
1184 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 46, NO. 10, OCTOBER 1999

Minimax Design of Two-Channel
Nonuniform-Division FIR Filter Banks

with 1, 0, and 1 Coefficients
Ju-Hong Lee and Ding-Chiang Tang

Abstract—Utilizing an approximation scheme and a WLS algo-
rithm, we present a method to design two-channel nonuniform-
division filter (NDF) banks with continuous coefficients under the
minimax criterion. It is shown that the optimal filter coefficients
can be obtained by solving only linear equations. In conjunction
with a proposed filter structure, a method is then presented to
obtain the desired design result with filter coefficients taking on
�1; 0; and+1 only. The effectiveness of the proposed technique
is demonstrated by a simulation example.

Index Terms—Algorithms, filters and filtering, optimization.

I. INTRODUCTION

FOR SOME applications, such as the subband coding of
speech and audio signals, the most appropriate subband-

decomposition of a signal must consider the critical bands of
the ear. It has been shown in [1] that these critical bands have
nonuniform bandwidths and cannot be easily constructed by a
conventional tree structure based on two-channel quadrature
mirror filter (QMF) banks. Several structures and design
methods with continuous coefficients for nonuniform-division
filter (NDF) banks have been presented in [1]–[6]. Recently,
one of the authors considered a structure for two-channel NDF
banks and proposed design methods for optimally designing
NDF banks based on the error criteria in [7]. Designs with
powers-of-two coefficients have been reported in [8] and [9]
only for QMF banks. In [12] and [13], approaches have been
presented for designing charge transfer device (CTD) filters
and QMF banks with 1, 0, and 1 coefficients. However,
there are practically no papers concerning the minimax design
of NDF banks with coefficients 1, 0, and 1 in the literature.
In this paper, we develop a technique to achieve the desired
design with coefficients 1, 0, and 1.

II. TWO-CHANNEL NONUNIFORM-DIVISION

FIR FILTER BANKS

Consider the two-channel NDF bank with the architecture
given by [7] that is shown in Fig. 1. The desired magnitude
responses for the analysis filters and with
passband widths equal to and , respectively,
are shown in Fig. 2, where . and
denote the related band-edge frequencies. Assume that the
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associated magnitude responses are set to for
and for ,

and for and for
, respectively. Let and have

zero stopband response, and
. By using the linear-phase property, the magnitude

response of the NDF bank becomes [7]

(1)

The resulting aliasing distortions are given by [7]

(2)

and

(3)

Following (1)–(3), we formulate the conditions for perfect
reconstruction as

for

for

for

for

(4)

III. M INIMAX DESIGN OF TWO-CHANNEL NDF BANKS

According to (4), the overall error function to be mini-
mized in the minimax sense can be formulated by using the
WLS algorithm of [10] as the weighted sum of four errors

(5)

where and denote the required
frequency response weighting functions for obtaining the
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(a)

(b)

Fig. 1. The two-channel nonuniform-division maximally decimated filter bank system. (a) The analysis system. (b) The synthesis system.

minimax design. represent the relative weights.
During the optimization process for finding the optimal filter
coefficients, let and be the filter coefficients of

and , respectively, at theth iteration. An approx-
imation for is defined by replacing one of

in (1) with , respectively, as follows:

(6)

where and denote the magnitude responses
of and with coefficients and ,
respectively. Let be the corresponding error function given
by (5) for .

Let
be a dense grid of frequencies, linearly distributed in .

We define the following matrices

with

with

with

with

with

with

with

with

Let two vectors ,
contain the independent parameters at theth iteration,

where the superscript denotes the transpose operation.
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Fig. 2. The desired magnitude specifications for the analysis filters.

Using the above matrix notations, can be approximately
reformulated in matrix form as

(7)

where
,
and is a column

vector with size and all entries equal to one. Each of ,
, , and represents a diagonal matrix containing

the weight values of the corresponding weighting function
evaluated on the dense grid. Therefore, finding the optimal

for minimizing (7) is equivalent to solving
the following linear equations:

or

(8)

where

(9)

After getting the parameter vectors at the th
iteration, we update as

for (10)

To achieve the minimax design, the WLS algorithm of [10]
is utilized for adjusting , , , and
during the design process. Further, the initial vectorsare
set to a least squares solutions that optimally approximate the
desired responses of Fig. 2 as

(11)

Appendix A summarizes the proposed method by showing
Design Procedure 1.

IV. M INIMAX DESIGN USINGCOEFFICIENTS 1, 0, and 1

A. The Proposed Filter Structure

Consider the new filter structure shown by Fig. 3 for filter
realization. The impulse response has a finite number of
samples with values restricted to1, 0, and 1 only. The reset
terminal receives a signal to clear the contents of the delay
element of when . Let the impulse response of
the filter structure be with length . will have
length . Setting to an impulse sequence,
we obtain

for (12)

and

for (13)

From (12) and (13), we have

for (14)

where denotes the largest integer not greater than. Let
for . It is easy to show that the relationship

between and is given by

for (15)

Since are restricted to 1, 0, and 1 only for
we note from (15) that satisfies the

inequalities . For
any integer it is easy
to show that there exists a unique set of ,

such that can be expressed as
.

B. Discrete Optimization Procedure

1) Constrained Optimization:Let ,

Suppose that
represents the continuous coefficient vector excluding theth
coefficient that is fixed at a discrete value. Let be

the vector that minimizes the overall error functionof (7)
when is fixed at a discrete value . Let the difference
between the optimal continuous value and the discrete
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(a)

(b)

Fig. 3. (a) The proposed new filter structure. (b) The function blockC.

value of be . Based on
the LMS algorithm of [11], we can obtain

where denotes the vector
that is obtained from Design Procedure

1 with omitted. is an column
vector given by , where and are obtained
from the submatrices of of (9). Let be partitioned as

where and are the th row
and column of , respectively. Then and

. Let be the coefficient vector that minimizes

(7) when and are fixed at discrete values. The
difference between the optimal continuous value and
the discrete value of is

. Similarly, we obtain
where represents the vector with omitted.
We obtain by using the same procedure as above with

instead of . This process is repeated until all of the
filter coefficients are fixed at discrete values.

2) Tree Search Algorithm:After obtaining the optimal de-
sign from (8), we choose a coefficient and fix it at
discrete values in the vicinity of . Based on the
further optimization problems are produced when the second
coefficient is chosen and fixed at discrete values.
Therefore, optimization problems must be solved when

and take on discrete values. We select only
of the optimization problems for further discretizing the
remaining coefficients. The search process continues until all
of the filter coefficients are discretized.

Finally, Appendix B summarizes the minimax design with
coefficients 1, 0, and 1.

3) Filter Coefficient Selection:In general, the grid density
decreases as the value of discrete coefficients increases. The
effect of discretizing the small coefficients is more easily com-
pensated by the remaining reoptimized coefficients. Hence, we
discretize the coefficient with the largest relative sensitivity
first, at each tree stage. The relative sensitivity of is
defined as the relative sensitivity of ,
where is the th element of the vector .

V. SIMULATION EXAMPLE

The parameters , , and are set to , 3
and 10, respectively. Let denote the stopband of

. The performance is evaluated in terms of the peak
reconstruction error (PRE), the normalized peak stopband
ripple (NPSR), and the stopband ripple energies (SRE’s) of
the designed and . They are given by

PRE

for

SRE

NPSR

for (16)

Example: We use the design specifications of Case 1 in
Table I and Design Procedure 2. We set

, , , and .
Table I also shows the significant design results for both of
continuous and discrete coefficients after 17 iterations. The
resulting step size and filter coefficients for the discrete
design are listed in Table II. Fig. 4 plots the corresponding

, , and in decibels of the de-
signed NDF banks. We note that the satisfactory performances
of the designed NDF banks with the optimal continuous
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(a)

(b)

Fig. 4. The magnitude responses for the example. (a)H0(!)=
p
LL0 and H1(!)=

p
LL1. (b) T (!). With �1, 0, and+1 coefficients (dashed-line)

and with the optimal continuous coefficients (solid-line).

coefficients and coefficients of 1, 0, and 1 only are very
close.

APPENDIX A
DESIGN PROCEDURE 1

Step 1:Specify and , and , the relative weights
, , and . Set the iteration number and each of

the weighting matrices to the identity matrix.

Step 2: Obtain , using (11). Compute the
magnitude responses and .
Step 3:Compute the vectors , at the th
iteration by solving the linear equations of (8).
Step 4: Compute the resulting filter coefficients at the
( )th iteration using (10).

Step 5:Compute the associated overall error function .

If the stopping criterion, , is satisfied,
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TABLE I
(a) THE DESIGN SPECIFICATIONS FORCASE

1 AND (b) THE SIGNIFICANT DESIGN RESULTS

(a)

(b)

TABLE II
THE ANALYSIS FILTER COEFFICIENTS

then go toStep 6,where is a preset small positive real
number. Otherwise, set and go toStep 3.
Step 6:Let and be the maximum and
minimum of for , and

be the maximum and minimum of for
, and be the maximum and mini-

mum of for , and and
be the maximum and minimum of

for , respectively.
If all of the following stopping criteria:

a)

b)

c)

and

d)

are satisfied, then terminate the design process. Otherwise,
go to Step 7.
Step 7: Adjust , , , and using the WLS
algorithm of [10]. Then, set and go toStep 3.

APPENDIX B
DESIGN PROCEDURE 2

Step 1:Use the design method of Section III to find the
optimal continuous filter coeffcients .
Step 2:Choose four powers-of-two values in the vicinity of
the maximum of as the values for
the step size .
Step 3:For a given , perform the discrete optimization
procedure of Section IV-B to find the discrete coefficients

, .

Step 4:Compute of (7) corresponding to , update
and , and adjust , , , and using the

WLS algorithm of [10]. Then, recompute the new optimal
from (8).

Step 5: RepeatSteps 3and 4 until cannot be further
reduced.
Step 6:Select the that makes smallest among the four
powers-of-two values for . Find the corresponding
by using (15).
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