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Analytical results for the vibrational static second hyperpolarizability of polyacetylene are derived. The
vibrational second hyperpolarizability of polyacetylene is calculated through the lattice relaxation
expression in the solid-state limit. The exact results indicate that the vibrational contribution to the sec-
ond hyperpolarizabilities of polyacetylene is comparable to the pure electronic contribution. Addition-
ally, the vibrational and electronic second hyperpolarizabilities of polyacetylene under the parabolic
approximation for the energy band are also obtained, and they are in excellent qualitative agreement
with the exact results. Therefore, the vibrational contribution to the static second hyperpolarizability
of polyacetylene is as important as the electronic contribution.
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1. Introduction

The potential for using optical nonlinearities to design optical
communication devices leads to a growing interest in third-order
nonlinear optics [1]. Nonlinear optical processes are governed by
molecular hyperpolarizabilities. These properties can be divided
into the electronic contribution originating from the effects of elec-
tric fields on electronic motions and the vibrational contribution
arising form both the effects of electric fields on nuclear motions
and the vibronic coupling. These two kinds of contributions to
the linear and nonlinear optical coefficients correspond to elec-
tronic and vibrational (hyper)polarizabilities. For some systems,
vibrational properties are more important than the electronic ones.
Therefore, considerable interest has arisen on calculations for
vibrational (hyper)polarizabilities in the past decades [2–11]. From
the perturbation theory, the sum-over-state formulas used to cal-
culate vibrational dynamic (hyper)polarizabilities have been de-
rived, and these formulas include corrections for mechanical
anharmonic terms in the vibrational potential and electrical anhar-
monic terms in the dependence of the electronic transition mo-
ment on nuclear coordinates [4].

A semiclassical treatment has been proposed to derive explicit
analytical expressions (the lattice relaxation expressions) for the
vibrational (hyper)polarizabilities in terms of vibrational spectro-
scopic observables under the mechanical and electrical harmonic
approximations [2]. This approach has been widely used to study
ll rights reserved.
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the nonlinear optical properties of charge-transfer organic materi-
als in the framework of a simple valence-bond charge-transfer
model [12–17].

The purpose of this study is to derive analytical results for the
vibrational static second hyperpolarizability of polyacetylene. It
is shown that the vibrational contribution to the second hyperpo-
larizability of polyacetylene is comparable to the electronic contri-
bution. In addition, we calculate the vibrational and electronic
second hyperpolarizabilities of polyacetylene under the parabolic
approximation for the energy band. The results under the parabolic
approximation also show that the vibrational contribution to the
second hyperpolarizability of polyacetylene is non-negligible.
Therefore, the results under the parabolic approximation are in
excellent qualitative agreement with the exact results.

This paper is organized as follows: We begin by briefly introduc-
ing vibrational (hyper)polarizabilities in Section 2. In Section 3,
analytical results for the vibrational second hyperpolarizability of
polyacetylene are derived and the vibrational second hyperpolariz-
ability is compared with the electronic one. In Section 4, the vibra-
tional and electronic second hyperpolarizabilities are calculated
under the parabolic approximation. Finally, we make some com-
ments in Section 5.

2. Vibrational polarizabilities and hyperpolarizabilities

If an external electromagnetic field e interacts with atoms or
molecules, the total energy obtained from the perturbation theory
is given by

E ¼ E0 þ Eint ¼ E0 � le� a
2!

e2 � b
3!

e3 � c
4!

e4 � � � � ;
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where E0 is the energy at zero field, Eint is the interaction energy be-
tween the system and the field, l is the dipole moment, a is the
polarizability, and b and c are the first and second hyperpolarizabil-
ities, respectively.

The expressions for the vibrational contributions to the linear
and nonlinear optical coefficients have been worked out [2,4].
The formulas for vibrational contributions to (hyper)polarizabili-
ties can be written as explicit analytical expressions in terms of
vibrational spectroscopic observables. The diagonal tensor compo-
nent with only one vibrational mode for the vibrational second
hyperpolarizabilities is given by [2,4]

cv ¼ 1
k0

4
@l
@Q

� �
0

@b
@Q

� �
0
þ 3

@a
@Q

� �
0

@a
@Q

� �
0

� �
; ð1Þ

where 0 denotes the equilibrium geometry of the ground electronic
state, k0 is the force constant of the ground electronic state, and the
derivatives are taken with respect to the normal coordinate Q.

3. Vibrational second hyperpolarizability of the infinite
polymeric chain

We proceed to calculate the vibrational second hyperpolariz-
ability of the two-band system: polyacetylene. Polyacetylene is
examined using the tight-binding approximation with harmonic
vibrations. The Longuet–Higgins and Salem’s model is used to
describe the polyenes [18–21]:

H ¼
X

n

bðrnÞ cþn cnþ1 þ cþnþ1cn
� �

þ
X

n

f ðrnÞ;

where bðrÞ is the transfer (resonance) integral and f ðrÞ is r-bond
compressional energy. Following Kürti and Kuzmany [19], we
assume that the transfer integral bðrÞ is given by the exponential
function, bðrÞ ¼ �Ab expð�r=BbÞ, where r is the distance between
two atoms, Ab ¼ 243:5 eV, and Bb = 0.3075 Å. At equilibrium, the
single-bond distance is R1 = 1.45 Å and the double-bond distance
is R2 = 1.36 Å. For a perfect dimerized chain with periodic boundary
condition, the eigenvalue xk for the one-electron orbital jki is given
by xk ¼ ½b2

1 þ b2
2 þ 2b1b2 cosðkaÞ�1=2 ¼

ffiffiffi
2
p

t0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh 2x0 þ cos ka

p
,

where b1 and b2 are the resonance integrals for the single- and dou-
ble-bonds, a is the unit cell length, and t0 and x0 are defined by
t0 ¼ Abe�a=2Bb and x0 ¼ ðr1 � r2Þ=2Bb.

The band theory of polyacetylene within the tight-binding
approximation has been developed by Cojan and co-workers
[20,21]. In the sum-over-state expression, the electronic polariz-
ability a is given by

a ¼ 2
X1
i¼1

l2
gei

Eeig
; ð2Þ

where lgei
is the electronic transition moment between the ground

state and the ith excited state, and Eeig denotes their energy separa-
tion. In the band theory expression, lgei

is replaced by XðkÞ and the
sum over states is replaced by an integral over the first Brillouin
zone [19–21]

a ¼ 2� 2 N
a

2p

Z p
a

�p
a

jXðkÞj2

ek
dk; ð3Þ

where ekð¼ 2xkÞ is the transition energy at k. A factor of 2 has been
included to account for the double occupation of the orbitals. Deriv-
ing Eq. (3) from Eq. (2), we have replaced the summation over
many-electron wave functions with the summation over single-
electron wave functions and the transition matrix element lgei

with
XðkÞ given by XðkÞ ¼ iaðb2

1 � b2
2Þ=e2

k .
In polyacetylene chains, the vibrational contribution to the sta-

tic second hyperpolarizability originates significantly from the sec-
ond term in Eq. (1), while the first term is two to three orders of
magnitude smaller [7,22,23]. In order to calculate the vibrational
second hyperpolarizability, we concentrate on the second term.
From Eq. (2), the derivative of the polarizability with respect to
the normal coordinate Q can be written as

@a
@Q

� �
0
¼ Aþ B; ð4Þ

where

A ¼ �2
X1
i¼1

l2
gei

E2
eig

@Eeig

@Q

� �
0

ð5Þ

B ¼ 2
X1
i¼1

1
Eeig

� �
0

@lgei

@Q

� �
0
leig
þ lgei

@leig

@Q

� �
0

� �
: ð6Þ

Here, A and B are the Condon and Herzberg–Teller terms, respec-
tively. In addition, the Condon contribution involves the electron–
phonon coupling, and the Herzberg–Teller contribution arises from
the dependence of the electronic transition moment on the nuclear
coordinate.

According to Yaron and Silbey’s argument [3], we only need to
consider the optical K ¼ 0 phonon mode. We use periodic bound-
ary conditions for the phonon and treat the electronic motion as
an open chain. The K ¼ 0 optical phonon for a chain of 2N carbons
is

QK¼0 ¼
1ffiffiffiffiffiffiffi
2N
p

X2N

j¼1

ð�1Þj drj: ð7Þ

Since the electronic wave functions are invariant under the trans-
formation ðb1;b2Þ ) ðcb1; cb2Þwhere c is a constant [3], lgei

depends
only on the ratio

brat ¼
b1 � b2

b1 þ b2
¼ � tanh x0: ð8Þ

Thus, the transition matrix element becomes

XðkÞ ¼ i
a
4

2brat

½ð1þ cos kaÞ þ b2
ratð1� cos kaÞ�

: ð9Þ

We can replace the derivative with respect to Q in Eq. (6) by a deriv-
ative with respect to brat ,

@lgei

@Q

� �
0
¼

@lgei

@brat

� �
0

@brat

@Q

� �
0
:

In the band theory expression, the derivative of the energy separa-
tion between the ground state and the ith excited state with respect
to Q, ð@Eeig=@QÞ0, is replaced by ð@ekðQÞ=@QÞ0, and the derivative of
the transition moment with respect to Q, ð@lgei

=@QÞ0, is replaced by
ð@XðkÞ=@QÞ0,

@XðkÞ
@Q

� �
0
¼ @XðkÞ

@brat

� �
0

@brat

@Q

� �
0

¼ i
a
2
ð1þ cos kaÞ � b2

ratð1� cos kaÞ
½ð1þ cos kaÞ þ b2

ratð1� cos kaÞ�2
�

ffiffiffiffiffiffiffi
1

2N

r
1
Bb

1

cosh2x0

:

ð10Þ

Therefore, analytical expressions for the Condon and Herzberg–
Teller terms in the solid-state limit become

A ¼ 2� 2N � a
2p

Z p
a

�p
a

jXðkÞj2

e2
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 !
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� @ekðQÞ
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� �
0
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¼
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2N
p a2
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1
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2
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8
� a
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�p
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brat
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 !2

� sinh 2x0

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh 2x0 þ cos ka

p
Þ3

dk ð11Þ



Table 1
Comparison between the exact analytical results (EAR) and the results under the
parabolic approximation (PAR). The Condon and Herzberg–Teller terms are in units offfiffiffiffiffiffiffi

2N
p

a2=Bbt0. Static second hyperpolarizabilities, c0v ; cþ; c�; c0e , and c0 , are in units of
2Na4=t3

0.

EAR PAR

A 3.47 3.25
B 4.99 5.12
c0v 7.09 6.95
cþ 7.19 5.87
c� 1.64 1.58
c0e ¼ cþ � c� 5.55 4.29
c0 ¼ c0v þ c0e 12.64 11.24
c0v=c0 56% 62%
c0e=c0 44% 38%
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p
 !3
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ratð1� cos kaÞ�2
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We use Kürti and Kuzmany’s parameters for polyacetylene [19]:
the force constant of the K ¼ 0 phonon mode is 5.390 mdyne/Å.
Therefore, we obtain the vibrational second hyperpolarizability
c0v ð¼ cv=4!Þ from Eqs. (1) and (4)

c0v ¼ 1
8k0

@a
@Q

� �2

0
¼ 1

8k0
ðA2 þ B2 þ 2ABÞ: ð13Þ

On the other hand, we compare the vibrational contribution with
the pure electronic contribution to the second hyperpolarizability.
The band theory expression for the electronic second hyperpolariz-
ability c0ð¼ c=4!Þ is given by c0e ¼ cþ � c� [21]. Here, c0e is divided
into two parts

cþ ¼ 2N
a
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Z p
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ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh 2x0 þ cos ka

p
Þ11 dk:

ð15Þ

The total second hyperpolarizability is the sum of these two
kinds of contributions, c0 ¼ c0e þ c0v . The relevant results are sum-
marized in Table 1, and it is found that the ratio of these two con-
tributions is c0v=c0e ¼ 1:28. Thus, the vibrational K ¼ 0 phonon
mode contributes 56% to the whole second hyperpolarizability.
The results indicate that the vibrational contribution is comparable
to the electronic contribution.

4. Parabolic approximation

The parabolic approximation is usually used in the solid-state
theory [24]. The main contribution to Eqs. (11), (12), (14), and
(15) results from the regions around the critical points in the joint
density of states defined by the condition dek=dk ¼ 0. For polyacet-
ylene, the critical point is at the Fermi surface (i.e., kF ¼ p=a). We
will use the parabolic approximation around the Fermi surface
for the energy band to calculate Eqs. (11), (12), (14), and (15),
and compare these results with the exact results obtained in the
previous section.

From Eq. (11), A term becomes

A ¼
ffiffiffiffiffiffiffi
2N
p a

2p
8t0a2

Bb
D cosh x0 b2

1 � b2
2

� �2
Z p

a

�p
a

1
e7

k

dk; ð16Þ

where

@ekðQÞ
@Q

¼ �4t0

Bb

1ffiffiffiffiffiffiffi
2N
p D

ek
cosh x0 ð17Þ

has been used and Dð¼ 4t0 sinh x0Þ is the energy gap. Using the par-
abolic approximation at ka ¼ �pþ x, we have

ek ffi t0 4 sinh x0 þ
x2

2 sinh x0

� �
: ð18Þ

Substituting Eq. (18) into Eq. (16) gives

A ffi
ffiffiffiffiffiffiffi
2N
p a2

Bbt0
64sinh32x0 �

1
2p

Z p

�p

1

4 sinh x0 þ x2

2 sinh x0

	 
7 dx:

ð19Þ

Similarly, B term becomes

B ¼
ffiffiffiffiffiffiffi
2N
p a

2p
a2

Bb

8b1b2 b2
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a
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1
e3

k

ð1þ cos kaÞ � b2
ratð1� cos kaÞ
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dk ð20Þ
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�8 tanh x0ð Þ 1

2p
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Z p

�p

1

4 sinh x0 þ x2

2 sinh x0

	 
3

ð1þ b2
ratÞ x2

2 � 2b2
rat

½ð1� b2
ratÞ x2

2 þ 2b2
rat�

2 dx: ð21Þ

Substituting Eqs. (19) and (21) into Eq. (13), we obtain the vibra-
tional second hyperpolarizability under the parabolic approxima-
tion. Furthermore, we can determine the pure electronic second
hyperpolarizability under the parabolic approximation. From Eqs.
(14) and (15), cþ and c� become

cþ ¼ 2N
a

2p
72a4 b2

1 � b2
2

� �2 � 2b2
1b

2
2

Z p
a

�p
a

sin2 ka
e11
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dk

ffi 2N
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576sinh22x0 �
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4 sinh x0 þ x2

2 sinh x0

	 
11 dx ð22Þ

c� ¼ 2N
a

2p
a4 b2

1 � b2
2

� �4
Z p

a

�p
a

1
e11

k
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ffi 2N
a4

t3
0

16sinh42x0 �
1

2p

Z p

�p

1

4 sinh x0 þ x2

2 sinh x0

	 
11 dx: ð23Þ

The exact results and the results under the parabolic approxi-
mation are summarized in Table 1. Again, the results obtained un-
der the parabolic approximation show that the vibrational
contribution is comparable to the electronic contribution. As
shown in Table 1, the values of various terms are extremely close,
and the results under the parabolic approximation are in excellent
qualitative agreement with the exact results.
5. Discussion and concluding remarks

The exact analytical results obtained in Section 3 indicate that
the static vibrational second hyperpolarizability of polyacetylene
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is larger than the static longitudinal electronic second hyperpolar-
izability. This conclusion is different from Yaron and Silbey’s result
derived from the perturbation theory [3]. They adopted a similar
model but found that the vibrational contribution amounts to
about 10% of the electronic one. In our current model, we followed
Kürti and Kuzmany’s parameters for the transfer integrals and the
force constant k0 for polyacetylene [19]. In contrast, they used the
parameters for a C@C double-bond to approximate the force con-
stant k0 for polyacetylene. In addition, the vibrational contribution
discussed by Yaron and Silbey corresponds to the Herzberg–Teller
ðBÞ term given by Eqs. (6) and (12). In addition to the Herzberg–
Teller term, our method also contains the Condon ðAÞ term
originating from the electron–phonon coupling given by Eqs. (5)
and (11). These two terms both contribute to the vibrational
second hyperpolarizabilities through Eq. (13). Therefore, these dif-
ferences lead to a significant inconsistency between our and their
results. Moreover, several studies also implied that the vibrational
modes in polyacetylene chains present substantial contributions to
the second hyperpolarizability [22,23,7].

Contributions to the linear and nonlinear optical coefficients can
be divided into electronic and vibrational parts. Including vibra-
tional levels into the perturbation theory expression leads to the
sum-over-state formulas for (hyper)polarizabilities expressed in
terms of vibronic energies and dipole moment matrix elements.
These expressions for vibrational (hyper)polarizabilities reduce to
the lattice relaxation expressions if the anharmonic terms are
neglected. In the current study, we obtained the exact analytical
results for the vibrational static second hyperpolarizabilities of
polyacetylene through the lattice relaxation expressions in the so-
lid-state limit. In addition, the comparison between the vibrational
and the electronic contributions indicates that the vibrational con-
tribution is comparable to the electronic one. Furthermore, we also
calculated the vibrational and electronic second hyperpolarizabili-
ties of polyacetylene under the parabolic approximation for the
energy band. The results under the parabolic approximation are
in excellent qualitative agreement with the exact results, and this
reaches the same conclusion that the vibrational contribution has
a non-negligible effect on the second hyperpolarizability. Therefore,
the vibrational contribution is as important as the electronic contri-
bution to the static second hyperpolarizability of polyacetylene.
The current study concentrated on the static vibrational second
hyperpolarizability for polyacetylene. In the future, the chain-
length dependence of the Condon and Herzberg–Teller contribu-
tions deserves further investigation. Furthermore, the current
model can be used to analyze dynamic vibrational hyperpolariz-
abilities and the effects of anharmonicity contributions on the
vibrational second hyperpolarizability.
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