similarly, the NOESY spectrum of taiwaniasterol $\mathrm{C}(8)$ showed that $\mathrm{H}-7(\delta 2.88)$ and $\mathrm{H}-$ $30(\delta 2.37$ and 2.74) have correlations with $\mathrm{H}-19$ (δ 0.95). An attempt to convert 8 to 7 by treatment with $\mathrm{NaH} / \mathrm{THF}$ (room temperature, 4 h) failed. Compound 8 probably has the $7 R$-chirality by analogy to that in 7 .

Compound 9 gave rise to a molecular ion [M] ${ }^{+}$ at $m / z 434.3764$ consistent with a molecular formula $\mathrm{C}_{28} \mathrm{H}_{50} \mathrm{O}_{3}$. This lacks two carbon atoms by comparison with taiwaniasterols A-C. Compound 9 had four

Fig. 2. ORTEP drawing of compound 5.

Fig. 3. ORTEP drawing of taiwaniasterol A (6).
degrees of unsaturation. As its IR or NMR spectra did not shown any signal attributable to carbonyl group or double bond, compound 9 must have a skeleton of four rings. By detailed analyses of its ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, HMQC, HMBC and NOESY spectra, the structure of 9 (namely taiwaniasterol D) was deter-
mined. Correlations of C-5 ($\delta 81.5$) with H-3 ($\delta 4.03$) and $\mathrm{H}-19(\delta 0.89)$ as well as $\mathrm{C}-22(\delta 71.3)$ with $\mathrm{H}-21$ ($\delta 0.89$) strongly supported the assigned structure.

In summary, five new diterpenoids of royleanone, norabietane, labdane and beyerane types were isolated from the leaves of T. cryptomerioides. The finding of

Table 2. ${ }^{13} \mathrm{C}$ NMR and ${ }^{1} \mathrm{H}$ NMR data of compounds 6-9 $\left(\mathrm{CDCl}_{3}, \delta\right.$ in ppm$)$

	6		7		8		9	
	$\delta_{\text {C }}$	$\delta_{\text {H }}$	$\delta_{\text {C }}$	δ_{H}	$\delta_{\text {C }}$	$\delta_{\text {H }}$	$\delta_{\text {c }}$	$\delta_{\text {H }}$
1	27.9	1.20-1.80 (m)	31.2	1.08 (m)	26.8	$1.35(m),{ }^{*}$	26.5	1.32 (m)
				1.46 (m)				1.64 (m)
2	28.2	1.20-1.80 (m)	29.5	1.42 (m)	27.8	1.60 (m),*	28.1	1.62 (m),*
				1.95 (m)				
3	67.2	4.01 (brs)	67.7	3.93 (br m)	67.1	3.97 (br s)	67.4	4.03 (m)
4	44.1	1.75 (m)	39.4	1.55 (m)	45.4	1.60 (m)	$43.2 \dagger$	
		$2.15(\mathrm{~m})$		1.85 (m)		1.92 (br d, 15.0) \ddagger		$1.95 \text { (br } d, 13.0)$
5	83.2		95.7		82.7		81.5	
6	65.6	$2.50(d, 9.5)$	59.0	1.80 (mm)	56.9	0.94 (m)	$43.3 \dagger$	1.30 (m)
								1.73 (m)
7	210.8		71.0	4.18 (br m)	54.1	2.88 (ddd, 9.0, 4.5, 3.0)		
8	42.1	2.12 (m)	36.3	1.90 (m)	41.6	1.65 (m)	37.3	1.79 (m)
9	50.7	1.15 (m)	57.8	1.16 (m)	50.4	1.26 (m)	51.9	1.25 (m)
10	44.8		44.5		44.7		$44.8 \dagger$	
11	21.4	1.40 (m),*	21.5	1.38 (m),*	21.3	1.40 (m),*	21.7	1.28 (m)
								1.35 (m)
12	39.6	1.12 (m)	39.6	1.09 (m)	39.7	1.15 (m)	40.0	
		2.02 (brd, 13.0)		2.01 (brd, 13.0)		2.03 (brd, 13.0)		$2.00(b r d, 13.0)$
13	45.6		44.5		45.1		$44.9{ }^{\dagger}$	
14	56.0	1.10 (m)	56.0	1.07 (m)	55.5	1.16 (m)	56.5	1.13 (m)
15	24.6	1.10 (m)	25.1	1.22 (m)	25.3	1.36 (m)	24.4	1.12 (m)
		1.38 (m)		1.54 (m)		1.50 (m)		1.52 (m)
16	27.6	1.20-1.80 (m)	27.5	1.34 (m)	27.7	1.34 (m)	27.7	1.35 (m)
				1.72 (m)		1.70 (m)		1.72 (m)
17	52.5	1.12 (m)	52.5	1.10 (m)	52.4	1.10 (m)	52.6	1.10 (m)
18	12.5	0.68 (s)	12.4	0.71 (s)	12.4	0.68 (s)	12.5	0.66 (s)
19	17.4	0.90 (s)	15.9	0.91 (s)	18.7	0.95 (s)	18.3	0.89 (s)
20	42.4	1.70 (m)	42.4	1.70 (m)	42.3	1.70 (m)	42.4	1.70 (m)
21	12.3	0.88 (d, 7.0)	12.3	0.90 (d, 7.0)	12.3	0.90 (d, 7.0)	12.3	0.89 (d, 7.0)
22	71.2	3.68 (br d, 11.8)	71.2	3.69 (br d, 8.3)	71.2	3.67 (br d, 9.8)	71.3	3.68 (br d, 10.3)
23	29.8	0.98 (m)	29.8	0.97 (m)	29.8	1.00 (m)	29.8	1.00 (m)
		1.24 (m)		1.22 (m)		1.22 (m)		1.22 (m)
24	41.3	1.25 (m)	41.3	1.24 (m)	41.3	1.24 (m)	41.4	1.25 (m)
25	28.7	1.75 (m)	28.7	1.75 (m)	28.6	1.75 (m)	28.7	1.75 (m)
26	17.6	$0.75(d, 7.0)$	17.6	0.77 (d, 7.0)	17.5	$0.75(d, 7.0)$	17.6	0.76 (d, 7.0)
27	20.5	0.85 (d, 7.0)	20.5	0.86 (d, 7.0)	20.5	$0.86(d, 7.0)$	20.5	$0.86(d, 7.0)$
241	23.5	1.23 (m)	23.5	1.20 (m)	23.5	1.22 (m)	23.5	1.24 (m)
		1.35 (m)		1.34 (m)		1.35 (m)		1.35 (m)
242	11.7	0.84 ($t, 7.0$)	11.7	0.86 ($t, 7.0)$	11.7	0.85 ($t, 7.0)$	11.8	$0.85(t, 7.0)$
30	33.1	2.17 (s)	76.6	3.83 (dd, 10.0, 2.7)	47.0	2.37 (dd, 4.5, 3.0)		
				4.00 (dd, 10.0, 4.3)		2.74 (dd, 4.5, 4.5)		

*The signal of one or both protons was too weak to be assigned.
\dagger Assignments can be exchanged.
\ddagger Coupling constants (J in Hz) in parentheses.
four novel steroids $6-9$ with an uncommon skeleton of 6-5-6-5 fused rings is most remarkable, though the biogenesis of these sterols awaits further investigation.

EXPERIMENTAL

General

HPLC: Hibar Lichrosorb Si 60 column ($10 \mu \mathrm{~m}, 25$ $\mathrm{cm} \times 1 \mathrm{~cm}$ i.d.); TLC: Merck silica gel 60 F sheets.

Plant material

The dried leaves (1.75 kg) of T. cryptomerioides were exhaustively extracted with $\mathrm{Me}_{2} \mathrm{CO}(71 \times 3)$. The combined extracts were concd to approximately 0.81 and taken up with $\mathrm{CHCl}_{3}(0.81 \times 3)$. The CHCl_{3}-soluble portion was concd (55 g) and subjected to silicagel CC. The portion obtained from elution of EtOAchexane ($10 \%-100 \%$) was further subjected to flash chromatography and HPLC to give compounds 1 (11
$\mathrm{mg}), 2(20 \mathrm{mg}), 3(53 \mathrm{mg}), 4(20 \mathrm{mg}), 6(22 \mathrm{mg}), 7(11$ $\mathrm{mg}), 8(9 \mathrm{mg})$ and $9(9 \mathrm{mg})$. The portion obtained from the $\mathrm{Me}_{2} \mathrm{CO}-\mathrm{EtOAc}(10 \%-50 \%)$ eluant was subjected to peracetylation ($\mathrm{Ac}_{2} \mathrm{O}$, pyridine). Compound $5(20 \mathrm{mg})$ was isolated from the product mixture by chromatography.

8,9-Epoxy-7-oxoroyleanone methyl ether (1). Solid, m.p. $65-67^{\circ},[\alpha]_{\mathrm{D}}^{25}-113.2\left(\mathrm{CHCl}_{3} ; c 0.55\right)$. TLC (10% EtOAc in hexane) $R_{f} 0.37$. IR $v_{\max }^{\mathrm{KBr}} \mathrm{cm}^{-1}: 1724,1692$, 1669. UV $\lambda_{\text {max }}^{\mathrm{MeOH}} \mathrm{nm}(\varepsilon): 303$ (5163), 216 (10,000). EIMS (70 eV) m / z (rel. int.) 360 [M] ${ }^{+}$(2), 332 (4), 256 (8), 235 (4), 223 (4), 55 (100). HRMS for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{4}$ requires 360.1937 ; Found: 360.1937.

Preparation of 1. A soln of 7-hydroxyroyleanone (a mixture of 7 -epimers, $38 \mathrm{mg}, 0.115 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(10$ $\mathrm{ml})$ was treated with $\mathrm{CH}_{2} \mathrm{~N}_{2}$ to give a methyl ether 11. The crude product $\mathbf{1 1}$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ and treated with pyridinium dichromate $(86.5 \mathrm{mg}$, 0.23 mmol) and molecular sieves ($4 \AA, 1 \mathrm{~g}$) at room temp for 6 h . After which, the mixture was subjected to silica-gel CC by elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give a ketone 12 (28 mg). To a soln of 12 ($28 \mathrm{mg}, 0.081$ mmol) in $\mathrm{MeOH}(5 \mathrm{ml})$ was added aq $\mathrm{NaOH}(0.05 \mathrm{~N}$, $1 \mathrm{ml})$, followed by aqueous t - $\mathrm{BuOOH}(70 \%$ soln, 1 $\mathrm{ml})$. The mixture was stirred at room temp for 8 h , cooled to 0°, and quenched with a soln of $\mathrm{Na}_{2} \mathrm{SO}_{3}(90$ mg) in water (5 ml). The mixture was stirred at room temp for 3 h , concd, and chromatographed on a silicagel column by elution with EtOAc-hexane (1:39) to give epoxide 1 (11 mg) in 27% overall yield.

1,13,14-Trihydroxypodocarpa-8,11,13-trien-7-one (2). Crystals from EtOAc-hexane (1:9), m.p. 188-$189^{\circ},[\alpha]_{\mathrm{D}}^{25}-37.3\left(\mathrm{CHCl}_{3} ; c 1.02\right)$. TLC ($30 \% \mathrm{EtOAc}$ in hexane) $R_{f} 0.23$. IR $v_{\text {max }}^{\mathrm{KBr}} \mathrm{cm}^{-1}: 3478,3417,3333$, 1620. UV $\lambda_{\max }^{\mathrm{MeOH}} \mathrm{nm}(\varepsilon): 364$ (2617), 278 (10,069). EIMS (70 eV) m / z (rel. int.) $290\left[\mathrm{M}^{+}(100), 258\right.$ (12), 232 (28), 190 (38), 173 (30), 161 (18), 145 (10). HRMS for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{4}$ requires 290.1519; Found: 290.1516.
$7 \alpha, 8 \alpha$-Dihydroxylabda-13(16),14-dien-19-yl cis-4hydroxycinnamate (3). Solid, m.p. ${ }^{155-157^{\circ},[\alpha]_{\mathrm{D}}^{27}}$ $+1.1(\mathrm{MeOH} ; ~ c 2.6)$. TLC ($25 \% \mathrm{EtOAc}$ in hexane) $R_{f} 0.12$. IR $v_{\max }^{\mathrm{KBr}} \mathrm{cm}^{-1}: 1693$. UV $\lambda_{\max }^{\mathrm{MeOH}} \mathrm{nm}(\varepsilon): 309$ $(19,815), 226(100,296)$. EIMS (70 eV) m / z (rel. int.) $450\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$(2), 339 (4), 286 (4), 268 (4), 203 (3), 187 (4), 147 (100). HRMS for $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{O}_{4}\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$ requires 450.2771 ; Found: 450.2804.
$7 \alpha, 8 \alpha$-Dihydroxylabda-13(16),14-dien-19-yl trans-4-hydroxycinnamate (4). Solid, m.p. $165-167^{\circ},[\alpha]_{D}^{27}$ $+1.4(\mathrm{MeOH} ; c 1.0)$. TLC (25% EtOAc in hexane) $R_{f} 0.12$. IR $v_{\text {max }}^{\mathrm{KBr}} \mathrm{cm}^{-1}: 1689$. UV $\lambda_{\text {max }}^{\mathrm{MeOH}} \mathrm{nm}(\varepsilon): 312$ (24,338), 213 (42,567). EIMS (70 eV) m / z (rel. int.) $450\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$(1), 369 (1), 386 (3), 203 (2), 187 (3), 147 (100). HRMS for $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{O}_{4}\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$requires 450.2771; Found: 450.2774.

12-Acetoxybeyer-15-ene-18-carboxy β-glucopyranoside pentaacetate (5 a). Solid, m.p. $192-194^{\circ},[\alpha]_{\mathrm{D}}^{23}$
$-3.8\left(\mathrm{CHCl}_{3} ; c 1.0\right)$. TLC ($25 \% \mathrm{EtOAc}$ in hexane) R_{f} 0.24. IR $v_{\max }^{\mathrm{KBr}} \mathrm{cm}^{-1}: 1754,1740,1227$. EIMS (70 eV) m / z (rel. int.) $690[\mathrm{M}]^{+}(1), 630(2), 331$ (50), 255 (20), 229 (8), 169 (100), 108 (25). HRMS for $\mathrm{C}_{36} \mathrm{H}_{50} \mathrm{O}_{13}$ requires 690.3252; Found: 690.3254.

Taiwaniasterol A (6). Crystals from CHCl_{3}-hexane (1:1), m.p. $89-91^{\circ},[\alpha]_{\mathrm{D}}^{30}+80\left(\mathrm{CHCl}_{3} ; c 0.2\right)$. TLC (20% EtOAc in hexane) $R_{f} 0.20$. IR $\nu_{\max }^{\mathrm{KBr}} \mathrm{cm}^{-1}: 3447$, 1705. EIMS (70 eV) m / z (rel. int.) $476[\mathrm{M}]^{+}(28), 458$ (44), 441 (28), 415 (30), 348 (30), 330 (42), 69 (100), 55 (100). HRMS for $\mathrm{C}_{30} \mathrm{H}_{52} \mathrm{O}_{13}$ requires 476.3868 ; Found: 476.3868.

Taiwaniasterol B (7). Solid, m.p. $87-89^{\circ},[\alpha]_{D}^{30}$ $+47.5\left(\mathrm{CHCl}_{3} ; c 2.3\right)$. TLC $(20 \% \mathrm{EtOAc}$ in hexane $)$ $R_{f} 0.35$. IR $v_{\max }^{\mathrm{KB}} \mathrm{cm}^{-1}: 3422$. EIMS (70 eV) m / z (rel. int.) $476[\mathrm{M}]^{+}$(2), 458 (4), 348 (48), 330 (32), 304 (74), 275 (64), 55 (100). HRMS for $\mathrm{C}_{30} \mathrm{H}_{52} \mathrm{O}_{13}$ requires 476.3868; Found: 476.3860.

Taiwaniasterol C (8). Solid, m.p. 89-91 ${ }^{\circ},[\alpha]_{\mathrm{D}}^{30}$ $+81.2\left(\mathrm{CHCl}_{3} ; c 0.62\right)$. TLC (20% EtOAc in hexane) $R_{f} 0.37$. IR $v_{\max }^{\mathrm{KBr}} \mathrm{cm}^{-1}: 3423$. EIMS (70 eV) m / z (rel. int.) $476[\mathrm{M}]^{+}$(1), 458 (12), 440 (20), 428 (22), 173 (22), 147 (32), 128 (100). HRMS for $\mathrm{C}_{30} \mathrm{H}_{52} \mathrm{O}_{13}$ requires 476.3868; Found: 476.3871.

Taiwaniasterol D (9). Solid, m.p. 151-152 ${ }^{\circ}$, $[\alpha]_{D}^{30}$ $+39\left(\mathrm{CHCl}_{3} ; c 0.4\right)$. TLC ($20 \% \mathrm{EtOAc}$ in hexane) R_{f} 0.24. IR $v_{\text {max }}^{\mathrm{KBr}} \mathrm{cm}^{-1}: 3396$. EIMS $(70 \mathrm{eV}) m / z$ (rel. int.) $434[\mathrm{M}]^{+}$(4), 416 (6), 398 (5), 362 (30), 228 (25), 273 (18), 234 (100). HRMS for $\mathrm{C}_{28} \mathrm{H}_{50} \mathrm{O}_{3}$ requires 434.3762; Found: 434.3764.

REFERENCES

1. Kamil, M., Ilyas, M., Rahman, W., Hasaka, N., Okigawa, M. and Kawano, N., Journal of Chemical Society, Perkin Transactions I, 1981, 553.
2. Kuo, Y.-H., Chen, W.-C. and Lin, Y. T., Chemistry Express, 1987, 2, 105.
3. Fang, J.-M. and Cheng, Y.-S., Journal of Chinese Chemical Society, 1992, 39, 647.
4. Lin, W.-H., Fang, J.-M. and Cheng, Y.-S., Phytochemistry, 1995, 40, 871.
5. Lin, W.-H., Fang, J.-M. and Cheng, Y.-S., Phytochemistry, 1996, 42, 1657.
6. Lin, W.-H., Fang, J.-M. and Cheng, Y.-S., Phytochemistry, 1997, 46, 169.
7. Kitahara, Y. and Yoshikoshi, A., Bulletin of Chemical Society of Japan, 1965, 38, 735.
8. Delgado, G., de Vivar, A. R., Ortega, A., Cárdenas, J. and Schlemper, E. O., Phytochemistry, 1983, 22, 1227.
9. Noble, R., Knox, J., Alexander, R. and Kogi, R., Journal of Chemical Society, Chemical Communications, 1985, 32.
10. Sakai, T. and Nakagawa, Phytochemistry, 1988, 27, 3769.

[^0]: *Author to whom correspondence should be addressed.

[^1]: ${ }^{\text {a }}$ The resonance of OMe group appeared at $\delta_{\mathrm{C}} 59.5$ and $\delta_{\mathrm{H}} 3.80(s)$
 ${ }^{5}$ The resonance of OAc groups appeared at $\delta_{\mathrm{C}} 20.4,20.5,20.6,169.0,169.3,170.0,170.4$ and 170.9, as well as $\delta_{\mathrm{H}} 2.01(s), 1.98(s)$ and $1.97(s)$ and $1.96(s)$. The signal of one or both protons was too weak to be assigned.
 *The signal of one or both of the protons was too weak to be as
 *The signal of one or both of the protons was too weak to be assigned.
 \dagger Assignments can be exchanged.
 \ddagger Coupling constants (J in Hz) in parentheses.

