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Minimax Design of Two-Channel
Nonuniform-Division FIR Filter Banks
with —1, 0, and+1 Coefficients

Ju-Hong Lee and Ding-Chiang Tang

Abstract—Utilizing an approximation scheme and a WLS algo-
rithm, we present a method to design two-channel nonuniform-
division filter (NDF) banks with continuous coefficients under the
minimax criterion. It is shown that the optimal filter coefficients
can be obtained by solving only linear equations. In conjunction
with a proposed filter structure, a method is then presented to
obtain the desired design result with filter coefficients taking on

associated magnitude responses are seBd@v) = 1 for
w € [(0,ws)/Lo] and = 0 for w € [(2r — w;)/Lo, 7],
and By(w) = 1 for w € [0, (wx — w,)/L;1] and = 0 for
w € [(m4wy)/ L1, 7], respectively. LeH(z) andH1 (=) have
zero stopband responsEy(c’*) = Hy(c/*) and Fi(¢/“) =
—Hy (/). By using the linear-phase property, the magnitude

—1, 0, and +1 only. The effectiveness of the proposed technique responsel’(w) of the NDF bank becomes [7]

is demonstrated by a simulation example.

Index Terms—Algorithms, filters and filtering, optimization.

I. INTRODUCTION

OR SOME applications, such as the subband coding of

speech and audio signals, the most appropriate subband-
decomposition of a signal must consider the critical bands of
the ear. It has been shown in [1] that these critical bands h
nonuniform bandwidths and cannot be easily constructed by a
conventional tree structure based on two-channel quadrature
mirror filter (QMF) banks. Several structures and design

L

_ 1o 2
The resulting aliasing distortions are given by [7]
1
A(w) = L—Lo Ho(w)Ho(w — wp — ws)
1
—I—L—LlHl(w)Hl(w—wp—ws) 2
1
As(w) = L_LO Ho(w)Ho(w 4+ wp + ws)
1
+ — Hi(w)Hi(w+wp +ws). 3

methods with continuous coefficients for nonuniform-division

LI,

filter (NDF) banks have been presented in [1]-[6]. Recently, Following (1)=(3), we formulate the conditions for perfect
one of the authors considered a structure for two-channel NIfgconstruction as

banks and proposed design methods for optimally designing( Z(w) =1, for0<w<mn

NDF banks based on thi, error criteria in [7]. Designs with Hy(w) =0, forw, <w <
powers-of-two coefficients have been reported in [8] and [9] | H,(w) =0, for0<w<w,

only for QMF banks. In [12] and [13], approaches have been 1 4)
presented for designing charge transfer device (CTD) filters VILo Ho(w)

and QMF banks with—1, 0, and+1 coefficients. However, 1 Hi(wy 4w, —w), for <<

there are practically no papers concerning the minimax designl /LT Wwp TWs =) Wp =W =Ws

of NDF banks with coefficients-1, 0, and+1 in the literature.

In this paper, we develop a technique to achieve the desired" . ! N
According to (4), the overall error functiof' to be mini-

design with coefficients-1, 0, and+1.

M INIMAX DESIGN OF TwWO-CHANNEL NDF BANKS

mized in the minimax sense can be formulated by using the

Il. Two-CHANNEL NONUNIFORM-DIVISION

FIR ALTER BANKS E

Consider the two-channel NDF bank with the architecture
given by [7] that is shown in Fig. 1. The desired magnitude
responses for the analysis filteldy(z) and H;(z) with
passband widths equal thyn/L and Ly7/L, respectively,
are shown in Fig. 2, wherd. = Lo + L;. w, and w;
denote the related band-edge frequencies. Assume that the
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WLS algorithm of [10] as the weighted sum of four errors

10 W (w)(T(w) — 1)? dw

—l—oq/ ’ Wi (w)Hi (w) dw
w=0

™

+ o Wo(w)H5 (w) dw + as Wi(w)
1 =Ws ) )
(-2 Ho(w)— ———H s—w)) d
<\/L—Lo o) = Ly Hler te ”)> ?

()

whereW,.(w), Wi(w), Wo(w), andW;(w) denote the required
frequency response weighting functions for obtaining the
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zo(n) up(n)
H(z) 1: Lo Bo(z)} L:1 }—
z(n)
zy(n) u(n)
Hy(z) ——%()—vl:Ll > Bi(z) > L:1 [~
(@
— 1: L > Bo(z) —1 Lo : 1 FQ(Z) iO(n)
Z(n)
— 1:L P Bi(z)}+{ L1 :1 R(2) £
% Z1(n)
(b)

Fig. 1. The two-channel nonuniform-division maximally decimated filter bank system. (a) The analysis system. (b) The synthesis system.

minimax designe;, ¢ = 1, 2, 3 represent the relative weights. Uy, = [u1,(¢, j)] with

During the optimization process for finding the optimal filter ] Ny +1
. 9 1 -
coefficients, leth!(n) and h!(n) be the filter coefficients of uip(; j) = 2 sin —J Wit -1

Hy(z) andH;(z), respectively, at th&h iteration. An approx- . N
imation for 7(w) is defined by replacing one d;(w), i = l<i<sK-J+1l1<j<—
0, 1 in (1) with H?(w), respectively, as follows: Ug, = [uos(i, §)]  with
. o No+1
T(w) = LLO H(w)Ho(w) + LLl Hi(w)Hi(w) (6) wos (i, J) =2 cos{( 5 —J)le},
where H{(w) and H!(w) denote the magnitude responses 1<i<K—-J+1,1<5< %

of Ho(z) and Hy(z) with coefficients hf(n) and hl(n),

g Uy, =[us(4, §)]  with
respectively. LetE’ be the corresponding error function given 1o = [ (i 7))

by (5) for T'(w). u1s(4, j) = 2 sin < )w}
Let{W1:0,WQ,"',Cd[:wp,"',C()J:CUS,"',CU[(: N
7} be a dense grid of frequencies, linearly distribute@irr]. 1<i<I,1<j< -

We define the following matrices o _
Ugr = [uoe(t, 5)] with

Uy = [uo(t, §)] with o No+1 .
No+1 (4, J) =2 co B — ] |WitI-1 ¢
uo(t, j) =2 COS{( —j)wi},
2 . Ny
Ny 1< J-T+1,1<5< >
1<i<K 1<3< —= ..
SisKlsjss Uy =fuueli, /] with
Uy =[ui(i, j)] with . [ (Ni+1
u14(t, j) =2 sin 5 —J

N +1
U/l(iv J)IQSIH{< 12+ _j>wi}7

Ny (wp + ws _wi+11)},
1<i<K,1<j5< -

. .M
UopI[qu(L,J)] with 1SLSJ_I+L]-SJ57
wop(t, ) = 2 cos o+l _; w;
ot J 2 v Let two vectorsy! = [5/(0), 54(1), -, 4}(N;/2) — D)7,
N, S . . . ;
1<i<I 1<j< 0 ¢ = 0, 1 contain the independent parameters atthéeration,

2 where the superscriff’ denotes the transpose operation.

Authorized licensed use limited to: National Taiwan University. Downloaded on March 25, 2009 at 02:12 from |IEEE Xplore. Restrictions apply.



1186 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 46, NO. 10, OCTOBER 1999

IV. MINIMAX DESIGN USING COEFFICIENTS—1, 0, and+1

A. The Proposed Filter Structure
Ho(w Hy(w

LLy LL, Consider the new filter structure shown by Fig. 3 for filter
realization. The impulse respongém) has a finite number of

> samples with values restricted dl, 0, and+1 only. The reset

terminal receives a signal to clear the contents of the delay

element ofC whenm = nk + 1. Let the impulse response of

the filter structure bev,(n) with length N. w(m) will have

length N, = Nk + 1. Settingz(n) to an impulse sequence,

) _ R ) we obtain
Using the above matrix notation&; can be approximately

reformulated in matrix form as
2 7 7 T 7 7 yk(o) IAIU(O), yk(m) = Aw(m) )
£ =(Uayo + Uby = 1ic)" Wi(Uayo + Upy1 — 1ic) form=nk+1,n=1,2-,N (12)

+ a1 (Usy) TW1(Usyh) + a2(Ugsy )T Wo(Uosy)

XY

Fig. 2. The desired magnitude specifications for the analysis filters.

and
1 INT . !
+063(U0t3’0 Ultyl) Wt(UOtyO Ultyl) (7) yk(m) =3yk(m— 1) —i—Aw(m),
where U, = H\U,, U, = H{U;, H) = 1/LL, form#nk+1,n=12 -, N. (13)
diag(Hp(w1), Hf(w2), ---, Hi(wr)), H{ = 1/LL
diag(H} (w1), Hl(w2), ---, H (wk)) and 1k is a column

vector with sizeK and all entries equal to one. Eachwf,, From (12) and (13), we have
Wi, Wq, and W, represents a diagonal matrix containing

the weight values of the corresponding weighting function v (0) = Aw(0)
evaluated on the dense grid. Therefore, finding the optimal m ‘
yi*tt i = 0,1 for minimizing (7) is equivalent to solving ur(m) =A Z w(i)3™
the following linear equations: i=k{(m—1)/k)+1
A B|[yi] _ [UI'w,1, form=1,2 -, Ny —1 (14)
B" C||y*t]| T |[UI'W,1;
or 141 T where (z) denotes the largest integer not greater thahet
[y?ﬂ} :Ral {U%W,,l ;(} (8) w(m) = 0 for m < 0. It is easy to show that the relationship
Y1 U, Wrlg betweeny(n) = hq(n) andyx(m) is given by
where
R — A B ok
=B c ha(n) =y(n) = w(nk) = A > w(m)zmm,
A :UZWrUa + OCQU(I;SW()UOS + agUaWtUOt m=(n—1)k+1

B =UTW, U, — asULW, Uy, forn=0,1,---, N —1. (15)
C=UiwW, U, + o, UL W U, + s UL W, U, (9
] ’ ' P ) VLWl 9) Sincew(m) are restricted to-1, 0, and+1 only for m =
After getting the parameter vectong™' at the (I + 1)th 0 1 ..., N), — 1, we note from (15) thah,(n) satisfies the

iteration, we updaté:;(n), i = 0, 1 as inequalities —(3* — 1)/2 < hg(n)/A < (3 — 1)/2. For

R () = 0.5(hl(n) + 4+ (n)), any integerP € [—(1/2)(3* — 1), (1/2)(3* — 1)], it is easy

‘ ’ ‘ N to show that there exists a unique setwf(n — 1)k + 1),
forn=0,1, ---, ?Z -1 (10) w((n—1)k+2), ---, w(nk) such thatP can be expressed as

nk nk—m
= 3 .
To achieve the minimax design, the WLS algorithm of [101D Lom=(n-vi+1 @ (M)

is utilized for adjustingW,.(w), Wo(w), Wi(w), and Wy(w)

during the design process. Further, the initial vectpfsare B Discrete Optimization Procedure

set to a least squares solutions that optimally approximate the . L _
desired responses of Fig. 2 as 1) Constrained OptimizationLet h = [A(0), h(1), ---,

h((No + N1)/2 = D]F = [ho(0), ho(1), -+ -ho((No/2) — 1),

—1 f
Yo =V LLo(Ug,Ugp + a2 UL Ug,s) (UL, 11) R1(0), hi(1), ---, Ri((N1/2) — 1)]*. Suppose thath()

—1 represents the continuous coefficient vector excludingittme
¥ = VIL (UL Uy + e UL UL (Ul 1 ). P ’

coefficientA(¢) that is fixed at a discrete value. thgi) be

the vector that minimizes the overall error functidhof (7
Appendix A summarizes the proposed method by showimghenh(i) is fixed at a discrete valule,(¢). Let the difference
Design Procedure 1. between the optimal continuous valie(z) and the discrete

(11)
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z A
. xk('">,1w(m) Ny Jﬂ,‘k—l‘ ¥(n)

A

x(n)

reset

@)

+ f\ Yi(m) -
"D >
+

3
| Delay
< D <

reset
(b)
Fig. 3. (a) The proposed new filter structure. (b) The function blGtk

value hy(i) of h(i) be §h(i) = hy(i) — h.(i). Based on  3) Filter Coefficient Selectionin general, the grid density

the LMS algorithm of [11], we can obtaih(” = h{”? + decreases as the value of discrete coefficients increases. The
(GNSA(i) = [0P(0), K1), -+, B (No+Ny)/2—2)F,  effect of discretizing the small coefficients is more easily com-
where bt denotes the vectoh, = [h.(0), he(1), - pensated by the remaining reoptimized coefficients. Hence, we

?

he((No-+N1)/2—1)]T that is obtained from Design Procedurdliscretize the coefficient with the largest relative sensitivity
1 with h.(7) omitted.G® is an((No+N1)/2—1) x 1 column first, at each tree stage. The relative sensitivity h¢f) is

vector given byG() = R7'S, whereR; and$S are obtained defined(‘e)ls‘ the relative sensitivity di() = ¥?X|9(i)(j)|'
from the submatrices dR, of (9). Let R, be partitioned as Whereg™’(j) is the jth element of the vectoG™.

R 2% by 2% V. SIMULATION EXAMPLE
0= D
A13 B A24 The parameter&’, M, andk are set t&® x max(Ng, N1), 3

and 10, respectively. L&}; denote the stopband &f;(w), ¢ =
0, 1. The performance is evaluated in terms of the peak

. AL A reconstruction error (PRE), the normalized peak stopband
and column ofRy, respectively. TheR, = [} i3] and ripple (NPSR), and the stopband ripple energies (SRE’s) of

S=[5] Let h$"? be the coefficient vector that minimizesthe designedd,(z) and Hy(z). They are given by
(7) whenh.(¢) and hgi)(j) are fixed at discrete values. The

difference between the optimal continuous vah{€(;) and PRE = max{|20 log;o T(w)|}

the discrete valué(j) of A" (5) is 6RO (j) = hY () — - ’

where [CT D Cfland[Bf D BI' are theith row

h{?(5). Similarly, we obtairh"? = h{"? + GGDsp0)(5), forw € [0. 7]
whereh{"?) represents the vectdr!” with 2{”(;) omitted. SRE = / HE (w) dw
We obtainG-7) by using the same procedure as above with &
R, instead of Ry. This process is repeated until all of the NPSR = max{g() logy, M}
filter coefficients are fixed at discrete values. VLL;
2) Tree Search AlgorithmAfter obtaining the optimal de- for w € €. (16)
sign from (8), we choose a coefficieht(¢) and fix it at M
discrete values in the vicinity df.(i). Based on théa{”, M, Example We use the design specifications of Case 1 in

further optimization problems are produced when the secomgble | and Design Procedure 2. We st = oy = a3 =
coefficienthgz)(j) is chosen and fixed at/ discrete values. 0.05, k1 = ko = k3 = 0.005, ks = 0.73, ande = 1073,
Therefore,M?* optimization problems must be solved wherTable | also shows the significant design results for both of
h.(i) and hg”)(j) take on discrete values. We select odiliy continuous and discrete coefficients after 17 iterations. The
of the M? optimization problems for further discretizing theresulting step sizeA and filter coefficients for the discrete
remaining coefficients. The search process continues until @disign are listed in Table Il. Fig. 4 plots the corresponding

of the filter coefficients are discretized. Hy(w)/+/LLo, Hi(w)/+/LLy, andT’(w) in decibels of the de-
Finally, Appendix B summarizes the minimax design witlsigned NDF banks. We note that the satisfactory performances
coefficients—1, 0, and+1. of the designed NDF banks with the optimal continuous
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Fig. 4. The magnitude responses for the example.Hajw)/v'LLo and H(w)//LL. (b) T(w). With —1, 0, and+1 coefficients (dashed-line)
and with the optimal continuous coefficients (solid-line).

coefficients and coefficients 61, 0, and+1 only are very ~ Step 2: Obtain y?,« = 0, 1, using (11). Compute the
close. magnitude responseld{(w) and H(w).
Step 3:Compute the vectoryﬁ*l, 1 =0, 1, at the(l+1)th
APPENDIX A iteration by solving the linear equations of (8).
DESIGN PROCEDURE 1 Step 4: Compute the resulting filter coefficients at the

Step 1:Specify Ny and N1, w, andw,, the relative weights ( + 1)th iteration using (1_0)' N

a1, ae, andas. Set the iteration numbér= 0 and each of ~ Step 5:Compute the associated overall error functight.

the weighting matrices to the identity matrix. If the stopping criterion|(E! — E'*1)/E!| < ¢, is satisfied,
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TABLE |

(a) THE DESIGN SPECIFICATIONS FORCASE
1 AND (b) THE SIGNIFICANT DESIGN RESULTS

Case |

Ny 32
N 32
@, 037
o 057
Ly 2
L1 3
(@)
Continuous Design Design with Coefficient
-1,0, +1
PRE(dB) 0.0269767570 0.0279254633
NPSR(dB) of H, (@) -42.4243401946 -42.2483936545
NPSR(dB) of H, (@) -41.2303864631 -41.3402438500
SREof H,(w) 0.0004504312 0.0004458339
SRE of H, (@) 0.0005199400 0.0005132138
(b)
TABLE 1

THE ANALYSIS FILTER COEFFICIENTS
A =1.220703125000000e-004

n m (YAl b (YA n
0 10122 16706 31
L 4950 -1393 30
2 -535 -3807 29
3 2154 -1362 28
4 -498 1145 27
5 1023 1430 26
6 672 161 25
7 -368 -765 24
8 -546 -551 23
9 27 133 22
10 336 404 21
11 99 159 20
12 -154 -139 19
13 -124 -183 18
14 97 -67 17
15 26 24 16

then go toStep 6,wherec is a preset small positive real
number. Otherwise, sét=1[+ 1 and go toStep 3.

Step 6:Let Max(V,.) and Min(V,.) be the maximum and
minimum of |T(w) — 1| for w € [0, 7], Max(V,) and
Min(V5) be the maximum and minimum @, (w)| for w €
[ws, 7], Max(V1) andMin(V}) be the maximum and mini-
mum of|H; (w)]| forw € [0, w,], andMax(V;) andMin(V})
be the maximum and minimum df1/y/LL¢)Ho(w) —
(1/v/LL1)Hi(wp +ws —w)| for w € [w,,, w,], respectively.

If all of the following stopping criteria:
Max(V,.) — Min(V,.)
<
3) Max(V,.) =M
Max(Vp) — Min(Vp)
b -
) Max(Vp) =2
Max (V1) — Min(V7)
©) Max (V1) = s

(20]

[11]

[12]

[13]

1189

and

Max(V;) — Min(W;)

9 Max(V;) -

Ky

are satisfied, then terminate the design process. Otherwise,
go to Step 7.

Step 7:Adjust W,., Wy, W, and W, using the WLS
algorithm of [10]. Then, set =1+ 1 and go toStep 3.

APPENDIX B
DESIGN PROCEDURE 2

Step 1:Use the design method of Section Ill to find the
optimal continuous filter coeffcients;(n), ¢ = 0, 1.

Step 2:Choose four powers-of-two values in the vicinity of
the maximum of|h.(n)|/(1/2(3* — 1)) as the values for
the step sizeA.

Step 3:For a givenA, perform the discrete optimization
procedure of Section IV-B to find the discrete coefficients
ha(n), n=10,1,2, -+, (N1 + N2)/2) — L.

Step 4:ComputeE of (7) corresponding tdiy(n), update
U, and Uy, and adjustW,., Wy, W1, and W, using the
WLS algorithm of [10]. Then, recompute the new optimal
h. from (8).

Step 5: RepeatSteps 3and 4 until E cannot be further
reduced.

Step 6:Select theA that makesé smallest among the four
powers-of-two values foAA. Find the corresponding(m)
by using (15).
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