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a b s t r a c t

A subgraph inducedby k vertices is called a k-induced subgraph.Weprove that determining
if a digraph G contains H-free k-induced subgraphs is Ω(N2)-evasive. Then we construct
an ε-tester to test this property. (An ε-tester for a propertyΠ is guaranteed to distinguish,
with probability at least 2/3, between the case of G satisfying Π and the case of G being
ε-far from satisfyingΠ .) The query complexity of the ε-tester is independent of the size of
the input digraph. An (ε, δ)-tester for a propertyΠ is an ε-tester forΠ that is furthermore
guaranteed to accept with probability at least 2/3 any input that is δ-close to satisfying
Π . This paper presents an (ε, δ)-tester for whether a digraph contains H-free k-induced
subgraphs.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

A classical computational problem is to verify if an object has a predetermined property such as the connectedness of a
graph or the transitivity of a digraph. Unfortunately, sometimes no fast algorithms exist that give the exact answer. In these
cases, an approximate answer within a reasonable complexity is an attractive alternative.
A property-testing algorithm offers such answers. It determineswhether a problem instance has a certain property or is far

from any instances having such property. It is, however, arbitrary on problem instances falling between the two categories.
The general notion of property testing was first formulated by Rubinfeld and Sudan [1].
A testing algorithm of propertyΠ can make queries on the incidence relations of vertices in an input graph G. Property

Π is Ω(N2)-evasive if there is no deterministic testing algorithm with query complexity o(N2) that can correctly decide if
the input hasΠ . Holt and Reingold [2] were the first to consider the complexity of recognizing graph properties from their
adjacency matrix representations. They showed that the graph properties of connectivity and the existence of cycles are
bothΩ(N2)-evasive. An important open problem in this area is the Aanderaa–Rosenberg conjecture [2–5]: Every nontrivial
monotone graph property without self-loops is

(N
2

)
-evasive. Rivest and Vuillemin [6] resolved a weaker version of the

Aandreaa–Rosenberg conjecture. The weaker version says that every nontrivial monotone graph property has decision tree
complexityΩ(N2).
An ε-tester (or simply a tester) for a digraph property Π is a randomized algorithm that is given a size parameter N , a

distance parameter ε and the ability to make queries as to whether a directed edge of the input digraph G with N vertices
exists. The total number of queries is called the query complexity of the tester. Let {gi} be the set of digraphs with N vertices
that satisfyΠ . The algorithm needs to distinguish with probability at least 2/3 between the case of G havingΠ and the case
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of G differing from any gi in at least ε
(N
2

)
edges [7]. In the latter case, G is said to be ε-far from propertyΠ . The probability

2/3 can be replaced by any constant smaller than 1 because the algorithm can be repeated if necessary.
A graph property is testable if the property has a tester and the total number of queries is o(N2). The testing of graph

properties was pioneered by Goldreich, Goldwasser and Ron [8]. They showed that all graph properties describable by the
existence of a partition of a certain type are testable. For a fixed digraph H with at least one edge, let PH denote the property
of the input digraph being H-free. In other words, the digraph G has PH if and only if it contains no subgraphs isomorphic
to H . Alon and Shapira [7] proved that PH is testable with the total number of queries bounded only by a function of ε,
independent of N . This result has been improved later by Alon and Shapira [9]. Alon, Fischer, Krivelevich and Szegedy [10]
showed that every first-order undirected graph property without a quantifier alternation of type "∀ ∃" has ε-testers whose
query complexity is independent of the size of the input digraph. More recently, Alon, Fischer, Newman and Shapira [11]
proved a very general result for undirected graphs, which says that the property defined by having any given Szemerédi-
partition is testable with a constant number of queries. Moreover, a purely combinatorial characterization of the graph
properties is testable with a constant number of queries. The testing of other graph and combinatorial properties has also
been intensively studied [12–16].
An input is δ-close to having property Π if it is not δ-far from having property Π . Recall that an ε-tester says nothing

about inputs which are δ-close to having propertyΠ . An (ε, δ)-tester is an ε-tester that is furthermore guaranteed to accept
with probability at least 2/3 any input that is δ-close to having a propertyΠ . This type of property tester was first studied
by Parnas, Ron and Rubinfeld [17]. Fischer and Newman [18,19] proved that a testable property is also (ε, δ)-testable when
δ < ε.
A subgraph induced by k vertices is called a k-induced subgraph, and a subgraph with k vertices is called a k-subgraph.

Recall that a k-induced subgraph includes all the existing edges between the said k vertices. This paper studies property
testing for the existence of H-free k-induced subgraphs for digraphs, given a digraph H . Usually, a problem on digraphs
is more difficult than the otherwise identical problem on undirected graphs. We say a digraph G has property Pk,H if and
only if it contains an H-free k-induced subgraph. This paper proves that property Pk,H isΩ(N2)-evasive. (Since Pk,H is not a
monotone graph property, we can not use Rivest and Vuillemin’s result [6] to prove it is Ω(N2)-evasive.) For any digraph
H Alon and Shapira defined a binary function called f (ε;H). We prove that for every digraph H whose f (ε;H) is not too
small, there exist an ε-tester and an (ε, δ)-tester for Pk,H . For a graph A, core denotes a graph B such that there exists a
homomorphism from A to B and B is minimal in the number of vertices with this property. Alon and Shapira [7] proved
that for a connected H , f (ε;H) has a polynomial dependency on 1/ε if and only if the core of H is either an oriented tree
or a directed cycle of length 2. In this case, we can find a smaller ε such that f (ε;H) satisfies the restrictions of our testing
algorithms. In both results, the query complexity is dependent on ε but independent of the input size.
We use induced subgraphs instead ofmerely subgraphs (as in the property ofH-freeness, PH ) in the definition of Pk,H . This

is because, assuming H is not a digraph with no edges, then every digraph trivially contains H-free k-subgraphs: A subgraph
with k isolated vertices is an H-free k-subgraph. On the other hand, some ε-far instances for the previously studied H-
freeness property may become acceptable instances of Pk,H . For example, assume G1 = (V1, E1) is a digraph with N − k
vertices that contains a subgraph isomorphic to H and G2 = (V2, E2) is a digraph with k isolated vertices. If we combine G1
and G2 into G3 = (V1∪V2, E1∪E2), then G3 is not anH-free digraph but is a digraphwith anH-free k-induced subgraph. The
existence of H-free subgraphs has been investigated by some recent study [21], so it will be interesting to study property
testing for Pk,H .
Our paper is organized as follows. In Section 2 we use Turán numbers to prove that testing the existence of H-free k-

induced subgraphs isΩ(N2)-evasive. In Section 3 we prove that Pk,H is testable. In Section 4 we use a technique similar to
that used in Section 3 to prove Pk,H is (ε, δ)-testable. In Section 5 we conclude.

2. Existence of H-free k-induced subgraphs IsΩ(N2)-evasive

In this section, we show that the query complexity of any deterministic algorithm for the existence of H-free k-induced
subgraphs isΩ(N2).
First, we need some results concerning Turán numbers. For any integer N and a fixed graph H , let ex(N,H) denote the

maximumnumber of edges that anN-vertex graphmay have if it contains no isomorphic copy ofH . This is the Turán number
of H . Furthermore, we will denote by br,s the complete undirected bipartite graph between a set of r vertices and another
set of s vertices. The following fact is well-known.

Fact 1 ([20]). For r ≤ s, ex(N, br,s) = O(N2−(1/r)).

If we replace the undirected edges of br,s by directed edges with an arbitrary direction, a complete bipartite digraph dr,s
results. The next theorem shows that it isΩ(N2)-evasive to determine if there is a dr,s-free k-induced subgraph in a digraph.
In our model, whenever an algorithm queries a pair of vertices x, y in the input graph, it actually means that the algorithm
queries the existence of edges (x, y) and (y, x) simultaneously. For a set S, we say that a subset T ⊆ S is a k-subset of S if
|T | = k. If a digraph G contains a subgraph isomorphic to a digraph H , then we say that G contains a copy of H.

Theorem 2. For any constant ρ < 1, k < N/2 and any complete bipartite digraph dr,s, no algorithm can determine whether a
digraph contains a dr,s-free k-induced subgraph with query complexity≤ ρ

(k
2

)
if k = λN with λ being a constant.
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Proof. Suppose there exists an algorithm A that determines if a digraph contains a dr,s-free k-induced subgraph with ρ
(k
2

)
queries. For the rest of the proof, assume k = O(N) and k is large enough so that

(1− ρ)
(
k
2

)
≥ ex(k, br,s) = O(k2−(1/r)). (1)

Start with a digraph G1 with N vertices that contains no copies of dr,s (this is easy to construct). Let G1 be the input of A.
Obviously, all k-induced subgraphs of G1 are dr,s-free. Let G2 = (V2, E2) be a graph with N isolated vertices. Every time A
queries a pair of vertices x, y in G1, we add that edge to G2 if there is an edge between them. When A stops, the resulting G2
has no k-induced subgraphs which contain dr,s, just like G1. For those vertex pairs of G1 that are not queried by A, we add an
edge (but without the directions) to G2. For each k-induced subgraph of G2, at least (1− ρ)

(k
2

)
undirected edges are added.

According to Fact 1, every k-induced subgraph of G2 must contain a copy of br,s with the undirected edges alone because
of Eq. (1).
Now, we select a k-induced subgraph K1 in G2 and replace one copy of br,s in K1 by dr,s. Let Vb,1 be the vertex set of this

copy of dr,s, and define h = |Vb,1| = r + s. For each subset of V2 with size k that contains Vb,1, its induced subgraph has a
copy of dr,s too. There are

(N−h
k−h

)
such k-subsets of V that contain Vb,1. Let k/N = λ. Recall that λ is a constant. Now, the ratio

of the number of all such k-subsets to the number of k-induced subgraphs of G2 is
(N−h
k−h

)
/
(N
k

)
. Note that(N−h

k−h

)(N
k

) = k(k− 1) · · · (k− h+ 1)
N(N − 1) · · · (N − h+ 1)

.

As h is a constant and k < N/2, it is not hard to prove that there is a numberm > 0 such that for every N > m it holds that

k
N
>
k− 1
N − 1

> · · · >
k− h+ 2
N − h+ 2

>
k− h+ 1
N − h+ 1

=
(k/N)− (h/N)+ 1/N
1− (h− 1)/N

>
λ

1+ λ
.

Thus if N is large enough,(N−h
k−h

)(N
k

) = k(k− 1) · · · (k− h+ 1)
N(N − 1) · · · (N − h+ 1)

>

(
λ

1+ λ

)h
.

We conclude that at least
(
λ
1+λ

)h (N
k

)
k-induced subgraphs contain a copy of dr,s.

Next we select another k-induced subgraph K2 = (V ′, E ′)with V ′ ∩ Vb,1 = ∅. It is worth noting that K2 also has a copy of
br,s, and the vertex set of br,s is Vb,2. Like what we did before, we replace this copy of br,s in K2 by dr,s. There are

(N−2h
k−h

)
such

k-subsets of V that contain V2. The ratio of the number of all such k-subsets to the number of k-induced subgraphs of G2 is(N−2h
k−h

)
/
(N
k

)
. Again, for N large enough,

lim
N→∞

(N−2h
k−h

)(N
k

) = lim
N→∞

(N−h
k−h

)(N
k

) >

(
λ

1+ λ

)h
.

We claim that in general, for every constant i,(N−ih
k−h

)(N
k

) =
k(k− 1) · · · (k− h+ 1)
N(N − 1) · · · (N − h+ 1)

·
(N − k) · · · (N − k− (i− 1)h+ 1)

(N − h) · · · (N − ih+ 1)

>

(
λ

1+ λ

)h
. (2)

To verify this, recall that as we showed before,

k(k− 1) · · · (k− h+ 1)
N(N − 1) · · · (N − h+ 1)

>

(
λ

1+ λ

)h
.

As for

(N − k) · · · (N − k− (i− 1)h+ 1)
(N − h) · · · (N − ih+ 1)

,

since

N − k
N − h

>
N − k− 1
N − h− 1

> · · · >
N − k− (i− 1)h+ 1

N − ih+ 1



548 H.-Y. Lin et al. / Theoretical Computer Science 407 (2008) 545–553

we have

(N − k)(N − k− 1) · · · (N − k− (i− 1)h+ 1)
(N − h)(N − h− 1) · · · (N − ih+ 1)

>

(
N − k− (i− 1)h+ 1

N − ih+ 1

)(i−1)h
.

Now, with k = λN , it is easy to see that

N − k− (i− 1)h+ 1
N − ih+ 1

>
N − k− (i− 1)h+ 1

N
> (1− 2λ)

where the last inequality is due to k > (i− 1)h− 1. Hence, when we repeat the above process i times, at least

[(1− 2λ)+ (1− 2λ)2 + · · · + (1− 2λ)(i−1)h]
(

λ

1+ λ

)h (N
k

)
(3)

k-induced subgraphs contain a copy of dr,s. Recall that k < N/2. Hence 2λ < 1 and formula (3) is less than 1
2λ

(
λ
1+λ

)h (N
k

)
.

Since λ, h and (λ/(1 + λ))−h are constants, we can repeat this process 2λ(λ/(1+ λ))−h times such that Vb,i ∩ Vb,j = ∅
for i 6= j and N large enough. After having repeated this process that many times, we select 2λ(λ/(1+ λ))−hh < N distinct
vertices from V for N large enough, and, by Eq. (2), the ratio of the number of K2λ(λ/(1+λ))−h to the number of all k-induced
subgraphs of G2 will be at least 2λ(λ/(1+ λ))−h. The number of k-induced subgraphs that contain a copy of dr,s then is at
least 2λ(λ/(1+ λ))−h (λ/(1+λ))

h

2λ

(N
k

)
=
(N
k

)
. In other words, after we repeat this process 2λ(λ/(1+ λ))−h times and remove

the remaining undirected edges, all k-induced subgraphs ofG2will have a copy of dr,s. This digraphG2 contains, therefore, no
H-free k-induced subgraph. However, A cannot distinguish betweenG1 andG2 becausewe have only changedG2’s unqueried
edges. So, Awill accept G2, which is a contradiction. �

3. An ε-tester

Fix a digraph H with h vertices and m ≥ 1 edges. Recall that Pk,H , where k ≥ h, denotes the property that G contains an
H-free k-induced subgraph. We will show that property Pk,H is testable with a query complexity independent of the input
size. A setwith size nwill be called an n-set, and amultiset with size nwill be called an n-multiset. There is a function f (ε;H)
with the following properties, which will be critical to our analysis later.

Theorem 3 ([7]). Let H be a fixed digraph with h vertices and D be a digraph with N vertices. If at least εN2 edges have to be
removed from D to make it H-free, then D contains at least f (ε;H)Nh copies of H.

The following corollary is immediate.

Corollary 4. Let H be a fixed digraph with h vertices and m edges, D be a digraph with N vertices and σ =
((h2)
m

)
. If at least εN2

edges have to be removed fromD tomake it H-free, then D contains at least f (ε;H)Nh/σ h-sets whose induced subgraphs contain
copies of H.

Suppose the input N-vertex digraph G = (V , E) is ε-far from having property Pk,H . Corollary 4 tells us that G must

contain at least f (ε;H)Nh/
((h2)
m

)
h-sets whose induced subgraphs contain copies of H . So to test property Pk,H on G, our idea

is to randomly select many h-sets from V . Suppose G contains an H-free k-induced subgraph, say (Vk, Ek). Then with enough
h-sets from V , at least one of them is expected to be a subset of Vk with high probability. In these cases, we will check if
an h-set S satisfies S ⊆ Vk in 2 steps. First, we check the induced subgraph of S. When S ⊆ Vk, the induced subgraph of S
contains no copies of H . If the induced subgraph of S contains no copies of H , we randomly add a number of other vertices
to S (the number will be determined later) and check if there is a subset of S (with a size to be determined later) whose
induced subgraph contains no copies of H . If S ⊆ Vk, we expect that S will pass these tests with high probability. Thus, G
will be accepted by our algorithm with high probability. On the other hand, suppose G is ε-far from any digraph which has
property Pk,H . Then we expect to find a copy of H in all the induced subgraphs of the above-mentioned h-sets S with high
probability. Our algorithm is detailed in Fig. 1.
We shall need the Chernoff bound in later analysis.

Theorem 5 (Chernoff Bound). Let X = X1 + X2 + · · · + Xn be a sum of n independent random variables such that 0 < Pr[ Xi =
1 ] < 1 holds for each i = 1, 2, . . . , n and µ = E[X]. Then for any 0 < ∆ < 1,

Pr[ X < (1−∆)µ ] < e−µ∆
2/2

where e is the base of the natural logarithm.

Note that in property Pk,H , h is a constant. Hence f (ε;H) is a function in ε only. We assume that H is a fixed digraph with
h vertices andm edges and recall that G is the input digraph with N vertices from now on.
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Fig. 1. The ε-tester.

Definition 6. Let 0 < ε < 1, N, k ∈ N, λ = k/N , H is a fixed digraph with h vertices, m be the number of edges in H ,
σ =

((h2)
m

)
, κ = log

1− (
√
ε)h
2
(1/6) = Θ(1/εh/2), and θ = max{log 6f (ε;H)h!

σλ2
(2/3)1/κ , 1} = Θ(f (ε;H)) when f (ε;H) is only

dependent on 1/ε. If the value of f (ε;H) is large enough such that

(
f (ε;H)h!

((
h
2)
m )λ

)θ
≥ (λ/6)θ (2/3)1/κ , then we say f (ε;H)

satisfies condition 1.

Fact 7 ([7]). For a connected H, f (ε;H) has a polynomial dependency on 1/ε if and only if the core of H is either an oriented tree
or a directed cycle of length 2.

By Fact 7, f (ε;H) has a polynomial dependency on 1/ε in many H . Since the value of f (ε;H) is independent of h and m

and
( 2
3

)1/(θκ)
≤ 1, assuming f (ε;H) = O((1/ε)j), we can find a smaller ε = O

[ ((h2)m )
h!

λ2

6

( 2
3

)1/(θκ)]−j such that
f (ε;H) ≥

((h2)
m

)
h!

λ2

6

(
2
3

)1/(θκ)
i.e.,  f (ε;H)h!((h2)

m

)
λ

θ

≥ (λ/6)θ (2/3)1/κ ;

hence f (ε;H) satisfies condition 1.

Claim 8. Assume 0 < ε < 1, N, k ∈ N and k ≥
√
εN. Suppose the input digraph G = (V , E) with N vertices contains an H-free

k-induced subgraph, say K = (Vk, Ek). The probability of S ⊆ Vk for a random h-subset S ⊆ V is greater than (
√
ε)h/2 for N

large enough.

Proof. The probability of S ⊆ Vk for a random h-set S is(k
h

)(N
h

) = k(k− 1) · · · (k− h+ 1)
N(N − 1) · · · (N − h+ 1)

.

Since k ≥
√
εN , the above probability is at least

√
εN(
√
εN − 1) · · · (

√
εN − h+ 1)

N(N − 1) · · · (N − h+ 1)
>
(
√
ε)h

2

for N large enough. �
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Claim 9. Let 0 < ε < 1, N, k ∈ N, λ = k/N, H is a fixed digraph with h vertices and m be the number of edges in H. Suppose the
input graph G = (V , E) with N vertices is ε-far from any digraph having property Pk,H . The probability of finding an h-set whose

induced subgraph contains copies of H is at least f (ε;H)h!/
[((h2)
m

)
λ
]
.

Proof. By Corollary 4, each k-induced subgraph of G contains at least f (ε;H)Nh/
[((h2)
m

)]
h-sets whose induced subgraphs

contain copies of H . Therefore, by dividing V into N/k k-sets, we can find at least
[
f (ε;H)Nh/

((h2)
m

)]
(N/k) =

f (ε;H)Nh/
[((h2)
m

)
λ
]
h-sets whose induced subgraphs contain copies of H in G, and the probability of finding an h-set whose

induced subgraph contains copies of H is at least

f (ε;H)Nh

((
h
2)
m )λ(N
h

) =
f (ε;H)Nh · 1

λ
· h!

N(N − 1) · · · (N − h+ 1)
((h2)
m

)
>
f (ε;H)h!((h2)

m

)
λ
. �

The following theorem proves the testability of Pk,H .

Theorem 10. Let 0 < ε < 1, 0 < k < N is an integer and H is a fixed digraph. If f (ε;H) satisfies condition 1, the property Pk,H
is testable with a query complexity independent of the input size.

Proof. Suppose k <
√
εN . Since

(k
2

)
< ε

(N
2

)
, the number of edges in a k-induced subgraph is less than εN2. The input graph

G, therefore, cannot be ε-far from any digraph which has property Pk,H , and we can simply accept it. Assume k ≥
√
εN for

the rest of the proof.
Suppose the input digraph G = (V , E) contains an H-free k-induced subgraph, say K = (Vk, Ek). The probability that the

algorithm accepts G is at least the probability of selecting a subset of Vk in step 6 of the algorithm and the tester accepts in
step 12 for some j.
By Claim 8, the probability of S * Vk is at most 1 − (

√
ε)h/2. As we independently select κ h-sets S, the probability

of S * Vk for all κ of them is at most
[
1− (
√
ε)h/2

]κ
= 1/6. Assume S ⊆ Vk from now on. We randomly select p other

vertices (with replacements) in step 8. Denote the jth such (θh)-multiset by Sj. The algorithm then checks if the induced
subgraph of Sj ∪ S contains a copy of H . Let event B mean Sj ∪ S contains a copy of H for all j. Given S ⊆ Vk, if more than
θh vertices are selected from Vk in step 8, then event B will not occur (note that θ ≥ 1). Thus the probability of event B is
at most the probability that the algorithm selects fewer than θh vertices from Vk in step 8. Let y be the number of vertices
of these p vertices selected in step 8 that belong in Vk (with multiplicity counted). Then Pr[ event B ] ≤ Pr [ y < θh]. We
estimate the upper bound of the above probability by the Chernoff bound. As the probability of selecting a vertex in Vk is
k/N = λ and the total number of selections is p = 6θh/λ, we have µ = E[ y ] = (6θh/λ)λ = 6θh. Rewrite Pr[ event B ] =
Pr [ y < (1−∆)6θh ], where ∆ = 5/6. By the Chernoff bound, Pr[ event B ] ≤ e−µ∆

2/2
= e−6θh(5/6)

2/2
= e−25θh/12. Since

θh > 1, Pr[ event B ] < e−2 < 1/6. Hence the probability that we select an h-set from Vk in step 6 that leads to acceptance
in step 12 is at least (1− 1/6)(1− 1/6) > 2/3. The probability that a digraph Gwhich has property Pk,H will be rejected is
thus less than 1/3.
On the other hand, suppose the input graph G = (V , E) is ε-far from any digraph which has property Pk,H . Obviously,

the probability that the algorithm accepts is equal to the probability that we find an h-set S whose induced subgraph does
not contain an H , and after we randomly select p additional vertices (with replacements), there exist a (θh)-multiset Sj from
those p selected vertices such that the induced subgraph of Sj ∪ S contain no copies of H . By Claim 9, the probability of

finding an h-set that contains copies of H is at least f (ε;H)h!/
[((h2)
m

)
λ
]
. For each (θh)-multiset Sj, at least θ disjoint h-sets

are checked; hence the probability that Sj ∪ S contains copies of H is at least f (ε;H)h!((h2)
m

)
λ

θ

= (λ/6)θ · (2/3)1/κ .

We then test
( p
θh

)
(θh)-multisets in step 12. Since(

p
θh

)
=
(6θh/λ)!
(θh)!

=
(6θh/λ)[(6θh/λ)− 1] · · · [(6θh/λ)− θh]

(θh)!
> (6/λ)θh > (6/λ)θ ,

the probability that the induced subgraph of Sj∪S contains copies ofH for all j is at least (6/λ)θ ·(λ/6)θ ·(2/3)1/κ = (2/3)1/κ .
So, for each h-set S that passes the test in step 7, the probability that S does not lead to acceptance in step 12 is at least
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Fig. 2. The (ε, δ)-tester.

(2/3)1/κ . Hence, regardless whether S passes the test in step 7, the probability that none of the S leads to acceptance in step
12 is at least

[
(2/3)1/κ

]κ
= 2/3. Therefore the probability that the algorithm accepts the input is less than 1/3.

The query complexity of step 7 isO
(
h2
)
and the query complexity fromstep 9 to step 10 isO

(( p
θh

)(
θ

2

))
. Since

( p
θh

)(
θh
2

)
> h2,

the query complexity is O
(
κ
( p
θh

)(
θh
2

))
. This value is independent of N . Hence the theorem follows. �

4. An (ε, δ)-Tester

As in Section 3, let H be a fixed digraph with h vertices andm edges and G be the input digraph with N vertices. Observe
that even if the input digraph G = (V , E) is δ-close to having property Pk,H , Gmay contain no H-free k-induced subgraph.
Thus we cannot simply select a subgraph S of Gwith size greater than h and then reject if S contains a copy of H . However,
if G is δ-close to having property Pk,H , then it contains a k-induced subgraph K = (Vk, Ek) such that K contains few, if any,
copies of H . This is because if every k-induced subgraphs of G contain many copies of H , thus G cannot be δ-close to having
property Pk,H . Let L = {M |M is an h-subset of Vk andM ’s induced subgraph contains at least a copy of H}. From the above
observation, we know that many h-subsets of Vk are not members of L. Thus if we select enough numbers of h-subsets from
V , at least one of them is expected to be a subset of Vk and disjoint withM for allM ∈ L.On the other hand, suppose the input
graph G is ε-far from any digraph which has property Pk,H . We expect that when we select reasonably many h-subsets from
V , the induced subgraphs of all of them contain a copy of H. The (ε, δ)-tester that implements the above ideas is detailed in
Fig. 2.

Claim 11. Assume H is a fixed digraph with h vertices, 0 < δ < 1, G = (V , E) is a digraph with N vertices, 0 < k < N is an
integer, λ = k/N and γ = δh(h−1)

λ2
. Let K = (Vk, Ek) be a subgraph of G with k vertices such that at most δ

(N
2

)
edges have to be

removed from K to make it H-free and U = {W |W is an h-subset of Vk whose induced subgraph contains no copies of H}. Then
every time we select an h-subset S from V , the probability of S ∈ U is at least (1− γ )λh.

Proof. We can change at most δ
(N
2

)
edges to make K H-free. These edges will be called bad edges. Since each bad edge

connects two vertices and |Ek| = k, each bad edge is contained in at most
(k−2
h−2

)
copies of H in K . Thus, there are at most

δ
(N
2

)(k−2
h−2

)
h-subsets of K whose induced subgraph contains a copy of H . Hence, every time we select an h-subset S from V ,

the probability of S ∈ U is at least(k
h

)
− δ

(N
2

)(k−2
h−2

)(N
h

) =

k!
(k−h)!h! − δ

N!
(N−2)!2!

(k−2)!
(k−h)!(h−2)!

N!
(N−h)!h!

=

k(k−1)···(k−h+1)
h! −

δN(N−1)
2

(k−2)(k−3)···(k−h+1)
(h−2)!

N(N−1)···(N−h+1)
h!

=
k(k− 1) · · · (k− h+ 1)
N(N − 1) · · · (N − h+ 1)

−
δ(k− 2)(k− 3) · · · (k− h+ 1)h(h− 1)

2(N − 2) · · · (N − h+ 1)
.

As c is a constant, limN→∞ k−c
N−c = λ. As

lim
N→∞

(k
h

)
− δ

(N
2

)(k−2
h−2

)(N
h

) = λh −
δ

2
λh−2h(h− 1) =

(
1−

δh(h− 1)
2λ2

)
λh

= (1− γ /2)λh > (1− γ )λh,

the probability of S ∈ U is at least (1− γ )λh with N large enough. �
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Definition 12. Let N, k ∈ N, λ = k/N , γ = δh(h−1)
λ2
, H be a fixed digraph with h vertices and m be the number of edges in

H . If λ, h and δ satisfy log(1−γ )λh 2/3 > 0 and if f (ε;H) is such that

[
1− f (ε;H)h!

((
h
2)
m )λ

]
<

(1−γ )λh

2
1/ log

(1−γ )λh 2/3
, then we say Pk,H and

f (ε;H) satisfy condition 2.

By Fact 7, f (ε;H) has a polynomial dependency on 1/ε for many H. Suppose Pk,H satisfies condition 2. Since λ, h and δ

are independent of ε, nomatter what the value of
[
1− (1−γ )λh

2
1/ log

(1−γ )λh 2/3

]
((
h
2)
m )λ
h! is, we can find a smaller ε such that the value

of f (ε;H) is greater than
[
1− (1−γ )λh

2
1/ log

(1−γ )λh 2/3

]
((
h
2)
m )λ
h! and thus satisfies condition 2.

Theorem 13. Let 0 < ε, δ < 1, k,N be integers, 0 < k < N and H be a fixed digraph. For Pk,H and f (ε;H) satisfying condition
2 and assume the input is a digraph with N vertices, the property Pk,H is (ε, δ)-testable with a query complexity independent of
the input size.

Proof. As in the proof of Theorem 10, we accept the input if k <
√
εN . Now assume k ≥

√
εN for the rest of the proof.

Suppose the input graph G = (V , E) is δ-close to a digraph which has property Pk,H . Then G must contain a k-induced
subgraph K = (Vk, Ek) such that we can change at most δ

(N
2

)
edges to make K H-free. Just like the proof of Theorem 10, the

probability that the algorithm accepts G is at least the probability of selecting log(1−γ )λh2/3 h-subsets of V in step 5 of the
algorithm and at least one of them whose induced subgraph contains no copies of H.
After we independently select log(1−γ )λh2/3 h-subsets from V , by Claim 11, the probability of selecting at least one S ∈ U

is [(1− γ )λh]log(1−γ )λh 2/3 = 2/3. It means that Gwill be accepted with probability at least 2/3.
On the other hand, suppose the input graph G = (V , E) is ε-far from any digraph having property Pk,H . The probability

that the algorithm accepts G is the probability that we find at least an h-subset whose induced subgraph does not contain
an H in step 5 of the algorithm. By Claim 9, the probability of finding an h-subset that contains no copies of H is at most
1− f (ε;H)h!

((
h
2)
m )λ

. Since f (ε;H) satisfies condition 2, the probability of selecting at least one H-free h-subset is at most

1− f (ε;H)h!((h2)
m

)
λ

log(1−γ )λh 2/3 < [
(1− γ )λh

21/ log(1−γ )λh 2/3

]log
(1−γ )λh 2/3

=
[
(1− γ )λh

]log
(1−γ )λh 2/3

[
1

21/ log(1−γ )λh 2/3

]log
(1−γ )λh 2/3

=
2
3
·
1
2
= 1/3.

It means that Gwill be rejected with probability at least 2/3.
It is clear that the query complexity is independent of N , as in the proof of Theorem 10. �

Property Pk,H may not satisfy condition 2 for some k and H . As our (ε, δ)-tester only works when condition 2 is satisfied,
compared with the ε-tester in Section 3, there are different restrictions on using the (ε, δ)-tester. Therefore, we cannot
simply use an (ε, 0)-tester as an ε-tester.

5. Conclusion

We prove that there is no efficient algorithm that can determine whether a digraph contains an H-free k-induced
subgraph. Then we create two property testing algorithms to supply an approximate answer with constant query
complexities. The results holdwith the following oracle:we can specify any adjacencymatrix of a digraphG and askwhether
an edge exists between any pair of vertices. The query complexities of our property testing algorithms are independent of
the input digraph’s size.

References

[1] Ronitt Rubinfeld,Madhu Sudan, Robust characterizations of polynomialswith applications to program testing, SIAM J. Comput. 25 (2) (1996) 252–271.
[2] Richard C. Holt, Edward M. Reingold, On the time required to detect cycles and connectivity in graphs, Math. Syst. Theory 6 (2) (1972) 103–106.
[3] Béla Bollobás, Complete subgraphs are elusive, J. Combin. Theory Ser. B 21 (1976) 1–7.
[4] Catherine E. Chronaki, A survey of evasiveness: Lower bounds on the decision-tree complexity of boolean functions, Available on: http://www.ics.
forth.gr/∼chronaki/papers/ur/eve.ps, 2002.

[5] David G. Kirkpatrick, Determining graph properties from matrix representations, in: STOC, 1974, pp. 84–90.
[6] Ronald L. Rivest, Jean Vuillemin, A generalization and proof of the Aanderaa–Rosenberg conjecture, in: STOC, 1975, pp. 6–11.
[7] Noga Alon, Asaf Shapira, Testing subgraphs in directed graphs, in: STOC, 2003, pp. 700–709.

http://www.ics.forth.gr/~chronaki/papers/ur/eve.ps
http://www.ics.forth.gr/~chronaki/papers/ur/eve.ps
http://www.ics.forth.gr/~chronaki/papers/ur/eve.ps
http://www.ics.forth.gr/~chronaki/papers/ur/eve.ps
http://www.ics.forth.gr/~chronaki/papers/ur/eve.ps
http://www.ics.forth.gr/~chronaki/papers/ur/eve.ps
http://www.ics.forth.gr/~chronaki/papers/ur/eve.ps
http://www.ics.forth.gr/~chronaki/papers/ur/eve.ps
http://www.ics.forth.gr/~chronaki/papers/ur/eve.ps
http://www.ics.forth.gr/~chronaki/papers/ur/eve.ps


H.-Y. Lin et al. / Theoretical Computer Science 407 (2008) 545–553 553

[8] Oded Goldreich, Shafi Goldwasser, Dana Ron, Property testing and its connection to learning and approximation, J. ACM 45 (4) (1998) 653–750.
[9] Noga Alon, Asaf Shapira, A characterization of easily testable induced subgraphs, in: SODA, 2004, pp. 942–951.
[10] Noga Alon, Eldar Fischer, Michael Krivelevich, Mario Szegedy, Efficient testing of large graphs, in: FOCS, 1999, pp. 656–666.
[11] Noga Alon, Eldar Fischer, Ilan Newman, Asaf Shapira, A combinatorial characterization of the testable graph properties: It’s all about regularity, in:

STOC, 2006, pp. 251–260.
[12] Oded Goldreich, Dana Ron, A sublinear bipartiteness tester for bounded degree graphs, Combinatorica 19 (3) (1999) 335–373.
[13] Yevgeniy Dodis, Oded Goldreich, Eric Lehman, Sofya Raskhodnikova, Dana Ron, Alex Samorodnitsky, Improved testing algorithms for monotonicity,

in: RANDOM-APPROX, 1999, pp. 97–108.
[14] Funda Ergun, Sampath Kannan, Ravi Kumar, Ronitt Rubinfeld, Mahesh Viswanathan, Spot-checkers, in: STOC, 1998, pp. 259–268.
[15] Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, Alex Samorodnitsky, Testing monotonicity, Combinatorica 20 (3) (2000) 301–337.
[16] Michael J. Kearns, Dana Ron, Testing problems with sublearning sample complexity, J. Comput. System Sci. 61 (3) (2000) 428–456.
[17] Michal Parnas, Dana Ron, Ronitt Rubinfeld, Tolerant property testing and distance approximation, Electron. Colloq. Comput. Complex. (ECCC) 11 (10)

(2004).
[18] Eldar Fischer, Lance Fortnow, Tolerant versus intolerant testing for boolean properties, Electron. Colloq. Comput. Complex. (ECCC) 11 (105) (2004).
[19] Eldar Fischer, Ilan Newman, Testing versus estimation of graph properties, in: STOC, 2005, pp. 138–146.
[20] Tamas Kövari, Vera T. Sós, Paul Turán, On a problem of K. Zarankiewicz, Colloq. Math. 3 (1954) 50–57.
[21] Uriel Feige, Shimon Kogan, The hardness of approximating hereditary properties. Available on: http://research.microsoft.com/research/theory/feige/

homepagefiles/hereditary.pdf, 2005.

http://research.microsoft.com/research/theory/feige/homepagefiles/hereditary.pdf
http://research.microsoft.com/research/theory/feige/homepagefiles/hereditary.pdf
http://research.microsoft.com/research/theory/feige/homepagefiles/hereditary.pdf
http://research.microsoft.com/research/theory/feige/homepagefiles/hereditary.pdf
http://research.microsoft.com/research/theory/feige/homepagefiles/hereditary.pdf
http://research.microsoft.com/research/theory/feige/homepagefiles/hereditary.pdf
http://research.microsoft.com/research/theory/feige/homepagefiles/hereditary.pdf
http://research.microsoft.com/research/theory/feige/homepagefiles/hereditary.pdf
http://research.microsoft.com/research/theory/feige/homepagefiles/hereditary.pdf
http://research.microsoft.com/research/theory/feige/homepagefiles/hereditary.pdf

	Testing whether a digraph contains H-free k-induced subgraphs
	Introduction
	Existence of H-free k-induced subgraphs Is Ω (N2)-evasive
	An ε-tester
	An (ε, δ)-Tester
	Conclusion
	References


