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a b s t r a c t

The effect of phase inversion of radiofrequency pulses on the recoupling of anisotropic chemical shift and
heteronuclear magnetic dipole–dipole interactions has been investigated by a simple analytical treatment.
For the recoupling of chemical shift anisotropy, the evolution of the spin system will be different if the sign
of all rf phases is inverted. This phenomenon is readily explained by the higher-order effect of average
Hamiltonian theory. On the contrary, such dramatic phase inversion effect is not observed for heteronu-
clear dipolar recoupling, which can also be rationalized in our treatment. Numerical simulations are car-
ried out to corroborate our analytical results and experimental verification is obtained for [1-13C]-alanine.

� 2009 Published by Elsevier B.V.
1. Introduction

Solid-state nuclear magnetic resonance (SSNMR) has proven to
be a powerful technique for the structural elucidation of biological
solids [1]. The techniques used to restore the anisotropic interac-
tions under the high-resolution condition provided by magic-angle
spinning (MAS) are generally known as recoupling [2,3]. Recently,
Levitt and co-workers have developed a splendid collection of sym-
metry-based pulse sequences, which have provided a very general
theoretical framework for the discussion of rotor synchronized
recoupling pulse sequences in SSNMR spectroscopy [4,5]. In partic-
ular, CNm

n pulse sequences comprise N repetitions of a subcycle C,
spanning a total of n rotor periods (nsR) [4,6,7]. C is a radiofre-
quency (rf) pulse sequence of length sC = nsR/N, comprising of
pulses that the net rotation in each subcycle is an integer multiple
of 2p. An overall rf phase shift 2pqm/N is applied to the qth repeti-
tion of C, where q is an integer running from 0 to N � 1. By chang-
ing the m of CNm

n to �m, the sign of all rf phases are inverted. This
operation is equivalent to a reflection of the excitation field in
the xz-plane [5], which may cause a sign change of the first-order
average Hamiltonian, depending on the parity of the spin interac-
tion under consideration [8]. This property has been exploited for
the design of supercycle to suppress undesirable higher order ef-
fects in CNm

n sequences [4].
In this work, we show that one may need to be cautious to the

correspondence between spin-dynamics phases and pulse program
phases of NMR spectrometers [9–11] for the data analyses of
chemical shift recoupling experiments, because of the effect of
phase inversion on the spin dynamics. As an experimental verifica-
tion, measurements were carried out for [1-13C]-L-alanine. On the
Elsevier B.V.
other hand, we find that such sign inversion of the rf pulses is of
no significant consequence for heteronuclear dipolar recoupling
up to the second-order, in stark contrast to the case of chemical
shift interaction. Although we focus on the CNm

n and RNm
n sequences

in our treatment, our results are generally valid for any rotor-syn-
chronized recoupling pulse sequences.

2. Theory

2.1. Chemical shift anisotropy (CSA)

Under the condition of magic angle spinning (MAS), the Hamil-
tonian of an isolated spin 1/2 system can be expressed in the fol-
lowing form (for simplicity we ignore the terms of isotropic
chemical shift and resonance offset):

HðtÞ ¼ HrfðtÞ þ HCSAðtÞ; ð1Þ
HCSAðtÞ ¼ xCSAðtÞIz: ð2Þ

In the interaction frame defined by an rf Hamiltonian of the follow-
ing form:

Hrf ðtÞ ¼ xxðtÞIx þxyðtÞIy ð3Þ

the anisotropic chemical shift Hamiltonian becomes

HT
CSAðtÞ ¼ xCSAðtÞU�1

rf IzUrf ; ð4Þ

Urf ¼ bT exp �i
Z t

0
ðxxðt0ÞIx þxyðt0ÞIyÞdt0

� �
: ð5Þ

When we change the sign of all phases of the applied rf pulses, the rf
Hamiltonian becomes

Hrf�ðtÞ ¼ xxðtÞIx �xyðtÞIy ð6Þ

and we hence obtain for the phase inversion case the following
results:
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HT
CSA�ðtÞ ¼ xCSAðtÞU�1

rf�IzUrf�; ð7Þ

Urf� ¼ bT exp �i
Z t

0
ðxxðt0ÞIx �xyðt0ÞIyÞdt0

� �
: ð8Þ

The unitary operator Urf and its phase inversion analog are related
by a p rotation about the x axis, denoted by R ¼ expð�ipIxÞ:

Urf� ¼ R�1Urf R ð9Þ

and

U�1
rf� ¼ ðR

�1Urf RÞ�1 ¼ R�1U�1
rf R: ð10Þ

Consequently, HT
CSA� and HT

CSA have the following relationship:

HT
CSA�ðtÞ ¼ xCSAðtÞU�1

rf�IzUrf� ¼ xCSAðtÞR�1U�1
rf RIzR

�1Urf R

¼ �xCSAðtÞR�1U�1
rf IzUrf R ¼ �R�1HT

CSAðtÞR: ð11Þ

In general, the chemical shift Hamiltonian in the interaction frame
has the following form:

HT
CSAðtÞ ¼ aðtÞIx þ bðtÞIy þ cðtÞIz: ð12Þ

Based on the above result, we obtain

HT
CSA�ðtÞ ¼ �R�1HT

CSAR ¼ �aðtÞIx þ bðtÞIy þ cðtÞIz: ð13Þ

Using the Magnus expansion, the lowest-order average Hamiltonian
over a time period of tc can be expressed as

Hð1ÞCSA ¼
1
tc

Z tc

0
aðt0ÞIx dt0 þ 1

tc

Z tc

0
bðt0ÞIy dt0 þ 1

tc

Z tc

0
cðt0ÞIz dt0

� a1Ix þ b1Iy þ c1Iz; ð14Þ

where the magnitudes of the constants a1, b1, and c1 depend on the
particulars of the rf pulse sequence. Similarly, we have

Hð1ÞCSA� ¼ �a1Ix þ b1Iy þ c1Iz: ð15Þ

The corresponding second-order Hamiltonians are calculated as

Hð2ÞCSA ¼
�i
2tc

Z tc

0
dt
Z t

0
dt0aðtÞbðt0Þ½Ix; Iy�

þ �i
2tc

Z tc

0
dt
Z t

0
dt0bðtÞaðt0Þ½Iy; Ix�

þ �i
2tc

Z tc

0
dt
Z t

0
dt0aðtÞcðt0Þ½Ix; Iz�

þ �i
2tc

Z tc

0
dt
Z t

0
dt0cðtÞaðt0Þ½Iz; Ix�

þ �i
2tc

Z tc

0
dt
Z t

0
dt0bðtÞcðt0Þ½Iy; Iz�

þ �i
2tc

Z tc

0
dt
Z t

0
dt0cðtÞbðt0Þ½Iz; Iy�

� a2Ix þ b2Iy þ c2Iz: ð16Þ
Similarly, we obtain for the phase inversion case the following
results:

Hð2ÞCSA� ¼ �
�i
2tc

Z tc

0
dt
Z t

0
dt0aðtÞbðt0Þ½Ix; Iy�

� �i
2tc

Z tc

0
dt
Z t

0
dt0bðtÞaðt0Þ½Iy; Ix�

� �i
2tc

Z tc

0
dt
Z t

0
dt0aðtÞcðt0Þ½Ix; Iz�

� �i
2tc

Z tc

0
dt
Z t

0
dt0cðtÞaðt0Þ½Iz; Ix�

þ �i
2tc

Z tc

0
dt
Z t

0
dt0bðtÞcðt0Þ½Iy; Iz�

þ �i
2tc

Z tc

0
dt
Z t

0
dt0cðtÞbðt0Þ½Iz; Iy� ¼ a2Ix � b2Iy � c2Iz: ð17Þ
When Hð1ÞCSA is non-gamma encoded, i.e. a1 = b1 = 0, we have

Hð1ÞCSA ¼ Hð1ÞCSA� ¼ c1Iz: ð18Þ

Presumably all the second-order terms not commuting with Iz will
be truncated and hence we obtain the overall average Hamiltonian
up to the second-order term as

HCSA ffi ðc1 þ c2ÞIz; ð19Þ
HCSA� ffi ðc1 � c2ÞIz: ð20Þ

It is noteworthy that the phase inversion of all the rf pulses will af-
fect the spin dynamics if the second-order effects are significant.

On the other hand, when Hð1ÞCSA is gamma encoded, i.e. c1 = 0, we
have

Hð1ÞCSA ¼ a1Ix þ b1Iy; ð21Þ
Hð1ÞCSA� ¼ �a1Ix þ b1Iy: ð22Þ

Note that the evolution of the spin system described by Hð1ÞCSA and
Hð1ÞCSA� is identical when the initial density operator is proportional
to Iz. Nevertheless, when the second-order terms containing the
transverse spin operators are included, we obtain

HCSA ffi Hð1ÞCSA þ Hð2ÞCSA ¼ ða1 þ a2ÞIx þ ðb1 þ b2ÞIy; ð23Þ
HCSA� ffi Hð1ÞCSA� þ Hð2ÞCSA� ¼ ð�a1 þ a2ÞIx þ ðb1 � b2ÞIy: ð24Þ

Because the magnitudes of jHCSAj and jHCSA�j are different, it can be
concluded again that the phase inversion of all the rf pulses will af-
fect the spin dynamics if the second-order effects are significant.
2.2. Heteronuclear dipole–dipole interaction

Consider an isolated spin-pair of the heteronuclei I and S. Fol-
lowing the procedure described above, the heteronuclear dipolar
Hamiltonians in the interaction frame transformed by the rf se-
quences described in Eqs. (3) and (6) are calculated as

HT
ISðtÞ ¼ aðtÞIxSz þ bðtÞIySz þ cðtÞIzSz; ð25Þ

HT
IS�ðtÞ ¼ �aðtÞIxSz þ bðtÞIySz þ cðtÞIzSz: ð26Þ

Using the Magnus expansion, the lowest-order Hamiltonians are
written as:

Hð1ÞIS ¼ a1IxSz þ b1IySz þ c1IzSz; ð27Þ
Hð1ÞIS� ¼ �a1IxSz þ b1IySz þ c1IzSz ð28Þ

and the second-order Hamiltonians are obtained as

Hð2ÞIS ¼
�i
2tc

Z tc

0
dt
Z t

0
dt0½HTðtÞ;HTðt0Þ�

¼ �i
2tc

Z tc

0
dt
Z t

0
dt0aðtÞbðt0Þ½IxSz; IySz�

þ �i
2tc

Z tc

0
dt
Z t

0
dt0bðtÞaðt0Þ½IySz; IxSz�

þ �i
2tc

Z tc

0
dt
Z t

0
dt0aðtÞcðt0Þ½IxSz; IzSz�

þ �i
2tc

Z tc

0
dt
Z t

0
dt0cðtÞaðt0Þ½IzSz; IxSz�

þ �i
2tc

Z tc

0
dt
Z t

0
dt0bðtÞcðt0Þ½IySz; IzSz�

þ �i
2tc

Z tc

0
dt
Z t

0
dt0cðtÞbðt0Þ½IzSz; IySz�

¼ a2Ix þ b2Iy þ c2Iz; ð29Þ



310 F.-C. Chou et al. / Chemical Physics Letters 470 (2009) 308–312
Hð2ÞIS� ¼ a2Ix � b2Iy � c2Iz: ð30Þ

Hence, the average Hamiltonians up to the second-order terms are

HIS ffiHð1ÞIS þHð2ÞIS ¼ a1IxSzþb1IySzþ c1IzSzþa2Ixþb2Iyþ c2Iz; ð31Þ
HIS� ffiHð1ÞIS� þHð2ÞIS� ¼�a1IxSzþb1IySzþ c1IzSzþa2Ix�b2Iy� c2Iz: ð32Þ

For the non-gamma encoded case, i.e. a1 = b1 = 0, Eqs. (31) and (32)
are simplified to read

�HIS ffi c1IzSz þ c2Iz; ð33Þ
�HIS� ffi c1IzSz � c2Iz; ð34Þ

where we assume that the first-order terms will truncate those sec-
ond-order terms which do not commute with Iz. If the initial density
operator is proportional to Ix, the evolution of the system is calcu-
lated as

qðtcÞ ¼ expð�iHIStcÞIx expðiHIStcÞ
¼ expð�ic1IzSztcÞ expð�ic2IztcÞIx expðic2IztcÞ expðic1IzSztcÞ
¼ cosðc1tcÞ cosðc2tcÞIx þ cosðc1tcÞ sinðc2tcÞIy þ � � � ð35Þ

and

q� ðtcÞ ¼ expð�iHIS�tcÞIx expðiHIS�tcÞ
¼ expð�ic1IzSztcÞ expðic2IztcÞIx expð�ic2IztcÞ expðic1IzSztcÞ
¼ cosðc1tcÞ cosðc2tcÞIx � cosðc1tcÞ sinðc2tcÞIy þ � � � ð36Þ

for the phase inversion case. Other multiple-quantum terms are
dropped in Eqs. (35) and (36). In stark contrast to the case of CSA,
the phase inversion of the rf pulses would not cause any appreciable
difference in the x-component of the magnetization. Consider the
gamma encoded case, i.e. c1 = 0, Eqs. (31) and (32) are simplified
to read:

HIS ffi Hð1ÞIS þ Hð2ÞIS ¼ a1IxSz þ b1IySz þ a2Ix þ b2Iy þ c2Iz; ð37Þ
HIS� ffi Hð1ÞIS� þ Hð2ÞIS� ¼ �a1IxSz þ b1IySz þ a2Ix � b2Iy � c2Iz: ð38Þ

In general, the first- and second-order terms of Eqs. (37) and (38) do

not commute. For convenience, we define the projection of a2Ixþ

b2Iy þ c2Iz onto a1Ix þ b1Iy as fða1a2 þ b1b2Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 þ b2
1

q
gða1Ix þ b1IyÞ;

which does commute with the first-order term of Eq. (37). For Eq.
(38), we can define a similar quantity. Consequently, after incorpo-
rating the truncation effect by the first-order terms, Eqs. (37) and
(38) become

HIS ¼ a1IxSz þ b1IySz þ pða1Ix þ b1IyÞ; ð39Þ
HIS� ¼ �a1IxSz þ b1IySz � pð�a1Ix þ b1IyÞ; ð40Þ

where

p � ða1a2 þ b1b2Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 þ b2
1

q
: ð41Þ

Accordingly, the time evolution operator can be expressed as

UIS ¼ expð�iHIStcÞ
¼ expf�i½ða1IxSz þ b1IySzÞ þ pða1Ix þ b1IyÞ�tcg
¼ exp½�iða1IxSz þ b1IySzÞtc� exp½�ipða1Ix þ b1IyÞtc�; ð42Þ

UIS� ¼ expð�iHIS�tcÞ
¼ expf�i½ð�a1IxSz þ b1IySzÞ � pð�a1Ix þ b1IyÞ�tcg
¼ exp½�ið�a1IxSz þ b1IySzÞtc� exp½ipð�a1Ix þ b1IyÞtc� ð43Þ

because ½a1IxSz þ b1IySz; a1Ix þ b1Iy� ¼ 0 and ½�a1IxSz þ b1IySz;�a1Ixþ
b1Iy� ¼ 0. If the initial density operator is proportional to Iz, based
on Eq. (42) the evolution of the system is calculated as
qðtcÞ ¼ UISIzU�1
IS

¼ exp½�iða1IxSz þ b1IySzÞtc� exp½�ipða1Ix þ b1IyÞtc�Iz

� exp½ipða1Ix þ b1IyÞtc� exp½iða1IxSz þ b1IySzÞtc�

¼ cosð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 þ b2
1

q
tcÞ cosðp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 þ b2
1

q
tcÞIz þ � � � ð44Þ

For the phase inversion case, we obtain

q�ðtcÞ ¼ UIS�IzU�1
IS� ¼ exp½�ið�a1IxSz þ b1IySzÞtc�

� exp½ipð�a1Ix þ b1IyÞtc�Iz exp½ið�a1IxSz þ b1IySzÞtc�

� exp½�ipð�a1Ix þ b1IyÞtc� ¼ cosð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 þ b2
1

q
tcÞ

� cosðp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 þ b2
1

q
tcÞIz þ � � � ð45Þ

The result is similar to the non-gamma encoded case: the phase
inversion of the rf pulses would not cause any appreciable differ-
ence in the z-component of the magnetization.

3. Experimental methods

All NMR experiments were carried out at 13C and 1H frequencies
of 75.5 MHz and 300.1 MHz, respectively, on a Bruker DSX300
NMR spectrometer equipped with a commercial 2.5 mm triple-res-
onance probe. The magic-angle spinning (MAS) frequency was set
to 10 kHz and its variation was limited to ±4 Hz using a commer-
cial pneumatic control unit (Bruker, MAS II). The sample was con-
fined in the middle one-half of the rotor volume using Teflon
spacers. Typically, during the cross-polarization contact time
(1.5 ms), the 1H nutation frequency was set to 50 kHz and that of
13C was ramped through the Hartmann–Hahn matching condition
[12,13]. Continuous-wave and XiX [14] proton decouplings of
120 kHz were applied during the recoupling and the t2 acquisition
periods, respectively. For the pulse symmetry of C41

3, the POST
composite pulse is incorporated into each subcycle [15]. During
the C41

3 recoupling period, the 13C nutation frequency was set to
26.7 kHz.

Numerical simulations were carried out using the package
SIMPSON (version 1.1.2) [16]. The maximum time step over which
the Hamiltonian was approximated to be time independent was
set to 0.1% of the rotor period. Typically, a powder averaging
scheme containing 320 REPULSION angles (a and b) [17] and 36
c angles was chosen. Relaxation effects were ignored.
4. Results and discussion

4.1. Numerical simulations

To verify the phase inversion effect, we have carried out simu-
lations based on two pulse symmetries, viz. R121

9 and C41
3, which

can be used to recouple the chemical shift interaction or heteronu-
clear dipole–dipole interaction. The R121

9 sequence is non-gamma
encoded, whereas C41

3 is gamma encoded. Fig. 1 shows the simula-
tions obtained for the CSA recoupling at two different spinning fre-
quencies. As predicted by our earlier analysis, both gamma-
encoded and non-gamma-encoded pulse sequences show a signif-
icant effect of phase inversion, which is verified to be a conse-
quence of the higher-order effects because such dependence
vanishes at the MAS frequency of 100 kHz. At the MAS frequency
of 100 kHz, the 13C recoupling fields were set to 267 kHz and
133 kHz for POST-C41

3 and R121
9, respectively. Therefore, the evolu-

tion of the spin system must be governed, to a good approximation,
by the first-order Hamiltonian, which is not affected by phase
inversion. Fig. 2 shows the simulations of the heteronuclear dipolar
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recoupling. At a spinning frequency of 10 kHz, the recoupling fields
were set to 13.33 kHz and 26.67 kHz for R121

9 and C41
3, respectively.

In comparison with the results obtained for a MAS frequency of
100 kHz, the higher-order effects are quite significant at long
dephasing time. As expected, we find that the phase inversion
has no effect on the spin evolution even in the regime of long
dephasing time. This dramatic difference in the case of CSA and
heteronuclear dipolar recoupling is completely in line with the
prediction of our analytical treatment.
Fig. 1. Simulations of CSA recoupling for a single 13C spin by different rf pulse symmetrie
nullified. Only the anisotropic chemical shift interaction was considered. The dashed an
and inversed rf phases, respectively. The solid line corresponds to simulation carried out a
overlap perfectly. (a) C41

3, the initial density operator and the detection operator were bot
set to Ix.

Fig. 2. Simulations of heteronuclear recoupling for an isolated 13C–15N spin pair. Only the
constant was set to 5 kHz. The dashed and solid lines represent simulations carried out
regular and inversed rf phases overlap perfectly. Other simulation conditions are referre
4.2. Experimental verification

Experimentally we found that the phase convention of our 13C
channel is identical to that of the SIMPSON program. The experi-
ment was carried out by adjusting the phase of an rf pulse to spin-
lock the magnetization evolved under the influence of a predefined
offset. Our result is consistent with what reported earlier [11]. CSA
recoupling experiments were performed on [1-13C]-L-alanine. Be-
cause the 13C homonuclear dipolar coupling in [1-13C]-L-alanine
s. The CSA, defined as dzz � diso, was set to 5 kHz and the asymmetry parameter was
d dotted lines represent simulations under a MAS frequency of 10 kHz with regular
t a MAS frequency of 100 kHz, for which the results of regular and inversed rf phases
h set to Iz. (b) R129

1 the initial density operator and the detection operator were both

magnetic dipole–dipole interaction was considered, for which the dipolar coupling
at MAS frequencies of 10 kHz and 100 kHz, respectively. In all cases, the results of
d to the caption of Fig. 1.



Fig. 3. Experimental and simulation data obtained for [1-13C]-L-alanine. Simulation
was carried out for a single 13C spin, where the anisotropic chemical shift data were
taken from the literature [18]. The triangles and squares represent the experimental
data of C41

3 with regular and inversed phases, respectively. The solid and dashed
lines represent the corresponding simulation results. All the rf field strengths and
durations were matched to the experimental conditions and there were no
adjustable parameters in the simulations.
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is about 102 Hz, which is much weaker than the CSA of carbonyl
carbon (5210 Hz at 7.05 Tesla), we can neglect the homonuclear
dipolar coupling in the data analysis. Fig. 3 shows the experimental
and simulation results. Our results highlight again that it is very
important to clarify the correspondence between spin-dynamics
phases in simulations and pulse program phases of NMR spectrom-
eters, which can, fortunately, be determined experimentally [9–
11].
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