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a b s t r a c t

This paper is concerned with the spatiotemporal mapping of monthly 8-h average ozone (O3) concen-
trations over California during a 15-years period. The basic methodology of our analysis is based on the
spatiotemporal random field (S/TRF) theory. We use a S/TRF decomposition model with a dominant
seasonal O3 component that may change significantly from site to site. O3 seasonal patterns are estimated
and separated from stochastic fluctuations. By means of Bayesian Maximum Entropy (BME) analysis,
physically meaningful and sufficiently detailed space–time maps of the seasonal O3 patterns are
generated across space and time. During the summer and winter months the seasonal O3 concentration
maps exhibit clear and progressively changing geographical patterns over time, suggesting the existence
of relationships in accordance with the typical physiographic and climatologic features of California. BME
mapping accuracy can be superior to that of other techniques commonly used by EPA; its framework can
rigorously assimilate useful data sources that were previously unaccounted for; the generated maps offer
valuable assessments of the spatiotemporal O3 patterns that can be helpful in the identification of
physical mechanisms and their interrelations, the design of human exposure and population health
models, and in risk assessment. As they focus on the seasonal patterns, the maps are not contingent on
short-time and locally prevalent weather conditions, which are of no interest in a global and non-
forecasting framework. Moreover, the maps offer valuable insight about the space–time O3 concentration
patterns and are, thus, helpful for disentangling the influence of explanatory factors or even for iden-
tifying some influential ones that could have been otherwise overlooked.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Tropospheric ozone (O3) is photochemically produced from the
combination of volatile organic compounds and oxides of nitrogen
in the presence of sunlight (Clark, 1980; Trainer et al., 1987; Logan,
1989; Diem, 2000). Remarkably, due to increased anthropogenic
emissions of nitrogen oxides, background levels of O3 have doubled
since the mid-19th century (Finlayson-Pitts and Pitts, 1997).
Increases in O3 are a public health concern because the gas can
enter the lung and exert oxidative stress (Carroll et al., 1997;
Mudway and Kelly, 2004; Koike and Kobayashi, 2004). As a matter
of fact, numerous research studies have linked O3 to cardiorespi-
ratory health problems in humans (Chen et al., 2004, 2007). The
dynamic distribution of O3 in various parts of the world has been
studied using spatiotemporal statistics and integrated emission
models (Christakos and Vyas, 1998; Christakos and Kolovos, 1999;
x: þ886 2 23635854.

All rights reserved.
Tao et al., 2005; Christakos et al., 2004; Yu et al., 2008). Questions
about O3 health hazards correspond to three basic lines of inves-
tigation (Christakos and Hristopulos, 1998): (a) define the exposure
conditions across space–time; (b) relate exposure to burden in the
human body; and (c) detect adverse health effects and assess
population damages.

Exposure generally refers to the contact of a human receptor
with the environmental pollutant. In observational epidemiology,
usually exposure is considered equal to the airborne pollutant
concentration at a specific point in space and time in relation to the
human population receptor (Schneider et al., 1997; Thurston and
Ito, 2001; Sram et al., 2005). As a result, the generation of realistic
spatiotemporal O3 maps is essential in the evaluation of the
assumptions underlying the health response models and the
assessment of the damage on human populations due to O3 expo-
sure (Solomon et al., 2000; Tao et al., 2004).

The present study is part of a multiyear investigation into the
effects of ambient air pollutant exposure on mortality in California.
The study builds on earlier research (Jerrett et al., 2005) with the
specific aim of improving the spatiotemporal exposure assessment

mailto:hlyu@ntu.edu.tw
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Fig. 1. Locations of the 262 sites that were active (i.e., at least one measurement was
available) for 8-h average monthly O3 monitoring during the years 1988–2002, along
with the amplitude (in ppm) of the estimated seasonal component (lowest amplitude
in black and highest amplitude in white).
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in order to rigorously estimate the mortality effects in a multi-
pollutant context.

2. Spatiotemporal statistics model

Spatiotemporal analysis based on the Bayesian Maximum
Entropy (BME) theory (Christakos, 1992, 2000; Christakos et al.,
2002) distinguishes between: (a) the core (or general) knowledge
base (KB), denoted by G–KB (it may include physical laws, primitive
equations, and theoretical models of space–time dependence); and
(b) the specificatory (or site-specific) KB, S–KB, which may include
exact numerical values across space (hard data), intervals (there is
not a unique data value available at a location but, instead, an
interval of possible values), and probability functions (the datum at
the specified space–time location has the form of a probability
distribution). The total KB is denoted by K ¼ GWS, i.e. it includes
both the core and the site-specific KB.

Due to the considerable physical uncertainty (caused by phys-
iographic characteristics, emission fluctuations, meteorological
conditions, etc.), the exposure (e.g., the O3 exposure distribution) is
represented as a spatiotemporal random field Xp (S/TRF; Christakos
and Hristopulos, 1998). The S/TRF domain is denoted by p¼ (s,t), in
which s refers to spatial coordinates and t is time. Specification of
the attribute values at all points in a space–time domain specifies
a S/TRF realization. Randomness manifests itself as an ensemble of
possible realizations regarding the O3 distribution.

In light of the above considerations, the fundamental BME equa-
tions of spatiotemporal analysis are as follows (Christakos, 2008)R

dcðg � gÞemT g ¼ 0R
dc xSemT g � AfKðpÞ ¼ 0

)
; (1)

where g is a vector of ga-functions (a¼1, 2, .) that represents
stochastically the G–KB under consideration (the bar denotes
statistical expectation), m is a vector of ma-coefficients that depends
on the space–time coordinates and is associated with g (i.e., the ma

express the relative significance of each ga-function in the
composite solution sought), the xS represents the S–KB available, A
is a normalization parameter, and fK is the attribute probability
density function (pdf) at each point (as before, the subscript
K ¼ GWS means that fK is based on the blending of the G- and S–
KB). The g and xS are inputs to Eq. (1), whereas the unknowns are
the m and fK across space and time.

The G–KB refers to the entire p-domain of interest, which
consists of the space–time point vector pk where exposure esti-
mates are sought and the vector pdata where site-specific infor-
mation is available. The G–KB may include theoretical space–time
dependence models of the attribute Xp (mean, covariance, vario-
gram, generalized covariance, multiple-point statistics, and
heterogeneity orders). Mean and covariance (variogram) are most
commonly used in spatiotemporal analysis (Huang et al., 2007).

For practical purposes, the data point vector pdata consists of the
hard data vector phard (where exact O3 measurements exist) and the
soft data vector psoft (where incomplete yet valuable O3 information
is available; Taylor, 1993). For illustration, let exact measurements
be available at phard¼ (p1, ., p32), i.e., Xp1¼5.1, ., Xp32¼ 9.3 (in
proper units); and uncertain O3 data of the form 3.2< Xp33< 4.1, .,
5.2< Xp87<6.4 exist at psoft¼ (p33, ., p87). This sort of site-specific
information is mathematically expressed by Prob[Xp1¼5.1,.,
Xp32¼ 9.3]¼PS[Xp1¼5.1,., Xp32¼ 9.3]¼ 1 and PS[3.2< Xp33< 4.1,
., 5.2< Xp87<6.4]¼ 1, respectively. Now assume that at p24 the
uncertain datum is expressed by the pdf fS(p24); then,
PS½Xp24

< c ¼
R c
�N dcfSðp24Þ

�
.

Theoretical studies have shown that the spatiotemporal BME
analysis has a number of attractive features:
� It makes no restrictive assumptions concerning the linearity
and normality of the exposure estimator (nonlinear estimators
and non-Gaussian laws are automatically incorporated).
� It can study exposure with heterogeneous space–time depen-

dence patterns and can synthesize various kinds of knowledge
bases (core and site-specific) in a rigorous and general frame-
work rather than in an ad hoc and artificial manner.
� It provides a sound space–time exposure characterization in

terms of the complete pdf at every estimation point rather than
just the first two estimation moments. Indeed, model fK in Eq.
(1) describes the complete probability distribution of exposure
values at each estimation point pk in view of the total knowl-
edge, K–KB. In this way, more than one possibility can be
considered at each point, as far as exposure estimation is
concerned. E.g., given fK at pk, different O3 exposure estimates
can be derived at each node of the mapping grid (most
probable, error minimizing, etc.), depending on the objectives
of the study.
� It can readily consider uncertain yet valuable information at the

exposure estimation points themselves, when available.
� It derives certain mainstream techniques (e.g., statistical

regression and kriging) as its special cases, thus demonstrating
BME’s generalization power. E.g., when the KB is limited to
hard data and 2nd-order space–time statistics, the BME obtains
simple kriging as a special case (Christakos, 2000).

In this work, the spatiotemporal BME analysis was implemented
using the publicly available SEKS–GUI software library (Kolovos
et al., 2006; Yu et al., 2007).

3. The ozone dataset

The O3 levels are high enough in the state of California during
the summer period to cause significant concern (Ostro et al., 2006).
The dataset used in this study consisted of monthly O3 measure-
ments (in ppm) for the period January 1988–December 2002 at the
262 sites state-wise monitored by federal, state and local govern-
ments and amalgamated into a unified dataset by the California Air
Resources Board (Fig. 1).



Table 1
The O3 fluctuation variance of the three models in Eq. (2).

Model n p SSE/n� p %Var

Eq. (2a) 27,444 1 3.09e4 0
Eq. (2b) 27,444 262 2.18 e4 29
Eq. (2c) 27,264 2808 4.17 e5 86

Note: Above, n is the number of data used in the model; p is to the number of model
parameters; SSE/n� p refers to the estimated variance of the fluctuations 3p; vari-
ance for model (2a) is the total variance, equal to 3.09e4 ppm2; %Var refers to the % of
explained variance by the model compared to model (2a).
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Measurements are monthly estimates based on 8-h O3 averages.
Although this space–time sampling design would potentially
include a dataset of 180 months� 262 sites¼ 47,160 data values,
the 262 time-series have about 42% missing values. Part of the
missing O3 values is associated with sites where O3 monitoring
started or stopped during the years 1988–2002. Other missing
values are associated with temporary failures or with stations
monitored on a non-systematic temporal basis.

3.1. Spatial and temporal features

As is shown in Fig. 1, the monitoring sites tend to be clustered
over space, roughly in line with major population centers. Although
they yield a satisfactory coverage of the coastal area (except,
perhaps, of the very northern part of California), this is not the case
for the central part of the state. The North and East state borders are
almost not covered at all. Fig. 2 shows that there is a clear seasonal
effect, with O3 concentrations typically peaking during July–
August, and reaching their lowest values during December–January
(as was expected on the basis of the physical and chemical
processes of O3 generation, dispersion and disappearance; Chang
et al., 1987; Jacobson, 1999).

It is worth noting that the amplitude and the shape of this seasonal
O3 pattern may greatly vary from one station to another; e.g., the
seasonal pattern exhibits sharp maxima at some sites, but it is constant
or even not clearly observable at other sites. Despite these dissimilar-
ities, there is no indication of a systematic increase or decrease of O3

concentrations during the 15 years covered by the dataset.

3.2. Preliminary statistics

According to the previous observations, and in order to assess
the global contribution of the seasonal O3 pattern, an analysis of
Fig. 2. Few typical time-series of monthly 8-h average O3 concentrations (in ppm) at select
variance (ANOVA) was conducted that involved the entire dataset.
Let us consider the three following models

Xp ¼ mþ 3p ðaÞ
Xp ¼ ms þ 3p ðbÞ
Xp ¼ msk þ 3p ðcÞ

(2)

where 3p is a fluctuation field with 3p ¼ 0 and k¼ t (mod 12); mod
denotes the modulo operator. Model (2a) assumes the same mean
m at all sites and time instants; model (2b) assumes a different
mean ms at each site s; and model (2c) assumes a different mean
msk at each site s and each month t (i.e., there are 12 possible values
of the mean at each site, since the seasonal pattern exhibits an 1-
year period). Table 1 shows the variances Var[3($)] of the fluctua-
tions in Eq. (2). Both n and p in Table 1 may change with the model
(2), since some of the p parameters might be non estimable due to
missing values. For our spatiotemporal design, if there were no
missing values, n would be equal to 180� 262¼ 47,160 for all
models, whereas p would be equal to 1262 and 12� 262¼ 3144 for
models (2a)–(2c), respectively.

No classical statistics testing applies in this case (e.g., since the
data are physically correlated across space–time, the 3p-indepen-
dence hypothesis required by classical statistics does not hold true;
ed sites (a)–(c). Months are numbered from 1 (January 1988) to 180 (December 2002).
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e.g., Mutshinda et al., 2007). There is, however, little doubt that, on
the average, most of the observed variability is linked to the
seasonal pattern. The estimated 3p-variance in model (2c) is about
14% of the total variance, so O3 fluctuation modelling is expected to
play a rather minor influence on the final result, compared to the
modelling of the seasonal effect.

4. An ozone decomposition model

According to the previous findings, let us now assume that the S/
TRF Xp representing the O3 distribution can be decomposed as
follows,

Xp ¼ Sp þ 3p (3)
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Fig. 3. O3 seasonal and fluctuation component estimates at four selected sites. Measurement
Estimates of the fluctuations 3p (bottom gray line) were obtained by differencing at times w
where Sp is a cyclic seasonal component with Sp ¼ ms (i.e., O3

concentration at location s cyclically fluctuate through time around
a time-independent value ms) and 3p is the fluctuation component
with 3p ¼ 0. Assuming that Spt3p (the symbol ‘‘t ’’ denotes
stochastic independence), the above belongs to the class of additive
space–time models (Bogaert and Christakos, 1997a,b). From Eq. (3),
the following properties hold true,

Sðs; tÞ ¼ Sðs; t þ 12Þ ðaÞ

Sðs; tÞ ¼ 1
12

X12

i¼1

Sðs; t þ iÞ ¼ ms ðbÞ (4)

In view of Eq. (4a), the symbols Sp¼ S(s,t) and S(s,k) can be used
equivalently to denote the seasonal component, where k¼ t (mod
100 120 140 160 180
ce January 1988)

100 120 140 160 180

100 120 140 160 180

100 120 140 160 180

a
b

c

d

s of Xp (black broken line) are superimposed on the estimated Sp (top gray broken line).
here Xp values were available.
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12). Eqs. (3) and (4) correspond to Eq. (2c) with a set of twelve S(s,k)
per site (i.e., 1 every month of the year).

As we saw in Section 2 above, the G–KB may include theoretical
spatiotemporal dependence models of the O3 distribution, such as
the covariance. Accordingly, on the basis of the analysis in
Appendix A, a valid spatiotemporal covariance model for 3p is

C3ðh; sÞ ¼ s2
3

h
a0d0 þ ð1� a0Þe�3h=a1

i
e�3s=a2 (5)

with d0 ¼ dðh ¼ 0Þ, s2
3 ¼ 2:75e� 5 ppm2, a 0¼ 0.48, a1¼1e5 m

and a2¼ 4 months. The separable model (5) will be used in O3

modelling and mapping to represent spatiotemporal dependence
of the fluctuation component.

Due to periodicity of the seasonal O3 component Sp, it cannot be
adequately modelled as a temporal random process (at a given
location), but it can still be modelled as a spatial random field. It is,
thus, possible to obtain its spatiotemporal covariance function CS(h,
k), where k denotes the month of the year considered. On the basis
of the analysis in Appendix C, a valid spatiotemporal covariance
model for Sp is given by

CSðh; kÞ ¼ s2
S ðkÞe

�3h=a (6)

where a¼ 2e5 m and the sS
2(k) values for each month k are given in

Fig. C.2b.
5. Spatiotemporal ozone mapping

Since the space–time component 3p accounts only for a small
fraction of the total O3 variability and exhibits low-level spatio-
temporal correlations, its estimation is of limited interest in a global
context. This means that spatiotemporal mapping can focus on the
Fig. 4. Spatial maps of the estimated seasonal component for the 12 months of the year. Colo
concentration values in black.
seasonal component Sp and that only 12 maps need to be drawn, as
this component is assumed to repeat itself over the years. Next,
spatiotemporal O3 maps were generated using the SEKS–GUI soft-
ware library.

Estimating the seasonal component across space and time
would require observing a certain set of Sp values. Since Sp was well
approximated by bSp for the set of months and locations in which
the condition n(s,k)� 10 is satisfied (Appendix C), using only this
set of Sp values would leave out data from the 162 other sites that
were discarded because they did not meet this condition. Addi-
tionally, as seen in Fig. C.1, this would also imply a quite poor spatial
coverage for O3 mapping purposes in the state of California, since
the 100 retained sites are mainly located along the coast, with none
of them in the Eastern part of the state and very few of them in the
central part of it.

Nevertheless, imposing a minimum value for n($) was only
required for the reliable estimation of CS(h,k), but in a spatiotem-
poral mapping context all bSp obtained from Eq. (C.1) can be
considered as soft data (S–KB) of the true but unknown S p¼ S(s,k).
Interestingly, in the context of the BME formalism these soft data
can be properly assimilated in the efficient mapping of the seasonal
O3 component. In particular, this includes spatiotemporal mapping
of Sp at:

(a) non sampled (off-site) locations during various times (i.e., the
classical mapping framework);

(b) sites where measurements are missing during certain times
(i.e., typical estimation at one of the 162 discarded sites); and

(c) sites and times where soft data bSðs; kÞ are already available.

Although all three cases are covered by the same mathematical
BME formalism, they have different objectives and they address
r scale is the same for all maps, with lowest concentrations values in white and highest
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Fig. 5. O3 mapping errors using (a) Kriging with hardened data, and (b) BME with soft data.

Table 2
MSE (in ppm2) and probability that absolute estimation error does not exceed
0.02 ppm using Kriging and BME.

Method MSE PðjEj � 0:02Þ

Kriging 6.52e5 0.979
BME 4.86e5 0.986
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distinct issues. In order to facilitate the discussion, we will present
and discuss them separately.

5.1. Estimation of model components at ozone sites

In a spatiotemporal mapping context it is useful to consider allbSðs; kÞ computed from Eq. (C.1) as soft data for the non-observable
S(s,k). When predicting at a space–time location where Xp is
available, this allows us to split Xp according to Eq. (3).

Let us define s as one of the 262 sites locations, where we seek
estimates of Xp and 3p. Since we assumed that Spt3p, the O3 esti-
mation is a two-steps procedure: first, an estimate Sp

p is sought
based on the soft data computed by Eq. (C.1) at surrounding sites
and (possibly but not necessarily) at site s itself; then, if Xp is
available at site s, an estimate of 3p is given by b3p ¼ Xp � Sp

p.
Using this procedure, it is possible to split any of the (sometimes

very fragmentary) time-series of measurements as the sum of the
estimated Sp

p and b3p. Corresponding results are illustrated in Fig. 3
for a few sites. It is worth remarking that even for time-series with
plenty of missing values, this method allows us to obtain Sp

p at any t,
along with b3p if Xp is available too.

5.2. Mapping of the seasonal component

Using as soft data all bSðs; kÞ values computed by Eq. (C.1) and
using a regular space–time grid, maps of both the seasonal Sp and
fluctuation 3p components can be generated. Fig. 4 shows the
results of BME mapping of Sp over a spatiotemporal grid with
spatial node spacing of 2e4 m (both along the North–South and
West–East directions) and a temporal node spacing of 2 months.
These maps clearly exhibit a spatially and temporally consistent
pattern of O3 concentrations over California. The progressive
change of the spatial pattern from months to months is quite
obvious, with globally lowest spatial contrast (i.e. spatially more
uniform O3 concentrations) from March to May, while contrast is at
its maximum during winter months (December–January) and
summer months (July–August). An inverse process is also clearly
visible in central California, with much lower O3 concentrations
during winter and much higher O3 concentrations during summer
compared to other areas during the same times (in other words,
during winter the central part of California always exhibits lower
values than other places, whereas the opposite is true during the
summer months). These areas are those characterized by the
highest amplitude of the seasonal component.

Similarly, it is possible to map the fluctuation component. Since
3p is not directly observable, we proceed as follows: first, estimatesb3p ¼ Xp � Sp

p are obtained as in Section 5.1; then, based on the b3p

values, the fluctuation values can be obtained at the nodes of the
spatiotemporal grid. The corresponding maps (not shown here)
confirm that this component is rapidly changing over time and does
not exhibit very clear spatial patterns, in agreement with the
theoretical C3ðh; sÞ model characterized by a short temporal
correlation range and a high spatial nugget effect.

5.3. Cross-validation assessment vs. kriging

Beyond the O3 map generation, the spatiotemporal BME analysis
can also be used to assess the adequacy of the statistical model
itself using a cross-validation (i.e., leave-one-out) approach. Let us
define Sp

p as the BME-estimated seasonal component at a location in
which the Xp value was available but removed prior to spatiotem-
poral estimation.

We define the corresponding BME-estimated O3 residual as 3p
p,

in which case we can define the cross-validation error as Xp� Xp
p,

where Xp
p¼ Sp

pþ 3p
p. A global performance indicator of O3 mapping is

given by the mean square error

MSE ¼ 1
N

XN

i¼1

�
Xðsi; tÞ � Xpðsi; tÞ

�2 (7)

Cross-validation was applied at the 162 sites that were temporarily
left-out because of too many missing data (Fig. C.1). At these sites,
the mapping errors are expected to be the largest and the
approximations bSp ¼ Sp the worst possible. This approximation
corresponds to using Kriging with ‘‘hardened’’ data instead of BME
with soft data provided by Eq. (C.2). The results in Fig. 5 and Table 2
demonstrate that BME improves the mapping accuracy compared
to Kriging, although the improvement is not dramatic here, since
the soft pdf data are very narrow; this is due to the fact that s2

3 is
rather small compared to the total variance, so that s2

3 =nðs; kÞ is
even smaller. The O3 mapping accuracy obtained by BME is quite
satisfactory, given that about 98% of the absolute mapping errors do
not exceed 0.02 ppm, with a MSE that compares very well to
s3

2¼ 2.75e� 5 ppm2 (the variance of the hard-to-predict spatio-
temporal component). This would also suggest that the essential
part of the O3 mapping error is linked to the 3p estimation error, as
expected due to its limited spatiotemporal correlation. This also
shows that Eq. (4), despite its simplicity, when used together with



Fig. 6. Maps of the estimated O3 seasonal component for the months of July and December (color scale is the same for both maps, with lowest concentration values in black and
highest concentration values in white), along with the physical map of California. Note that concentration scales are different for July and December for improving visual contrast.
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the seasonal and fluctuation covariance models and the BME
method, does a good job in the spatiotemporal mapping context.

Notice that the present analysis did not account for physical
laws, which reflects on the level of insight it may offer concerning
the underlying O3 physical mechanisms. In other words, given the
circumstances, our analysis made only limited use of the powerful
BME features that allow the incorporation of important core KB in
the form of physical laws and scientific theories. Nevertheless, the
present analysis is a valuable tool of spatiotemporal mapping: the
spatiotemporal BME framework can rigorously assimilate useful
data sources that were previously unaccounted for, the generated
maps offer a valuable assessment of the spatiotemporal O3 patterns
that is helpful for identifying physical mechanisms and their
interrelations, and the BME mapping accuracy is superior
compared to other techniques commonly used by the US EPA.

6. Discussion

In this study, we have sought to develop a spatiotemporal
prediction model for ambient ozone levels in California. This
modelling represents the first stage of a multiyear investigation
into the mortality effects of air pollution in the California pop-
ulation. We used BME analysis capable of estimating space–time
levels of ozone even in the presence of missing data. The results
indicate relatively little site-specific space–time interaction and
considerably seasonal variation in the spatial pattern of exposure.
These findings are consistent with previous understanding of
ozone photochemistry (Finlayson-Pitts and Pitts, 1997). Of impor-
tance to the execution and interpretation of epidemiological
studies, though, are the subtle changes to ordering of high vs. low
exposure areas, with the more extreme seasonal contrasts occur-
ring in the Central Valley. As shown in Fig. 1 a tendency exists for
lower amplitudes along the coast and higher amplitudes in the
south central part of the state. Insights from the spatiotemporal
models indicate that coastal areas are likely to be much lower
overall and more consistent through the year, while the Central
Valley and inland areas of Southern California tend to demonstrate
both the highest levels and highest seasonal variation. The maps in
Fig. 6a and b appear to relate closely to coastal and mountain
features shown in Fig. 6c as protective against ozone exposure,
while stagnant inland areas appear to have higher exposures. The
BME model can also introduce information on other physical and
land use variables to inform the interpolation. In future research,
we plan to test altitude, wind, general atmospheric circulation,
temperatures, land use, population density and other relevant
variables to determine whether explicit inclusion improves the
interpolation prediction.

7. Conclusions

Tropospheric Ozone is a complex, photochemical pollutant that
has increased globally in concentration since the 19th century,
largely as a result of increased anthropocentric emissions of
nitrogen oxides and volatile organic compounds emitted from
combustion and other industrial processes. Recent studies suggest
that ozone will become worse over the next century partly due to
global climate change (e.g., Zeng et al., 2008). Such increases may
have important implications for public health because they may
lengthen the ozone season in many places and increase levels
overall. Because ozone is associated with a myriad of cardiorespi-
ratory health effects, increases in the levels and the duration of the
hot-season weather may exert large impacts on human populations
globally. In this context, understanding the spatial extent and
temporal variation in ozone exposure takes on new relevance. We
have used spatiotemporal BME analysis to demonstrate their utility
for understanding the complex composite space–time patterns of
exposure. These assessments will yield useful information for
health effects assessments and will be used to determine the
sensitivity of alternative exposure estimators. The space–time
assessments will also be used to assess whether critical exposure
windows influence potential effects of ozone on mortality, while
utilizing maximal available data. Thus, the framework presented
here may enhance understanding of a pervasive pollutant that
could affect population health globally.
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Appendix A

Below we used a technique that applies seasonal differentiation
and filtering of the Sp component, thus focusing on the fluctuation
component 3p. This space/time technique is a particular case of the
generalized S/TRF theory (Christakos, 1992; Christakos and Hris-
topulos, 1998). Let us define a new S/TRF Yp¼ Y(s,t) as the 1st-order
temporal increment of the original O3 field,



Fig. A.1. Estimated temporal covariance function CY(0,s).
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Yðs; tÞ ¼ Xðs; tÞ � Xðs; t � 12Þ (A.1)

In view of Eqs. (3) and (4), the Yp is spatially homogeneous/
temporally stationary with mean and covariance

Yðs; tÞ ¼ 3ðs; tÞ � 3ðs; t � 12Þ ¼ 0
CY ðh; sÞ ¼ Cov½Yðs; tÞ; Yðsþ h; t þ sÞ�

9>=>; ðA:2Þ

Furthermore, Eqs. (A.1) and (A.2) yield

CYðh;sÞ ¼ ½Xðs;tÞ�Xðs;t�12Þ� ½Xðsþh;tþsÞ�Xðsþh;tþs�12Þ�

¼ ½3ðs;tÞ�3ðs;t�12Þ� ½3ðsþh;tþsÞ�3ðsþh;tþs�12Þ�
¼ 2C3ðh;sÞ�C3ðh;s�12Þ�C3ðh;sþ12Þ

(A.3)

The purely spatial and purely temporal covariances are given by,
respectively,
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Fig. A.2. Estimated and fitted (a) temporal variog
CY ðh;0Þ ¼ 2C3ðh;0Þ � C3ðh;�12Þ � C3ðh;12Þ ðaÞ
(A.4)
CY ð0; sÞ ¼ 2C3ð0; sÞ � C3ð0; s� 12Þ � C3ð0; sþ 12Þ ðbÞ

These spatial (temporal) covariance functions are symmetric
with respect to h (s). Obtaining C3(h,s) from CY(h,s) would
require inverting Eq. (A.3), an affair that typically involves first
some parametric model C3(h,s;q) and then looking for the q’s
that maximize, say, the likelihood of the Y(s,t) with respect to
this model. However, as is shown in Appendix B, under
certain reasonable conditions the following approximations
are valid

CY ðh; sÞy2C3ðh; sÞ ðaÞ
gY ðh; sÞy2g3ðh; sÞ ðbÞ

(A.5)

where g($) denotes the variogram. Then, a non-parametric esti-
mation of CY(h,0) and CY(0,s) is possible, in which case the relations

C3ðh;0Þy1
2CY ðh;0Þ ðaÞ

C3ð0; sÞy1
2CY ð0; sÞ ðbÞ

(A.6)

can be used afterwards. From Fig. A.1 and Eq. (5) it can be verified
that the estimated covariance values are close to 0 for s¼ 3 months,
so that Eq. (A.6) provide sound estimates bC 3ðh;0Þy1=2bCY ðh;0Þ andbC 3ð0; sÞy1=2bCY ð0; sÞ.

The exponential model offers a good fit to the temporal vario-
gram (Fig. A.2a). The spatial variogram has a significant nugget
effect (about ½ the total variance); whereas the remaining part
could be associated with a long-range spatial structure (Fig. A.2b)
which, in practice can be also approximated by an exponential
model with a very long-range. Thus, the space–time separable
covariance model of 3(s,t) is given in Eq. (5).

Appendix B

Under certain conditions the C3(h,s) can be derived from CY(h,s),
as follows. Let C3(h,s) be monotonically decreasing with jsj and
approaches 0 beyond a time-lag s0: 0< s0<12. Then from Eq. (A.4)
we get

C3ð0; sþ 12Þy0; s � 0 ðaÞ
C3ð0; s� 12Þy0; js� 12j � s0 ðbÞ (B.1)

For a positive-valued and monotonically decreasing C3(h,s) with
both jhj and jsj (a rather typical behavior), we obtain 0< C3(h, �12)
� C3(0,�12) y 0 and 0< C3(h,12)� C3(0,12) y 0; i.e., C3(h, �12)
¼C3(h,12) y 0. Combining the above results, we find
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Fig. C.1. Location of the 100 sites with less than 10 available data (in gray); and 162
sites with at least 10 available data (in black) for each of the 12 months of the year,
during the years 1988–2002.
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Eq. (A.5a). In a similar way we derive Eq. (A.5b). Thus, the above
conditions allow a non-parametric estimation of CY(h,0) and CY(0,s).

Appendix C

For inference purposes, if we assume that Sðs; tÞt3ðs; tÞ, obvious
estimators of S(s,k) are
Fig. C.2. Estimated spatial variograms for the O3 seasonal component S(s,k): (a) twelve spati
normalized variograms (in gray) along with the mean variogram (black broken line) and the
estimated 95% confidence interval for the exponential model are shown as dashed gray lin
bSðs;1Þ ¼ 1
nðs;1Þ

X
Xðs;1þ 12jÞ 9>>
j
«bSðs;12Þ ¼ 1

nðs;12Þ
X

j

Xðs;12þ 12jÞ

>=>>>; (C.1)

for all locations s (j¼ 0,1, ., 12); the n($) refers to the number of
data that vary with respect to s and k due to missing values. Basi-
cally, Eq. (C.1) is equivalent to averaging values belonging to the
same month of a year over all years (i.e., all January values, all
February values etc.). From the central limit theorem and since Eq.
(5) implies CY(h,12j) y 0 (js0), a reasonable distributional
hypothesis isbSðs; kÞwN

�
Sðs; kÞ; s2

3

nðs; kÞ

�
(C.2)

for all k. Moreover, estimates of CS(h,k) and gS(h,k) can be computed by
substituting S(s,k) withbSðs; kÞ as long as s2

3 =nðs; kÞ << s2
S;k ¼ CSð0; kÞ.

The last hypothesis amounts to replacing the true S(s,k) by their esti-
mates bSðs; kÞ for the purpose of estimating the covariances and var-
iograms. This does not have a noticeable impact on the estimation of
CS(h,k) and gS(h,k), as long as the variability of these estimates is small
compared to the spatial variability of the S(s,k). It is worth noting that
the residuals could be also directly estimated, since from Eq. (3) we
haveb3p ¼ Xp � bSpy3p. This would provide another way of estimating
C3(h,s) directly from theb3p, instead of using the seasonal filtering of the
Xp, as was done in Appendix A.

In order to keep s2
3 =nðs; kÞ as low as possible, while at the

same time allowing enough data for a reliable estimation of
the seasonal covariance CS(h,k), Eq. (C.1) was only used in cases
that it was valid that n(s,k)� 10 for all k; i.e., when
Var½bSðs; kÞ ¼ s2

3 =10 ¼ 2:75e� 6 ppm2
�

. This corresponds to 100
al variograms (1 per month) with corresponding variances shown in (b); (c) shows the
fitted exponential model (black smooth line). Based on 1000 simulations, limits of the

es.
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out of the 262 original sites (Fig. C.1). For these 100 sites, it can be
verified from Fig. C.2 that, if we use bSðs; kÞ instead of S(s,k) to
estimate CS(h,k) and gS(h,k), the variance of the bSðs; kÞ is at least one
order of magnitude lower than the spatial variability of S(s,k)
during the winter months (which are months exhibiting the lower
variance over space), and about two orders of magnitude lower
during the summer months (which are months exhibiting the
highest variance over space). This result was already expected from
Table 1, which emphasized the limited contribution of s3

2 to the
total O3 variance.

Although the spatial variance of the seasonal O3 component is
changing over time, a simple normalization of the various bgSðh; kÞ’s
shows that they compare relatively well and they could be fitted by
the same exponential model (Fig C.2c). Based on 1000 simulations
using this model, it is possible to draw an estimated 95% confidence
interval for the variogram estimator conditionally to the model. For
this, the fitted variogram model was used to generate a set of 1000
independent realizations at similar space–time locations than
those that were used for computing the variogram estimates. The
corresponding 1000 variogram estimates were then computed and
the results were used for deriving a 95% estimated confidence
interval (dashed lines in Fig C.2c). As this confidence interval
includes all bgSðh; kÞ, there is no reason to reject the hypothesis that
it is acceptable to use the same exponential model for all months. In
other words, the variability of an estimated variogram based on this
exponential model is at least equal to (if not greater than) the
variability observed among the bgSðh; kÞ’s. Based on these results,
the finally selected covariance model for the O3 seasonal compo-
nent S(s,k) is given by Eq. (6).
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