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Soil pollution delineation is a difficult task because there may be multiple pollution sources and complex
transport schemes. In this study, four heavy-metal concentrations, namely Cr, Cu, Ni, and Zn, were collected
at 1082 sampling sites in central Taiwan. Conditioned Latin Hypercube Sampling (cLHS) is used to determine
the most cost-effective sampling strategies for long-term monitoring of multiple heavy metals. Then, the
study estimates the probability of multiple hazardous heavy metals using multiple-variable indicator kriging
(MVIK) based on sufficient cLHS samples.
The results suggest that heavy-metal sampling patterns, including the size and configuration, affect the
spatial distribution of probable hazards, especially when the sample size is small. Unlikely random sampling,
the cLHS method replicates the variability and distribution of variables. In this study, an area is defined as a
hazard zone if the amount of any heavy metal exceeds the corresponding regulatory threshold. The heavy-
metal delineations (e.g., where the MVIK hazard probability exceeds 0.85) cover over 20% of the study area
and correlate highly with the locations of industrial plants and irrigation systems in the area. Hence, MVIK
coupled with cLHS provides a way to assess the presence of multiple hazards efficiently and effectively in
future monitoring and environmental management projects.
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1. Introduction

Soil contamination is caused by the presence of man-made
chemicals or other alterations in natural soil environment. The
common sources of chemicals are petroleum hydrocarbons, pesti-
cides, solvents, and heavymetals. The occurrence of this phenomenon
is highly correlated with the degree of industrialization and intensity
of chemical usage (Lin, 2002; Franco et al., 2006; Zhao et al., 2007).
The concern over soil contamination stems primarily from health risks
it poses through direct contact and from secondary contamination of
water supplies.

However, the delineation of soil pollution is usually a challenging
task, especially when there are multiple pollution sources and the
composition of the polluting effluents is complex (Goovaerts, 2001). Soil
pollution data for heavy metals occasionally exhibits small-scale
discontinuities or variations that increase the difficulty of delineating
the characteristics of soil pollutants (Lin, 2008). The data may be sparely
distributed across the sample sites, so it cannot provide all the
information needed for risk assessment and effective environmental
management.Moreover, the collected datamay be inconsistent, possibly
becauseof complicated temporal and spatial variations in themeasurable
characteristics of the investigated pollution sources.

In the delineation of contamination areas, risk assessment at
unsampled locations is significantly important (Goovaerts, 2001; Van
Meirvenne and Goovaerts, 2001; Lin, 2002; Schnabel, 2004; Amini,
2005; Hassan and Atkins, 2007; Lin, 2008). Moreover, in an urbanized,
industrialized or agricultural area, the soil might be polluted by
several heavy metals (Lin et al., 2002; Krishna and Govil, 2004; Norra
et al., 2006; Lin et al., 2010). Mapping multiple-contaminant polluted
areas requires the use of multivariate analysis with the spatial
estimation (Smith et al., 1993; Diodato and Ceccarelli, 2004; Juang et
al., 2004; Zhang et al., 2008). Multiple-variable indicator kriging
(MVIK) is a multivariate approach that provides more conservative
information and scenarios than single-variable indicator kriging (Jang
et al., 2008; Lee et al., 2008; Lin et al., 2010). Furthermore, hazardous
probability maps for multiple pollutants are needed for soil
investigations. Many studies have applied MVIK successfully in
investigations of soil quality in farmed fields (Smith et al., 1993;
Halvorson et al., 1996; Oyedele et al., 1996; Diodato and Ceccarelli,
2004). However, few studies have usedMVIK to obtain representative
samples to identify the hazard zone of contaminants.

According to the EPA's guidelines for collecting environmental
data, soil samples can be gathered by judgmental sampling, random
sampling, stratified sampling, or systematic sampling. Because of the
complicated distributions of soil contaminations, random sampling
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may not be efficient for delineating the hazard zone of contaminants.
Hence, other sampling designs, such as stratified sampling and
systematic sampling, may be preferred for analysis, but the sampling
procedure is complicated because of the nature of the contaminant
data. Moreover, long-term monitoring of a polluted area is necessary
to ensure that remediation objectives are achieved to reduce the risk
to people's health and the environment. Several hundred samples
must be collected and analyzed each year, but that incurs numerous
costs. Reducing the sample size could lower the monitoring costs.
Thus, for reasons of cost-efficiency, it is better to select sites that will
make the greatest contribution to the characterization of contaminant
over the entire domain. Latin hypercube sampling (LHS), a stratified
random procedure, is an efficient means of sampling from multivar-
iate distributions (McKay et al., 1979; Minasny andMcBratney, 2006).
A number of studies posit that LHS can explore a model's parameter
space more exhaustively than simple random sampling (SRS) (McKay
et al., 1979; Xu et al., 2005; Hassan and Atkins, 2007; Post et al., 2008).
LHS yields a more representative distribution of model outputs given
the same number of input simulated realizations. The efficiency of LHS
is better than that of SRS for univariate distributions (McKay et al.,
1979). Post et al. (2008) discussed the origins of a model's uncertainty
in terms of the model's inputs. They used the Monte Carlo method
with LHS to investigate temporal propagation and river basin scale
propagation of uncertainty in long-term soil organic carbon (SOC)
dynamics. Xu et al. (2005) combined stochastic simulation and LHS in
a forest landscape simulation model. Their results show that LHS can
capture more variability in the sample space than SRS, especially
when the number of simulations is small.

Developing efficient procedures for collecting information-effective
samples is essential if we gain a more accurate understanding of the
spatial distribution of pollutants. Carre et al. (2007) proposed using LHS
as a sampling design for digital soil mapping. They used the principle of
hypercube sampling to assess the quality of existing soil data and
identified the locations that needed to be sampled. The proposed
algorithm checks the occupancy of legacy sampling units in the
hypercube of the quantiles of the environmental data. However, in
practice,manysurveys considermore thanonevariable in soil sampling.
A multivariate sampling strategy is essential. Minasny and McBratney
(2006) employed conditioned Latin hypercube sampling (cLHS) with
prior information to represent ancillary data for the Hunter Valley in
New South Wales, Australia. They also used the cLHS approach with a
search algorithm based on annealing schedules derived from the
multivariate distributions. The results show that cLHS is more effective
than SRS and stratified spatial sampling for replicating the distribution
of variables. The cLHSmethod provides full coverage of each variable by
maximally stratifying the marginal distribution and ensuring a good
spread of sampling points (Minasny and McBratney, 2006; Lin et al.,
accepted for publication).

The primary objective of the presentwork is to investigate proposals
for sampling and delineating designs for multiple-contaminant man-
agement. In this study, cLHS and MVIK are combined to determine the
hazard probability of multiple pollutants. First, cLHS ensures the
correlation of the sampled variables used to replicate the original data.
Then,MVIK generates the probability map ofmultiple hazards based on
the cLHS samples. A study case from thefield survey is provided through
comparison of modeling with SRS and conditional simulations that
estimate the contaminant maps and hazard delineation.

2. Materials and methodology

2.1. Study area

The research area is in the northern part of Chanhua County,
Taiwan. Changhua City lies to the east and Lugang Township lies to the
west. The area, which is covered by irrigation systems, is regarded as
an important agricultural region (Fig. 1). The study area includes
suspected pollution sources and many factories such as metal work,
dyeing and finishing, surface treatment, livestock, textile, electroplat-
ing, and tannery businesses (Lin et al., 2010). In this study area, the
data of 1082 topsoil (0–15 cm) samples containing concentrations of
Cr, Cu, Ni, and Zn were obtained by the soil heavy-metal investigation
project carried by Taiwan's Environmental Protection Administration
(EPA), between February and August 2002. The sampling sites are also
shown in Fig. 1. Approximately 1 kg of soil was collected for each
sample using a stainless steel spade and a plastic scoop and then
stored in a plastic food bag. After air drying at room temperature, 3 g
of each soil sample was disaggregated, sieved to 0.85 mm and ground
to a fine 0.15 mm powder. Each 3 g milled sample was then digested
for 2 h at room temperature with 7 mL HNO3 and 21 mL HCl (aqua
regia, 1:3) to slowly oxidize organicmatter in the soil. Next, the digest,
100 mL aqua regia, was filtered. Additionally, the levels of Cr, Cu, Ni,
and Zn in the samples were determined by Inductively Coupled
Plasma-Optical Emission Spectrometers (ICP-OES) (Lin et al., 2010).

2.2. Multiple-variable indicator kriging (MVIK)

MVIK is basically the same as ordinary kriging, but the binary data
is generated by a thresholding procedure (Smith et al., 1993; Jang et
al., 2008). Indicator kriging provides a non-parametric distribution
estimated directly using fixed thresholds by considering indicator
transforms of the conditioning data in the form of cumulative
distribution functions with step functions. The method estimates
the probability that the concentration of a pollutant exceeds a specific
threshold value at a given location (Deutsch and Journel, 1992; Lin,
2002). The data (Z(x)) is transformed into an indicator as follows:

i x; zcð Þ = 1; if Z xð Þ≤ zc
0; otherwise :

�
ð1Þ

If the concentration of heavy metal (Z(x)) exceeds zc, the indicator
will be 0; otherwise it will be 1 (Goovaerts et al., 1997).

For MVIK, the integration of K heavy-metal indicators is achieved
by the intersection operator, and is defined as follows:

I x; zcð Þ = min ik x; zkc
� �� �

; k = 1;…;K: ð2Þ

The expected value of I(x; zc|(n)), conditional on n surrounding
data, can be expressed as

E I x; zc j nð Þð Þ½ � = Pr ob Z xð Þ≤zc j nð Þ½ �: ð3Þ

The hazard probability that exceeds zc can be expressed as

Pr ob Z xð Þ N zc j nð Þ½ � = 1−Prob Z xð Þ≤zc j nð Þ½ �: ð4Þ

Eqs. (2) and (4) imply that a hazard exists if any one of multiple
heavy metals exceeds the corresponding threshold.

This ordinary indicator kriging estimator is defined as follows:

Pr ob z x0ð Þ≤zc j nð Þ½ � = ∑
n

α=1
λα I xα; zcð Þ; ð5Þ

where I(xα; zc) represents the indicator values at xα; and α=1, ⋯, n; λα

is the kriging weight of I(xα; zc) determined by solving the following
kriging system:

∑
n

β=1
λβγi xα−xβ; zc

� �
+ μ = γi xα−x0; zcð Þ; ð6Þ

∑
n

β=1
λβ = 1; ð7Þ



Fig. 1. The study area and sampling sites.
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where μ is the Lagrange multiplier; γi(xα−xβ; zc) is the indicator
variogram between the indicator variables at the αth and βth
sampling points; γi(xα−x0; zc) is the variogram between the indicator
variables, i.e., the αth sampling point and x0; and α=1, ⋯, n.

2.3. Sequential indicator simulation (SIS)

SIS is used for mapping, assessing and validating the hazard
delineation based on 1082 samples. In the algorithm, modeling of the
N-point conditional cumulative distribution function (ccdf) is a
sequence of N univariate ccdfs at each grid cell along a random path
(Goovaerts, 1997; Lin et al., 2009). The steps of the sequential
indicator simulation algorithm are as follows (Deutsch and Journel,
1992; Goovaerts, 1997; Lin et al., 2009):

1. Establish a random path that visits each location of the domain
once, where all nodes {xi, i=1,⋯,N} discretize the domain of
interest. A random visiting sequence ensures that a spatial
continuity artifact is not introduced to the simulation by a specific
path visiting N nodes.

2. At the first visited node (x1):
A. Using either a parametric or non-parametric approach, model

the local ccdf of Z(x1) conditional on n original data {Z(xα),
α=1, ⋯, n}: FZ(x1; z1|(n).)=prob{Z(x1)≤z1|(n)}.

B. Via the Monte Carlo approach, generate, a simulated value z(l)

(x1) from the derived ccdf FZ(x1; z1|(n)), and add it to the
conditioning data set.

3. At the ith node xi on the random path:
A. Model the local ccdf of Z(xi) conditional on n original data and the

closest i−1 previously simulated values {z(l)(xj), j=1, ⋯, i−1}:

FZ xi; zi j n + i− 1ð Þð Þ = Z xið Þ ≤ zi j n + i − 1ð Þf g: ð8Þ

B. Generate a simulated value (z(l)(xi)) from this ccdf, and add it to
the conditioning data set, which is now of dimension n+ i.

4. Repeat step 3 until all N nodes along the random path have been
visited.
In SIS, the indicator kriging estimator is used tomodel the prior ccdf
at each unsampled location (Juang et al., 2004). Since modeling the
prior ccdf at each unsampled location should use values previously
simulated at other sampled locations, the simulated values for all
unsampled locations are referred to as a joint realization (Goovaerts,
1997; Juang et al., 2004). In this study, the cutoff values for each heavy
metal are the 25th, 50th, and 75th percentiles of the prior ccdf.

2.4. Conditioned Latin hypercube sampling (cLHS)

In this paper, cLHSwith a search algorithm based on heuristic rules
is combined with an annealing schedule (Metropolis et al., 1953;
Minasny and McBratney, 2006). The cLHS procedure represents the
following optimization problem: given N sites with ancillary data (Z),
select n sample sites (n≪N) such that the sampled sites form a Latin
hypercube. For k continuous variables, each component of Z is divided
into n (sample size) equally probable strata based on their distribu-
tions, and z is a sub-sample of Z. The steps of the cLHS algorithm
(Minasny and McBratney, 2006; Lin et al., accepted for publication)
are as follows:

1. Divide the quantile distribution of Z into n strata, and calculate the
quantile distribution for each variable, qji, …, qjn+1. Calculate the
correlation matrix of Z(C).

2. Select n random samples from N, and calculate the correlation
matrix of z(T).

3. Calculate the objective function. The overall objective function
combines different components of the objective function. For
general applications, the weightings assigned to all the compo-
nents of the objective function are equal.
A. Since heavy-metal concentrations are continuous variables, an

objective function is

O1 = ∑
n

i=1
∑
k

j=1
η qij≤zj≤qi+1

j

� �
−1

��� ���; ð9Þ

where η(qji≤zj≤qj
i+1) is the number of zj that falls between

quantiles qj
i and qj

i+1.
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B. To ensure that the correlation of the sampled variables will
replicate the original data, another objective function is
defined:

O2 = ∑
k

i=1
∑
k

j=1
cij−tij
��� ���; ð10Þ

where c denotes an element of C, the correlation matrix of Z;
and t is the equivalent element of T, the correlation matrix of z.

4. Implement an annealing schedule: M=exp[−ΔO /T], where ΔO is
the change in the objective function, and T is a cooling temperature
(between 0 and 1), which is reduced by a factor in each iteration.

5. Generate a uniform random number between 0 and 1. If randbM,
accept the new values; otherwise, discard the changes.

6. Try to apply changes: Generate a uniform random number rand. If
randbP, pick a sample at random from z and swap it with a random
site from the unsampled sites r. Otherwise, remove the sample(s)
from z that has (have) the largest η(qji≤zj≤qj

i+1) and replace it
(them) with a random site(s) from unsampled sites r. End when
the value of P is between 0 and 1, indicating that the probability of
the search is a random search; otherwise, systematically replace
the samples that have the worst fit with the strata.
Fig. 2. Histograms for four pollutants (a) Cr, (b
7. Repeat steps 3–7 until the objective function value falls beyond a
given stop criterion or a specified number of iterations are
completed.
3. Results and discussion

3.1. Data statistics and spatial simulations

Fig. 2 illustrates the histograms of four heavy-metal pollutants and
summarizes the descriptive statistics (such as mean and standard
deviation) for the 1082 samples. The sample histograms of four
pollutants are strongly and positively skewed. In this study, the
probability of a contaminated area was mapped using MVIK with the
regulatory thresholds. In Taiwan, the regulatory thresholds (maxi-
mum allowable concentrations) for the investigated heavy metals are
as follows: Cr: 250 mg/kg, Cu: 200 mg/kg, Ni: 200 mg/kg, and Zn:
600 mg/kg. For the 1082 samples, the regulatory thresholds for Cr, Cu,
Ni, and Zn are the 76th, 68th, 48th, and 71th percentiles, respectively.
The statistical analysis shows that Ni contamination exceeds the
regulatory threshold substantially and it is the most serious pollutant
in the study area.
) Cu, (c) Ni, and (d) Zn in the study area.



Table 1
Indicator variogram models for the 25th, 50th, and 75th percentiles of heavy metals in
1082 samples.

Heavy
metal

Model Parameters RSS r2

C0 C0+C R

Cr 25% Exp. 0.020 0.184 216 1.730E-03 0.722
50% Exp. 0.026 0.247 171 1.202E-03 0.807
75% Exp. 0.025 0.190 120 2.075E-04 0.852

Cu 25% Exp. 0.017 0.184 240 2.008E-03 0.737
50% Exp. 0.025 0.247 186 7.016E-04 0.899
75% Exp. 0.024 0.190 108 5.293E-04 0.663

Ni 25% Exp. 0.015 0.179 222 2.614E-03 0.634
50% Exp. 0.022 0.237 228 3.608E-03 0.671
75% Exp. 0.018 0.183 159 5.723E-04 0.805

Zn 25% Exp. 0.024 0.190 222 1.464E-03 0.768
50% Exp. 0.028 0.250 171 3.795E-04 0.936
75% Exp. 0.021 0.189 144 8.077E-03 0.710

Exp.: Exponential model; C0: Nugget; C0+C: Sill; R: Range; RSS: Residual Sum of
Squares; r2: Coefficient of determination.

Fig. 3. The average concentration maps of (a) Cr, (b) Cu, (c) Ni, and (d)
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The Sequential Indicator Simulations were based on the indicator
variogram models for the 25th, 50th, and 75th percentiles of the
sample distribution of 1082 samples for Cr, Cu, Ni, and Zn in the study
area (Table 1). The variograms of the four heavy-metal concentrations
provide information about the spatial variability of soil heavy metals
using GS+ (2004). Fig. 3 shows the average concentration of each
heavy metal in 1000 SIS realizations based on the original data.
Generally, SIS is preferred over interpolation algorithms for applica-
tions where the distribution of spatial variation is skewed. The reason
is that SIS does not make any assumption about the shape of the
conditional distribution (Deutsch and Journel, 1992; Goovaerts, 1997;
Zhao et al., 2008). In the model, the dimensions are 72 (rows) by 104
(columns) and the size of each grid is 25 m by 25 m. The results
demonstrate that the hotspots of Cr and Cu are similar. The spatial
patterns also reveal high concentrations of Cr near industrial plants
and irrigation systems in the study area. The Cu hotspots are located in
the central and eastern parts of the study area in the vicinity of
industrial plants and irrigation systems. The hotspots of Ni are
distributed throughout the study area, except for the south-western
Zn in 1000 SIS realizations based on 1082 samples (unit: mg/kg).
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part; and the areas with high concentrations of Zn are close to
industrial plants and irrigation systems in the north-western part.
Fig. 4 shows the probability maps for sites where Cr, Cu, Ni, and Zn
exceed the regulatory thresholds based on the 1000 SIS realizations.
Overall, the maps show that the highest variability is close to
industrial plants and irrigation systems. The results, which match
those of previous studies, show that the distributions of heavy-metal
usage and pollution sources correlate with industrial plants and
irrigation channels (Lin et al., 2010). As mentioned earlier, there are
various factories in the study area, including metal work, surface
treatment, livestock, textile, electroplating, dyeing and tannery
plants; and they are suspected of discharging contaminated waste-
water into the irrigation systems (Lin et al., 2002; Lin et al., 2010).
Furthermore, soils are affected by a number of pollutants resulting
from different human activities (Zhao et al., 2007). The occurrences of
soil contamination are correlated with the degree of industrialization
and the intensity of chemical usage, especially heavymetals (Lin et al.,
2001; Lin, 2002; Krishna and Govil, 2004; Franco et al., 2006; Kasassi
et al., 2008).

3.2. Hazard probabilities derived by MVIK based on 1082 samples

The indicator geostatistics allow a straightforward assessment of
probabilities in excess of the critical values (Goovaerts, 1998). This
work estimates the occurrence probabilities of the four hazardous
metals based on MVIK. Fig. 5 (a) shows the MVIK probability map of
the hazardous zone based on 1082 samples. MVIK could be used to
Fig. 4. The probability maps of (a) Cr, (b) Cu, (c) Ni, and (
assess the risk of exceeding the regulatory thresholds at unsampled
locations, and to simulate the spatial distribution of hazardous zones
for multiple pollutants. In Fig. 5, a high value represents a high
probability of hazardous zone and a high risk of soil pollution. As a
result of industrial activities, the pollution of agricultural soils with
heavy metals has become very serious throughout the study area.
Heavy-metal pollution of soil is dominated by anthropogenic
activities in the study area (Lin et al., 2002, 2010). For validation,
the crispmultiple-pollutant hazardous zone in Fig. 5 (b) is highlighted
in red. A hazardous zone is delineated if the average concentrations of
1000 SIS realizations (Fig. 3) are higher than the regulatory thresh-
olds. The figure identifies the areas where the soil is polluted by heavy
metals to facilitate remediation efforts. However, the delineation of a
hazardous or non-hazardous zone is crisp and it is hard to account for
the imprecision and uncertainty. The probability map of hazardous
zones provides further insights for identifying pollution sources, high
risk areas and pollution pathways for use in subsequent management
projects, such as soil remediation, risk assessment and additional
investigations (Lin et al., 2010).

3.3. Multiple-variable indicator semivariogram based on cLHS and SRS
samples

Soil sampling for mapping possible areas of contamination is likely
to be costly and time-consuming, especially in cases where laboratory
procedures are expensive or the investigated area is large (Zhao et al.,
2008). In this study, we investigate the relationships between the
d) Zn in 1000 SIS realizations based on 1082 samples.



Fig. 5. (a) The probability map of hazard zone using MVIK based on 1082 samples and (b) crisp hazard delineation considering SIS average concentration maps.
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sample patterns and hazard zone delineation. Table 2 details the
indicator variogram analyses of multiple-variable indicators using
various samples. The fitted models of the indicator variograms are the
exponential models. Spatial structure analysis is widely regarded as a
useful tool for illustrating the spatial patterns of variables. It is also a
necessary basis for a number of other spatial analysis procedures, such
as kriging analysis (Wang and Qi, 1998). Usually, the three most
important features of a typical variogrammodel are the range, sill, and
nugget effect (Lin et al., 2009). The sill, which is the upper limit that a
variogramapproaches at a large distance, is ameasure of the variability
of the investigated variable. The nugget effect is exhibited by the
apparent non-zero value of the variogram at the origin, which may be
due to the small-scale variability of the investigated process and/or
measured errors. In the study, the range of an exponential variogram
model is the distance lag at which the semivariance reaches 95% of the
Table 2
Indicator variogram models for the MVIK based on cLHS and SRS samples.

Sample
size

Method Model Parameters RSS r2

C0 C0+C R (m)

1082 Exp. 0.0230 0.2368 237 2.16E-03 0.764
900 cLHS Exp. 0.0226 0.2362 237 3.38E-03 0.711
700 Exp. 0.0191 0.2371 230 4.03E-03 0.701
500 Exp. 0.0238 0.2426 186 2.39E-03 0.721
300 Exp. 0.0312 0.2467 186 4.70E-03 0.703
900 SRS Exp. 0.0209 0.2368 235 2.17E-03 0.797
700 Exp. 0.0210 0.2342 225 2.15E-03 0.714
500 Exp. 0.1501 0.3080 3135 2.42E-03 0.773
300 Exp. 0.1761 0.4432 9330 1.42E-03 0.794

Exp.: Exponential model; C0: Nugget; C0+C: Sill; R: Range; RSS: Residual Sum of
Squares; r2: Coefficient of determination.
sill. It reveals the distance above which the variables become spatially
independent. In indicator variograms based on cLHS samples, the
fitted ranges, the nugget effects and the sills are 186–237, 0.0191–
0.0312 and 0.246–0.236 m (Table 2), respectively. The results show
that the sill increases and the range decreases as the sample size
becomes smaller. On the other hand, the fitted ranges, the nugget
effects and the sills are 225–9330, 0.0210–0.1761 and 0.234–0.443 m
respectively in indicator variograms based on SRS samples (Table 2).
The semivariance of 900 and 700 samples is similar to that of the 1082
samples. Based on the cases, the sill and the nugget effect increase
when the sampling size decreases, which means a higher sill
corresponds to greater variability in the variable. Moreover, patterns
are smooth and probably related to the interrelated variation of the
hazard zone in cases where the ranges of the variograms for 300 and
500 SRS samples are significantly large. These results exhibit a spatial
correlation over a long distance under small SRS sample sizes. The
experimental indicator variogram of 300 sub-samples misestimates
the spatial patterns of the original samples. These results demonstrate
that, as the number of samples decreased from 1082 to 300, the
indicator variogram could not capture the spatial structures of the
heavy-metal data. The results also show that the data configuration,
such as the sample size and spatial configuration, affects the variogram
(Wang and Qi, 1998; Jardim and Ribeiro, 2007; Juang et al., 2008). It is
noteworthy that the cLHS results provide sufficient information to
interpret the multiple-contaminant hazard delineation.

3.4. Comparison of the hazard probability under cLHS and SRS

Figs. 6 and 7 indicate that the MVIK probability of any soil
contamination exceeds the corresponding regulation thresholds (zk)
based on cLHS and SRS sample patterns (i.e. 900, 700, 500, and 300
samples, respectively). MVIK estimates the uncertainty of unsampled



Fig. 6. The probability map of hazard zone using MVIK based on cLHS samples: (a) 900 samples, (b) 700 samples, (c) 500 samples, and (d) 300 samples.
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values, which usually takes the form of a map of the probability that
soil pollution exceeds the regulatory thresholds (Goovaerts, 1999). In
Fig. 5 (a), the features of the hazardous zone probability based on the
cLHS samples are better than those based on the SRS samples,
especially when the data are sparse. The results indicate that the
hazard probability map based on cLHS samples is consistent with that
based on the original data. As the number of cLHS samples exceeds
500 (46.2% of 1082 samples), the distribution of hazard probabilities
is similar to that based on 1082 samples. However, the patterns of
hazard probabilities based on 500 and 300 SRS samples are fuzzy
(Fig. 7 (c) and (d)). The results also indicate that the sampling density
and pattern can have a significant effect on the result of hazard
delineation. Table 3 shows themean estimated variances and errors of
the MVIK hazard probability map for various sample sizes and
methods. The mean estimated variances using cLHS samples are
between 0.1703 and 0.2252 mg/kg2, while those using SRS samples
are between 0.1706 and 0.2317 mg/kg2. For the probabilitymap based
on 1082 samples (Fig. 5 (a)), the mean estimated variance is only
0.1702 mg/kg2. Moreover, the mean estimated errors of the cLHS
samples are 0.0549–0.1588 mg/kg, while those of the SRS samples are
0.0553–0.2182 mg/kg. It is also clear from the results that reducing
the sample size could lead to estimation variances and errors rising.
Comparison of the sampling methods shows that the estimated
variances and errors of cLHS are lower than those of SRS. Using MVIK
with cLHS samples is more effective in delineating hazardous zones
than using MVIK with SRS samples. Furthermore, an effective
sampling approach, such as cLHS, for multivariate distributions can
be used to replicate the spatial structures and patterns of the
investigated heavy metals.

In this study, we adopted MVIK hazard probabilities of 0.95, 0.85,
0.75, 0.5 and 0.25 to delineate safe and hazardous zones for soil
pollutants and characterize the uncertainty based on various
probabilities (Table 4). The results show that the areaswith hazardous
levels of heavy-metal pollutants (i.e., where the MVIK probability
exceeds 0.85) cover over 20% of the study area. Moreover, the
delineated area, where the probability is in excess of 0.25, is similar to
that of the crisp hazard zone (i.e., the ratio of the hazardous area to the
total is 69.7% in Fig. 5 (b)). The results also show that MVIK provides a
means of identifying the hazardous zones. Table 4 also reports the
proportions of hazardous areas to total areas for the cLHS and SRS
cases. The proportions of hazardous area using cLHS samples are
closer to the area proportions based on 1082 samples than the
proportions derived by using SRS samples (Table 4). The findings
show the cLHS approach is more reliable than the SRS approach,
especially when the number of samples is small. The cLHS approach
provides full coverage of each variable by maximally stratifying the
distribution of the samples. Furthermore, safe and potentially
hazardous regions containing heavy metals were delineated accord-
ing to various probabilities estimated by MVIK. The probabilistic
results of the classifications provide an alternative way to explore the
spatial uncertainty of hazards and help government administrators
establish a sound policy for the management of soil contamination.



Fig. 7. The probability map of hazard zone using MVIK based on SRS samples: (a) 900 samples, (b) 700 samples, (c) 500 samples, and (d) 300 samples.

Table 4
Ratio of hazardous area to total area in various samples for five threshold levels.

Sample size
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4. Conclusion

The principle of environmental pollution monitoring is based on
the variability and uncertainty of hazardous zones. This study utilizes
multiple-variable indicator kriging (MVIK) with sufficient samples to
delineate hazardous zones and quantify the risk of multiple pollutants
in contaminated soil. The results demonstrate that MVIK based on
cLHS samples is an alternative means of determining the hazard
probability of pollutants and identifying the risk of hazard delineation.
The estimation variances and errors are strongly related to the
number and configuration of samples. The cLHS approach offers a
reasonably efficient way to ensure good coverage of the data and to
replicate the distribution of multiple pollutants when compared to
random sampling. In the study area, the hazardous zones are in the
vicinity of industrial plants and irrigation systems, so future sampling
Table 3
Mean estimated variances and errors of the MVIK based on cLHS and SRS samples.

Mean estimated
variances (mg/kg)2

Mean estimated errors
(mg/kg)

Sample size cLHS SRS cLHS SRS

900 0.1703 0.1706 0.0549 0.0553
700 0.1743 0.1754 0.0901 0.1234
500 0.1999 0.2209 0.0970 0.1613
300 0.2252 0.2317 0.1588 0.2182
will be denser in areas that are deemed critical. Furthermore,
application of proposed models can provide further insight into
identifying hotspots and hazardous areas from complex field data.
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900 700 500 300

Method (Unit: %)

Pr ob[Z(x)N0.95|(n)] cLHS 15.0 15.7 14.9 9.1
SRS 14.5 14.6 8.8 3.0

Pr ob[Z(x)N0.85|(n)] cLHS 22.1 21.9 23.6 21.9
SRS 21.3 22.3 24.4 12.4

Pr ob[Z(x)N0.75|(n)] cLHS 28.8 30.6 33.8 30.3
SRS 27.8 31.6 33.1 18.0

Pr ob[Z(x)N0.50|(n)] cLHS 49.3 52.0 58.4 51.4
SRS 48.8 53.4 58.3 42.2

Pr ob[Z(x)N0.25|(n)] cLHS 69.9 70.2 77.0 75.7
SRS 69.9 73.6 84.3 78.2
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