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High arsenic concentrations in groundwater have been detected in the south-western coastal area of Tai-
wan. In this study, artificial neural networks (ANNs) were investigated for their applicability to recover-
ing the missing arsenic data and constructing the spatial distribution of arsenic concentration based on
the arsenic concentration data of 28 groundwater observation wells. Due to a limited number of data sets,
several strategies were proposed to construct the backpropagation neural networks (BPNs). The leave-
one-out (LOO) cross-validation was adopted to diminish the bias in choosing validation data, and the
modified performance function (MPF) was applied to reducing an over-fitting situation. Principal compo-
nent analysis (PCA) was employed to transform the arsenic concentration of the regional wells into a lim-
ited number of main factors that were used as the input variables for the ANNs. Results showed that the
LOO cross-validation was an effective tool for model selection, and the parameter, c, of MPF played an
important role for reducing errors in the model training and validation processes and alleviating the
problem of over-fitting. Although sparse data sets have been used to construct ANNs, the models still
achieved acceptable performance. The predicted spatial distribution of the arsenic concentration can pro-
vide useful information to local residents when groundwater achieves high levels of arsenic concentra-
tions in non-functioning groundwater monitoring wells.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction water. Over-pumping introduces excess dissolved oxygen that
Arsenic contamination in groundwater has led to a massive epi-
demic of arsenic poisoning in Bangladesh (Meharg, 2004), South
Asia (Charlet and Polya, 2006.) and Taiwan (Chi and Blackwell,
1968). It is estimated that more than 137 million people in 70
countries are drinking arsenic-contaminated groundwater with
the arsenic concentration value higher than the World Health
Organization’s standard. Smedley and Kinniburgh (2002) indicated
that extreme arsenic concentrations in natural water are rare, but
they are most frequently observed in groundwater, and the release
from natural sources is the dominant cause of elevated arsenic
concentrations in groundwater. Nath et al. (2009) stated the
importance of hydrogeochemical characteristics of an aquifer in
the release of arsenic to groundwater. Harvey et al. (2002) men-
tioned that young carbon has driven recent biogeochemical pro-
cesses, and irrigation pumping is sufficient to have drawn water
to the depth where dissolved arsenic is at a maximum. In Taiwan,
groundwater is utilized abundantly as an alternative to surface
water, including our study case – the Yun-Lin County where sur-
face water resources are seriously deficient because of the high
domestic, irrigational, aquacultural and industrial demands for
ll rights reserved.

: +886 2 23635854.
may oxidize the immobile mineral, release arsenic and increase
the arsenic concentration in groundwater (Liu et al., 2003). There-
fore, the residents in the Yun-Lin County had used a high-arsenic
artesian well for more than 50 years (Tseng, 1977), which exposed
them to arsenic directly through drinking water or indirectly
through various paths including ingesting aquacultural and agri-
cultural products, thereby posing carcinogenic risks to human
health (Liu et al., 2008). High arsenic concentrations in groundwa-
ter have also been verified to be associated with the blackfoot dis-
ease in Taiwan (Chiou et al., 1997). Although these hazards are
genuine, a good management can reduce the risks. The Water Re-
sources Agency installed 28 groundwater observation wells dis-
tributed in the coastal area of Yun-Lin County in 1992 to monitor
the groundwater quality. The maintenance of these wells con-
sumes massive labor and budget, and only four wells continued
monitoring after 1999. A method that can be used to recover the
missing data and estimate the data from the surrounding wells
would be a useful tool to grasp the variations of groundwater
quality.

Numerous methods for recovering missing data have been re-
ported (Bennett et al., 1984; Hox, 1999; Chang et al., 2001; Little
and Rubin, 2003). However, statistical methods such as linear
regression, power and exponential methods are difficult to apply
when trying to recover non-linear forms of the data set. Artificial
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neural networks (ANNs) were inspired by biological neuron pro-
cessing to perform brain-like computation through massively sim-
ple connected artificial neurons to identify the relationship
between inputs and outputs of a system. Just as human beings ap-
ply knowledge gained from experience to new problems or situa-
tions, ANNs are capable of solving complex problems that might
otherwise not have a tractable solution. The advantages of apply-
ing ANNs to water quality simulation are: (i) no physics-based
algorithm is required to build the model; therefore, the modeling
approach is faster and more flexible than physics-based modeling
approaches in most cases; (ii) ANNs can handle non-linear rela-
tionship easily and properly; and iii) the expertise and user expe-
riences may be incorporated easily into the model structure
(Zhang and Stanley, 1997). Two critical issues in developing ANNs
are: (1) how the model can be generalized to unseen data, and (2)
how the model can be scaled with problem complexity. ANNs with
more weights, such as having too many degrees of freedom in rela-
tion to the amount of data available, can cause over-fitting that will
generally generate poor predictive performance, because it would
usually amplify minor fluctuations in the data. To avoid over-fit-
ting, it is necessary to use additional techniques (e.g. cross-valida-
tion and regularization) that can give an indication when further
training is not resulting in better generalization.

There is a great concern about the potential effects of arsenic
pollution on human health and environment; therefore, efficient
modeling is crucial for accurate estimations of arsenic concentra-
tions in the hydro-geological systems with limited data. In this
study, ANN models were presented to recover the missing data
at first, then to estimate the temporal and spatial variations of ar-
senic concentrations in the arsenic-polluted area. Groundwater
quality data are usually monitored monthly or quarterly, which re-
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Fig. 1. Locations of the 28 groundwater we
sults in a small dataset. Relatively longer sampling intervals in-
crease the difficulty in the prediction of groundwater quality
using ANNs. High costs and low public awareness, however, are
the main reasons for the lack of groundwater quality data in mon-
itored fields. The effectiveness of ANNs could be significantly lim-
ited by the reduction of training data. We intend to implement a
number of strategies – principal component analysis, cross-valida-
tion, and the modified performance function – to enhance the
applicability and reliability of the constructed ANN models in the
limited data circumstance. The PCA is usually used for transform-
ing a large number of possibly correlated variables into a smaller
number of uncorrelated variables, called principal components,
to reduce the input dimensions effectively. The LOO cross-valida-
tion is adopted to diminish the bias in choosing training and vali-
dation data sets, and the MPF is applied to alleviating the over-
fitting situation during the estimating process.
2. Study area

Yun-Lin County is located in the southwestern part of the allu-
vial fan of the Chou–Shui River (Fig. 1). The Chou–Shui River and
Pei-Kong River are the two major rivers that flow through an area
of approximately 1000 km2 with extensions of 48 km from east to
west and 24 km from north to south, respectively. Aquaculture and
agriculture are the major incomes of local farmers in the coastal
area of Yun-Lin County. Thus, a large amount of groundwater
needs to be extracted from the aquifer to supply water to the
fishponds and croplands. Over-pumping of groundwater for aqua-
culture leads to land subsidence, seawater intrusion, and soil sali-
nization in this coastal area (Liu et al., 2001) so as to release arsenic
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Table 1
The mean, standard deviation (SD), and coefficient of variation (CV) of arsenic concentration, well depth, and amount of data in the 28 groundwater wells.

Well I.D. No. of dataa No. of datab Well depth (m) Arsenic
concentration (lg/L)

Well I.D. No. of dataa No. of datab Well Depth (m) Arsenic
concentration (lg/L)

Mean SD CV Mean SD CV

#1 28 0 13.8 28.3 41.1 1.45 #15 19 0 12.0 111 171.1 1.54
#2 28 0 15.2 21.5 15.9 0.74 #16 28 0 8.9 6.7 8.9 1.33
#3 28 22 22.8 110 67.4 0.61 #17 27 18 8.4 66 49.7 0.75
#4 28 0 19.1 77.6 47.6 0.61 #18 28 0 15.2 19.5 14.8 0.76
#5 24 0 13.0 9.5 10.5 1.11 #19 28 22 14.9 32.4 26.2 0.81
#6 27 22 17.0 162 124 0.77 #20 28 0 9.4 20 12.6 0.63
#7 28 22 19.0 594 349 0.59 #21 28 0 12.4 7.5 3.8 0.51
#8 28 0 19.9 11.1 6.7 0.6 #22 24 0 26.0 226 79.7 0.35
#9 28 0 19.2 478 208 0.44 #23 24 0 26.0 10.5 2.9 0.28
#10 26 0 13.0 93 101 1.09 #24 24 0 97.0 19.1 7.9 0.41
#11 28 0 24.4 83.3 26.8 0.32 #25 23 0 35.0 122 24.1 0.2
#12 28 22 19.6 49.5 32.4 0.65 #26 24 0 110 38 14.4 0.38
#13 12 21 13.0 55.6 90.9 1.63 #27 24 0 36.0 22.4 24.5 1.09
#14 28 0 8.9 31.4 16.9 0.54 #28 24 0 78.0 68.5 65.4 0.95

a The number of the data collected from 1992 to 1999.
b The number of the data collected from 1999 to 2005.
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into groundwater (Liu et al., 2003). Hence, the Water Resources
Agency constructed 28 groundwater wells in 1992, including 21
shallow wells and 7 deep wells, to monitor water quality variation
in the coastal area. The depth of the wells ranged from 8 m to
110 m. A number of monitoring data from wells were obtained,
and their relative information and results of fundamental statisti-
cal analysis are shown in Table 1. The wide ranges of mean, stan-
dard deviation and coefficient of variation (CV) of arsenic
concentrations in the 28 wells indicate they are highly time-vary-
ing and spatially heterogeneous. Fig. 2 represents the variations of
arsenic concentrations of the wells in three different regions. The
central area of Yun-Lin County is arsenic-contaminated with high-
er concentration than the north and south areas. It is a tremen-
dously difficult task to reconstruct the missing data based on
these time-limited spatially heterogeneous data.

The arsenic concentration was determined by hydride genera-
tion followed by atomic absorption spectroscopy (APHA Method
3500-arsenic Part B). Groundwater samples were collected
quarterly, and water quality data sets were obtained and analyzed
(Tainan Hydraulic Laboratory, 1993–2005). Generally, four ground-
water samples were collected each year from 1992 to 2005.
Accordingly, from 1992 to 1999 we obtained arsenic data sets from
28 wells among which 15 decommissioned wells had complete
data, while 13 decommissioned wells (#5, #6, #10, #13, #15,
#17, #22, #23, #24, #25, #26, and #27) had incomplete data.
The insufficient budget led to further shut-down of monitoring
groundwater wells. From 1999 to 2005, only four wells (#3, #7,
#12, and #19) remained functioning for groundwater sample col-
lection. Some groundwater samples of the other 24 wells have
been suspended for collection or lost (Table 1). Estimating the val-
ues of the lost groundwater samples is very important for realizing
the variation of groundwater quality. The first step of this study is
to estimate the missing data from 1992 to 1999 for these 13 wells
by the constructed models, and then estimate the reliability of ex-
tended arsenic data of 24 wells from 1999 to 2005 based on the
four wells (#3, #7, #12, and #19) with observed arsenic data from
1999 to 2005.
3. Methodology

3.1. Artificial neural networks, ANNs

ANNs are flexible modeling tools with the capability of learning
the mathematical mapping between input and output variables of
non-linear systems and generalizing the processes of control, clas-
sification and prediction. They are capable of providing a neuro-
computing approach to solving complex problems. In the last dec-
ade, ANNs have been widely applied with success to various water
resources problems, such as rainfall–runoff modeling (Antar et al.,
2006; Chang et al., 2007; Chiang et al., 2007), flood control (Chang
et al., 2008), ground water problems (Johnson and Rogers, 2000;
Krishna et al., 2008; Nikolos et al., 2008), water quality (Chaves
and Toshiharu, 2007; McNamara et al., 2008) and reservoir opera-
tion problems (Chang et al., 2005; Chaves and Chang, 2008). ANNs
have recently been applied to recovering missing data in hydrol-
ogy, meteorology, and water quality. Singh et al. (2004) applied a
backpropagation neural network (BPN) to identifying the unknown
pollution sources in groundwater with partially missing concentra-
tion observation data. He and Takase (2006) applied ANNs to esti-
mating missing daily data for rainfall, flow discharge, and
groundwater elevation. Diamantopoulou et al. (2007) applied the
cascade correlation ANN models to estimating missing monthly
values of water quality parameters in rivers. Coulibaly and Evora
(2007) investigated various types of ANNs to fill in missing data
of daily total precipitation records and daily extreme temperature
series.

The BPN is a self-organizing, self-teaching and non-linear model
which can be easily implemented in a wide variety of problems
such as function approximation, time series forecasting, pattern
recognition, and process control by using commercial computation
software packages (e.g., MATLAB and R). BPNs have been applied in
hydrology (ASCE Task Committee, 2000; Turan and Yurdusev,
2009; Teegavarapu and Chandramouli, 2005, Yang and Chang,
2005), meteorology (Ahmad and Simonovic, 2005; Venkatesan
et al., 1997), and groundwater quality (Kuo et al., 2004; Almasri
and Kaluarachchi, 2005; Yesilnacar et al., 2008).

The network topology used for the backpropagation algorithm
is a fully connected, layered, and feedforward network. The net-
work is divided into an input layer, a hidden layer, and an output
layer. Each layer includes several neurons that are the fundamental
building block for the network. The learning process goes from in-
put layer to hidden layer and then to output layer by adjusting the
connected weights and/or the non-linear transfer functions. The
goal of learning is to determine a set of weights that will minimize
the error function. The backpropagation algorithm for training the
network is based on the steepest gradient descent method which
computes the first derivative of a cost function with respect to
the parameters (weights) of the network. The training process
determines the BPN weights and is similar to the calibration of a



Fig. 2. The box-and-whisker plot of As concentration of the 28 wells in Yun-Lin coastal area. *A number of As concentrations in #7 and #15 wells are over range of the y-axis.
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mathematical model. The BPNs are trained with a training set of in-
put and known output data. At the beginning of training, the
weights are initialized either with a set of random values or based
on some previous experience. As training proceeds, the weights are
systematically updated according to a training algorithm. The pro-
cess is terminated when the difference between observed value
and estimated value is less than a specified value and/or the num-
ber of iteration reaches a predefined number. Iteratively applying
this method to adjusting the weights would gradually approach
to a minimum of the cost function, but not necessarily the global
minimum.

Neural networks are prone to over-fitting, especially when
there are only a limited number of data. To avoid over-fitting, we
implement a number of strategies – the leave-one-out cross-vali-
dation, the modified performance function, and the principal com-
ponent analysis–to enhance the reliability of the constructed ANN
models in the limited data circumstance.

3.2. The leave-one-out (LOO) cross-validation

Cross-validation is a direction towards estimating the general-
ization performance directly. Cross-validation, which consists of
partitioning the data in training and test sets, is commonly used
to obtain a reliable estimate of the test error for performance esti-
mation or for use as a model selection criterion (Stone, 1974). It is
the statistical practice of partitioning a set of sample data into sub-
sets such that the analysis is initially performed on a single subset,
while the other subset(s) are retained for subsequent use in con-
firming and validating the initial analysis. The LOO cross-validation
is a special case of the famous K-fold cross-validation. In LOO cross-
validation, each time one of the data is used as the validation set
and the remaining data are put together to form a training set.
The process is then repeated n times. The LOO cross-validation
has been shown to give an almost unbiased estimator of the gener-
alization properties of statistical models, and therefore provides a
sensible criterion for model selection and comparison (Adankon
and Cheriet, 2009).

In this study, the LOO cross-validation was adopted to evaluate
the predictive ability of the ANN models. Suppose that n data sets
are available for constructing ANNs and the data sets are randomly
split into two groups, one for validation and the remaining n�1 for
training. The n subsets of the data sets are denoted fx1; x2; x3;

� � � ; xng. Each {x} contains the same number of data. Each {x} in-
cludes input data and output data. In the ANN model, input data
are the known arsenic concentrations in the monitoring wells,
and output data are the missing arsenic concentrations in the mon-
itoring wells in the study area. The procedure of validation is to
leave-one-out of the fx1; x2; x3; � � � ; xng as a validation data set,
and the remaining n�1 subsamples are used as training data. The
LOO cross-validation process is then repeated n times with each
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of the n subsamples used exactly once as the validation data. The
number of neurons in the hidden layer was changed to determine
its effect on model validation. After validating the first well, we ap-
plied the same procedure to identifying and validating the ANN
models of the other wells.

3.3. The modified performance function, MPF

When the ANN model is searching the optimal value of weights
in the training process, over-fitting may occur in a limited input-
output data condition. To improve the over-fitting in model selec-
tion, we propose to add a regularization term (Tikhonov and Arse-
nin, 1977; Li et al., 2007) to the model selection criterion which
penalizes solutions where the networks’ weights take on unduly
large values. This commonly allows one to increase generalization
capability in approximation problems (Tikhonov, 1963; Tikhonov
and Arsenin,1977). The model selection criterion is then given by
the traditional performance function, shown in Eq. (1), which must
be modified to overcome the unsteady simulation results.

MSE ¼ 1
n

Xn

i¼1

ðoi � diÞ2 ð1Þ

where n is the number of exemplars, oi is the network output value,
and di is the desired output value. The MPF, considered a regulari-
zation term in the model selection criterion (Tikhonov and Arsenin,
1977), is proven to efficiently reduce over-fitting when constructing
the model (Solazzi and Uncini, 2004). The MPF combines errors be-
tween the desired output and the network output, and weights be-
tween the networks. The MPF is shown as follows:

MSEreg ¼ c �MSEþ ð1� cÞ �msw ð2Þ

where c is the performance ratio between network output error and
weights: msw ¼ 1

m

Pm
j¼1w2

j is the square-sum of the values of the
network weights, where m is the number of weights in the network.
Using the MPF causes the network to have smaller weights and
forces the network response to be smoother and less likely to
over-fit.

3.4. Principal component analysis, PCA

PCA is commonly used as a tool in exploratory data analysis
(Preisendorfer, 1988). It is a mathematical procedure to transform
a number of correlated variables into a limited number of uncorre-
lated variables called principal components. The first principal
component accounts for as much of the variability in the data as
possible, and each succeeding component accounts for as much
of the remaining variability as possible. We set arsenic concentra-
tions of the monitoring wells as X, which is a D-dimensional
random vector with covariance matrix C. The problem is to consec-
utively find the unit vectors a1; a2; � � � ; aD such that Yi ¼ xtai: Sup-
pose ðki;uiÞ are the pairs of eigenvalues and eigenvectors of C
such that k1 P k2 � � �P kD and kuik ¼ 1 81 6 i 6 D. Then ai ¼ ui

and varðYiÞ ¼ ki for 81 6 i 6 D. If the x1; x2; � � � xn are given, the pro-
cedure of the method can be concluded as follows:

1. Compute m ¼ 1
n

Pn
i¼1xi by MLE.

2. Compute the covariance matrix C ¼ 1
n

Pn
i¼1ðxi �mÞðxi �mÞt by

MLE.
3. Compute the eigenvalue/ eigenvector pairs ðki;uiÞ of C.
4. Compute the first d principal components uj

i ¼ xt
i uj, for each

observation xi, 1 6 i 6 n along the direction ui; i ¼ 1;2; . . . ; d.

Following the procedure of the method, we analyzed the arsenic
concentrations of the known wells in this area to form a few main
variables called factors. And these factors were employed to be in-
put information to the ANN model.

3.5. Evaluation of model performance

The performance of the simulation of training and validation
sets is evaluated by following measures of goodness-of-fit: root
mean squared error (RMSE) and Nash-Sutcliffe coefficient of effi-
ciency (Ceff ) shown in Eqs. (3) and (4), respectively. The Nash–Sutc-
liffe efficiency of 1 corresponds to a perfect match; an efficiency of
zero indicates the model predictions are only as good as the mean
of the observed data, whereas an efficiency less than zero means
the average value of the observed data is a better predictor than
that of the constructed model. The coefficient of efficiency (Ceff )
can be used to assess the predictive power of constructed models.
In addition, according to the EPA (Environmental Protection
Administration) of Taiwan the safety standard for arsenic concen-
tration of drinking water is 10 lg/l. The safety standard for arsenic
concentration for usage in agriculture and aquaculture is 50 lg/l.
These safety standards are also set as thresholds to evaluate the
ANN model.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

Xn

i¼1
ðoi � diÞ2

r
ð3Þ

Ceff ¼ 1�
P
ðoi � diÞ2P

ðdi � avergeðdiÞÞ2
ð4Þ

where N is the number of exemplars, oi is the network output value,
and di is the desired output value.

4. Results and discussion

As mentioned above, we have implemented several methods for
reconstructing and/or estimating the regional arsenic concentra-
tions solely based on information of arsenic concentrations in
nearby monitoring wells. We first investigated the correlation in
terms of both space and time. The results show that arsenic con-
centrations of several wells of interest are not significantly related
to arsenic concentrations of the neighboring wells. It indicates that
the relationship of the spatially distributed arsenic concentration is
complex and non-linear, and a linear model for estimating the var-
iation of regional arsenic concentrations would be ineffective.
Therefore, we employed ANNs to estimate the spatial variation of
arsenic concentrations.

Because the missing data of the investigated wells occurred in
different periods during 1992–2005, we have proposed two sce-
narios (cases) to reconstruct the arsenic concentration by ANNs.
In Case I, we reconstruct the missing arsenic data in the 13 moni-
toring wells during the period of 1992–1999 by building ANN
models with inputs of 2–5 factors computed by PCA. In Case II,
the arsenic data of the 24 decommissioned monitoring wells from
years 1999 to 2005 were rebuilt by using information of four near-
by monitoring wells or two major factors computed by PCA.

In considering limited training data, we adopted LOO cross-val-
idation to learn the reliability of the estimators in their perfor-
mance and the MPF to relieve the over-fitting problem in the
constructed ANN models. Another purpose of Case I is to make a
comparison between the models configured with the MPF and
without the MPF.

4.1. Estimation of missing arsenic data (Case I)

The mean, standard deviation (SD), and coefficient of variation
(CV) of the arsenic concentration together with well depth and
amount of data in the 28 groundwater wells are shown in Table



Table 3b
Scores for the two factors in model II (Case II).

Well No. Factor 1 Factor 2

#3 0.146 0.981
#7 0.989 �0.148

#12 0.025 0.125
#19 0.001 �0.028
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1. Among the 28 wells mentioned above, only 15 contained com-
plete time-series data sets from 1992 to 1999. These 15 wells were
used to estimate the missing data of the remaining 13 wells (#5,
#6, #10, #13, #15, #17, #22, #23, #24, #25, #26, #27, and #28).
But the ANN model with 15 input nodes would lead to an unduly
large number of parameters (connected weights) for the model.
Therefore, the PCA was first employed to transform original data
to a few independent factors that are considered as the inputs
for the ANN model.

We employed the PCA to transform the original data to a few
independent factors. The arsenic concentrations of these 15 re-
tained wells from 1992 to 1999 were analyzed by the PCA. Table
2 presents the eigenvalues and the percentages of variance associ-
ated with each factor. The first five main factors that would cumu-
late 76% of variance are considered as useful inputs. This also
reveals that the first two factors explain approximately 47.4% of
the total variance. Table 3a shows the loading of the six main fac-
tors for the model. Each loading of factors 1–4 concentrated on the
variation of the arsenic concentrations associated with Wells #7,
#9, #3 and #4, respectively. The loading of factor 6 did not largely
concentrate on the variation of arsenic concentration of any spe-
cific well. Based on the above analysis, we constructed the estima-
tion model with 1–5 main factors.

These main factors were used to construct 13 specific ANN
models for the 13 wells with incomplete data based on their
respective training periods (Fig. 3). In constructing the ANN model
Table 2
Eigenvalues, percent of variance, cumulative eigenvalue, cumulative percent of
variance for the factor analysis of arsenic concentrations of these wells in Yun-Lin
coastal area, Taiwan.

Factor Eigenvalue Percent of
variance (%)

Cumulative of
eigenvalue

Cumulative percent
of variance (%)

1 4.134 27.56 4.1 27.6
2 2.970 19.80 7.1 47.4
3 1.903 12.69 9.0 60.0
4 1.278 8.52 10.3 68.6
5 1.132 7.54 11.4 76.1
6 0.913 6.08 12.3 82.2
7 0.707 4.71 13.0 86.9
8 0.526 3.51 13.6 90.4
9 0.390 2.60 14.0 93.0

10 0.361 2.41 14.3 95.4
11 0.289 1.93 14.6 97.3
12 0.176 1.18 14.8 98.5
13 0.117 0.78 14.9 99.3
14 0.073 0.49 15.0 99.8
15 0.032 0.22 15.0 100.0

Table 3a
Scores for the six factors in model I (Case I).

Well No. Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

#1 0.015 �0.161 0.173 0.129 �0.038 �0.433
#2 0.011 �0.027 0.102 �0.117 �0.103 �0.201
#3 0.119 �0.014 0.944 �0.010 �0.088 0.221
#4 0.031 �0.067 �0.035 �0.941 0.043 �0.026
#7 0.983 0.128 �0.119 0.026 0.000 0.012
#8 �0.004 0.001 0.032 �0.027 �0.017 �0.106
#9 �0.127 0.970 0.043 �0.060 �0.044 0.004
#11 0.024 0.070 0.050 0.121 �0.002 �0.519
#12 0.015 0.064 0.138 �0.022 0.790 �0.398
#14 0.021 0.027 0.133 �0.078 0.072 �0.107
#16 0.011 �0.004 0.006 �0.057 �0.169 �0.083
#18 0.010 �0.023 0.029 �0.182 �0.054 �0.095
#19 0.010 0.035 0.014 �0.052 �0.558 �0.504
#20 0.012 �0.013 0.097 �0.134 �0.031 �0.042
#21 �0.003 0.002 0.012 �0.012 �0.051 0.001

Fig. 3. The structures of BP neural networks that were used for recovering the
missing data (Case I) from 1992 to 1999 and predicting the data (Case II) from 1999
to 2005.
for the well with missing data, the ANN model has three parame-
ters including the value of c, the number of the hidden nodes, and
the number of inputs, which need to be specified. We applied the
LOO cross-validation with trial and error procedure to determining
the optimal structure of the ANN for each well based on their
RMSEs. In the LOO cross-validation process, if the well possessed
‘‘n” measured data, there would be n optimal ANNs for different
training and validation data sets. The constructed ANNs were cho-
sen according to the rule of the least RMSE of the validation sets in
the process. The optimal value of c and the optimal structure and
weights of the constructed ANN were combined to form an optimal
ANN model through these procedures, which was then selected as
the optimal ANN model for the investigated well. Finally, the opti-
mized model for each well was used to estimate the missing data
to complete the data sets in 1992–1999. Table 4 presents the num-
ber of data used to train and estimate the ANNs, the input factors,
the number of the hidden nodes, the value of c,and the correspond-
ing results for each well. The optimal model in Table 4 is chosen in
the LOO cross-validation process to estimate the missing arsenic
data. In general, the results (i.e., RMSE and coefficient of efficient)
are suitable in estimating arsenic concentrations of these wells.

To represent the general goodness-of-fit between the measured
values with estimated arsenic concentrations, the variations of
Wells #6 and #22, which have relatively high mean values and
large standard deviations, are displayed in Fig. 4. It reflects that
the ANN model can grasp the trend of the arsenic variation. How-
ever, the estimated values of a few seasons are away from the ob-
served values in the Wells #6 and #22. We also found high RMSEs
in the validation for Well #15 which only has 19 training data and
relatively high coefficient of variation (CV) shown in Table 1. On
the other hand, in other wells which have more training data
and/or small CV, the constructed ANN models can provide accept-
able results. Thus, the number of training data and variable varia-
tions significantly affect the reliability of ANN models. The results
demonstrate that the LOO cross-validation method is an effective
tool to choose a suitable network because it can assure that no val-



Fig. 4. The time series and scatter plot of the observed and estimated As concentration in the validation period of the LOO process in the wells #6 and #22.

Table 4
The structure and RMSE of the ANN for Case I in training and validation periods (unit: ug/l).

Well I.D. No. of the
input Factors

Node c No. of data Average in the LOO process Optimal model

RMSE (lg/l) Ceff RMSE (lg/l) Ceff

Observed Estimated Training Validation Training Validation Training Validation Training Validation

#5 2 3 0.8 24 4 8.3 7 0.33 �0.24 7.4 2.6 0.5 0.93
#6 3 5 0.5 26 2 50.7 47.4 0.82 0.85 33.5 4 0.92 1
#10 3 3 0.9 26 2 43 48.4 0.79 0.36 41.4 4.4 0.83 1
#13 3 4 0.5 11 17 42.3 49 0.71 �0.87 12 4.7 0.98 0.99
#15 2 5 0.9 19 9 37.7 77.1 0.94 �0.24 19.3 9.3 0.99 0.99
#17 3 4 0.2 27 1 42.7 31.6 0.23 0.39 40.3 3.2 0.34 1
#22 2 2 0.7 24 4 61.7 52.2 0.37 0.89 59.6 5.3 0.43 1
#23 2 4 0.1 24 4 2.5 2 0.22 0.93 2.2 1.5 0.44 0.98
#24 2 4 0.5 24 4 6.3 6.2 0.35 0.83 6 5.9 0.43 0.91
#25 2 5 0.3 23 5 19.4 19.2 0.32 0.96 19.2 13.8 0.34 0.99
#26 2 4 0.8 24 4 19.4 19.2 0.32 0.96 10.5 1.3 0.47 1
#27 2 4 0.4 24 4 22 16.3 0.15 �0.27 22.6 8.1 0.15 0.87
#28 3 4 0.6 24 4 56.6 47.5 0.21 �0.15 57 9.6 0.24 0.98
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idation data repeated in the training data set will provide more
general information for the suitability of the constructed networks
in validation patterns. Consequently, we suggest the LOO cross-
validation should be applied to model construction processes,
especially in the case of limited number of data for model
construction.

To check the effect of the MPF which combines and balances the
effects of errors and weights in the network construction stage, we
constructed the same ANN models configuring with the MPF and
without the MPF. The RMSEs of the two methods in the LOO
cross-validation period are illustrated in Fig. 5. It appears if the
MPF is adopted in the training period during model construction,
the model performances are significantly improved by 18–78%.
These results provide clear evidence that the MPF is able to miti-
gate the over-fitting problem, especially when a finite number of
water samples are available in the high arsenic area (e.g., Wells
#6, #15, and #22).

The effectiveness of the MPF is dependent upon the parameter
c, the performance ratio between output error and network weight
(Eq. (2)). It is, however, difficult to determine the optimum value
for the parameter. A larger value of c means a slight alleviation
of the over-fitting situation in the training period of the model;
while a smaller value of c means a strong alleviation. However, it
can lead to a situation that the training data inadequately fits the
network so as to cause a decrease in precision of the model in
the predictive series. With the aim of evaluating its effort and
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obtaining the best performance function, the parameter is swept
from 0.1 to 1. Fig. 6 shows the relationship between the c values
with RMSE in validation periods selected from several monitoring
wells where the node was adopted in ANN models according to Ta-
ble 4. Thus, the arbitrary choice of c values may result in poor val-
idations, especially in wells with high arsenic variations. In high
arsenic concentration Wells #15 and #6, the optimal c values
can be reduced by 20–30% of RMSE.
4.2. Estimation of arsenic data (Case II)

After 1999, many monitoring wells were suspended due to bud-
get limitation; only four monitoring wells (#3, #7, #12, and #19)
were retained and analyzed to form the two main factors shown
in Table 3b by PCA. To estimate arsenic concentrations for the 24
decommissioned monitoring wells after 1999, the four monitoring
wells were selected to construct the ANN models to estimate ar-
senic concentrations. If the model with the four known monitoring
wells could not yield a suitable result, i.e., the estimation RMSE
over the threshold (50 ug/l), we altered the input nodes from four
monitoring wells to two major factors obtained from the PCA. We
first constructed ANN models based on the four monitoring wells
(or two main factors) for the 24 decommissioned wells with their
respective results in training and validation period (1992–1999);
the structure of the model is shown in Fig. 3 (Case II).
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Fig. 7. The time-series As data of selected groundwater wells. Predicted values are
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According to the EPA of Taiwan, the safety standard for arsenic
concentration for usage in agriculture and aquaculture is 50 lg/l.
Thus, the safety standard for arsenic concentration (50 lg/l) was
set to evaluate the performance of the ANN model. We considered
this threshold (50 lg/l) in the training and validation periods to
modify the input factors. If the RMSE of the model was too large
(>50 lg/l), the parameters of the models (including input factors,
the number of the nodes, and c) would be altered. Therefore, the
24 constructed ANN models, which were selected from a large
number of trial and error processes by using different input factors,
a number of hidden nodes and c with the minimum RMSEs in the
LOO cross-validation period, were then applied to estimating their
arsenic variations.

The results of training and validation for 24 wells are shown in
Table 5. In extending arsenic concentrations of the decommis-
sioned monitoring wells, the arsenic concentrations of most un-
known wells are estimated quarterly by using the four known
wells. It appears that the four monitoring wells (#3, #7, #12, and
#19) can reasonably figure out the variations of most wells. For
example, the wells #5, #16, and #17 are located in low arsenic-
contaminated areas where their validation RMSEs range from 7
to 28 lg/l within the error tolerance range; however, there are five
wells (#6, #9, #10, #15, and #22) whose validation RMSEs are still
greater than 50 lg/l (Table 5).

By inspecting these results, the missing data of most wells in
general can be suitably estimated by the constructed ANNs, while
the arsenic concentrations in wells #6, #9, #10, #15, and #22 can
not be properly estimated. We notice that these wells have extre-
mely high means and variations of arsenic concentrations. Another
reason is the lack of relationship among wells in the area. We rec-
ognize that the arsenic concentration in a well is not only affected
by the neighboring arsenic concentration but also by hydrological,
geological and even biological environment variations. Nath et al.
(2009) claimed the areas associated with high groundwater arsenic
were associated with low Eh, and high Fe. Therefore, the large
RMSEs of these wells could be imagined. In the circumstance, the
ANN models could not provide reliable estimation for wells with
high variations and short non-stationary time-series data. We note
Table 5
The structure and RMSE of ANN models that were used to predict the variations of arseni

Well I.D. Input factor Node c Average in the LOO process

RMSE (lg/l)

Training Validation

#1 W3 4 0.2 38.8 27.8
#2 W3, W7, W12, W19 3 0.6 13.9 11.3
#4 W3, W7, W12, W19 3 0.5 41.2 35.7
#5 W3, W7, W12, W19 3 0.7 8.6 6.9
#6 W3, W7, W12, W19 7 0.6 71.5 62.6
#8 W3, W7, W12, W19 3 0.4 6.3 6.1
#9 W3, W7 4 0.9 136.6 146.6
#10 W3, W7, W12, W19 3 0.8 69 61.9
#11 W3, W7, W12, W19 3 0.7 22.9 22.5
#13 W3, W7, W12, W19 3 0.8 43.2 33.9
#14 W3, W7, W12, W19 3 0.1 14 11.5
#15 W3, W7, W12, W19 3 0.9 61.9 54.7
#16 W3, W7, W12, W19 3 0.1 7.8 5.4
#17 W3, W7, W12, W19 3 0.2 39.1 24.9
#18 W3, W7, W12, W19 3 0.6 13.7 11.7
#20 W3, W7, W12, W19 3 0.8 9.2 8.7
#21 W3, W7, W12, W19 3 0.2 3.5 3
#22 W3, W7, W12, W19 3 0.4 71.7 59.1
#23 W3, W7, W12, W19 3 0.3 2.2 1.9
#24 W3, W7, W12, W19 3 0.7 6.4 8.4
#25 W3, W7, W12, W19 3 0.9 19.6 21.9
#26 W3, W7, W12, W19 3 0.9 10.9 15.9
#27 W3, W7, W12, W19 3 0.6 22 15.6
#28 W3, W7, W12, W19 3 0.2 62 43
that if the sparse data with high variation cause the poor estima-
tion, collecting sufficient data would be the most efficient and reli-
able method to solve the problem of poor estimation.

Comparing Table 4 with Table 5, the RMSEs of the poorly esti-
mated wells (#10, #15 and #22) are lower in Case I (Table 4) than
in Case II (Table 5). Besides, the arsenic concentrations in most
wells (#5, #6, #10, #13, #15, #22, #24, #25, #27, and #28) are
estimated more precisely in Case I (Table 4) than in Case II (Table
5). It indicates that sufficient information of arsenic concentrations
of the neighboring wells can improve the accuracy of the model.

As we examine the Nash–Sutcliffe efficiencies shown in both
Tables 4 and 5, we can easily tell that most of the coefficients of
efficiency (Ceff ) are greater than zero, which clearly indicates the
predictive power of the constructed ANN models is valuable and
effective. It, however, seems unavoidable that there are negative
Ceff obtained in a number of the wells under the validation pro-
cesses. Closely checking the negative cases, we find they all have
large coefficient of variation (CV greater than 0.95 shown in Table
1). In this circumstance, the ANN models cannot provide a reliable
c concentrations for Case II in training and validation periods.

Optimal model

Ceff RMSE (lg/l) Ceff

Training Validation Training Validation Training Validation

0.07 �1.32 39.3 2 0.09 1
0.2 0.54 13.4 1.4 0.29 1
0.21 0.52 33 31 0.51 0.84
0.28 �0.2 8.1 2.2 0.39 0.95
0.56 0.81 59.5 43.6 0.7 0.94
0.09 0.63 6 3.7 0.19 0.89
0.54 0.83 118.3 43.9 0.68 0.99
0.51 0.15 65.1 49.5 0.55 0.72
0.23 0.88 21.3 35.7 0.34 0.82
0.4 �0.47 34 4.6 0.64 0.99
0.29 0.77 15 1.1 0.21 1
0.86 0.25 63.4 0.6 0.86 1
0.2 �0.71 7.6 3.3 0.26 0.75
0.32 0.14 38.6 15.4 0.35 0.86
0.11 0.33 38.6 15.4 0.35 0.86
0.44 0.65 8.9 2.3 0.5 0.99
0.12 0.77 3.2 3.1 0.2 0.83
0.15 0.87 67.2 21.4 0.29 0.99
0.42 0.94 2.5 1.5 0.21 0.98
0.3 0.72 6.1 3.8 0.41 0.96
0.31 0.95 18 21.7 0.44 0.97
0.39 0.77 11.1 3.1 0.41 0.99
0.15 �0.14 21.8 6.5 0.21 0.91
0.06 0.09 62.7 9.2 0.08 0.98



74 F.-J. Chang et al. / Journal of Hydrology 388 (2010) 65–76
estimation for these wells with high variations and short non-sta-
tionary time-series data.

It is interesting to mention that in Tables 4 and 5 we also pres-
ent the results (RMSE and Ceff) in both of the ‘‘Average” in the LOO
cross-validation process and the optimal model. The optimal mod-
el is identified by selecting the best model (the least RMSE) from all
Fig. 8. The spatial distributions of As in four differe
of the n constructed models in the LOO cross-validation process. As
expected, the optimal model has much better performance than
the ‘‘Average” in the LOO cross-validation process. These results
represent a situation one commonly faces when constructing the
ANN through using different data sets for training and validation
processes. We would like to note that the optimal model will only
nt years in the coastal area of Yun-Lin County.
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be obtained by chance, while the LOO cross-validation process will
give an unbiased estimator of the generalization properties of the
models.

The estimated arsenic concentrations after 28 seasons of three
selected wells are shown in Fig. 7. It illustrates three wells (#9,
#22, and #25) containing high arsenic concentrations. These three
wells seem to have the same patterns, where the peak concentra-
tions were found in the 12th, 15th, and 18th seasons, and the low
concentrations were found in the 10th, 14th, and 16th seasons.
Based on the observed data with results obtained from this study,
the spatial arsenic concentrations in the coastal area of the Yun-Lin
County for 1992, 1996, 2000, and 2004 are shown in Fig. 8. The ar-
senic-polluted areas (defined by arsenic concentration >50 lg/l)
were reduced from 1992 to 2004. In addition, the higher arsenic-
polluted areas (defined by arsenic concentration >150 lg/l) near
wells #6, #7, #9, and #11 were also narrowed from 1996 to
2004 (i.e., the contaminated domain was decreased). However,
the highest concentration and contaminated domain was found
near well # 21 (northern part of study area) in year 2000. This spa-
tial distribution of arsenic concentration provides a warning to lo-
cal residents when there are high levels of arsenic concentrations
in the groundwater.
5. Conclusions

To alleviate the over-fitting problem and enhance the effective-
ness of the constructed ANNs based on sparse groundwater data
sets, we propose three strategies: (1) PCA for reducing the input
dimensions, (2) LOO cross-validation for unbiased network selec-
tion, and (3) MPF for parsimonious network selection, by two sce-
narios (Case I and II) to reconstruct the missing arsenic
concentrations. In Case I, we reconstructed the missing arsenic
data of 13 wells using the regional information of 15 monitoring
wells during the period of 1992–1999 by building ANN models
with inputs of 2–5 major factors (from PCA). In Case II, we rebuilt
(extended) the arsenic data of 24 decommissioned monitoring
wells in the period of 1999–2005 by using information of four
nearby monitoring wells or the two major factors by PCA. The
LOO cross-validation proves to be an effective means of model
selection for a variety of networks and has a higher probability
to gain a reliable optimal model. The use of an MPF is shown to
be effective in reducing over-fitting, and the number of weights
of the network remains balanced and small, given a less complex
network. The arsenic concentrations in most wells are esti-
mated more precisely in Case I (Table 4) than in Case II (Table 5),
which indicates that sufficient information of arsenic concentra-
tions of the neighboring wells can improve the accuracy of the
model.

The strategies used in this study for constructing the ANNs are
useful and the problem of over-fitting is effectively alleviated. The
ANN models achieve acceptable performance for most of the wells;
however they cannot provide reliable estimation for those wells
with high variations and short non-stationary time-series data.
We demonstrate that the applicability and reliability of the ANNs
are increased noticeably.
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