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Abstract This study proposes the method of simulating

spatial patterns and quantifying the uncertainty in multivariate

distribution of heavy metals (Cr, Cu, Ni, and Zn) by sequential

indicator simulation (SIS) combined with conditional Latin

hypercube sampling (cLHS) in Changhua County, Taiwan.

The cLHS is used for a sampling then for SIS mapping and

assessing uncertainties of heavy metal concentrations. The

indicator variogram results indicate that the 700 cLHS sam-

ples replicate statistical multivariate distribution and spatial

structure of the 1,082 samples. Moreover, the SIS realizations

based on 700 cLHS samples are more conservative and reli-

able than those based on 1,082 samples for delineating soil

contamination by all heavy metals with the exception of Zn.

Given adequate sampling, soil contamination simulation

provides sufficient information for delineating contaminated

areas and planning environmental management.
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Introduction

Soil sampling data, although sparely distributed across the

sites cannot provide all suitable information for risk

assessment and environmental management. The collected

data may cause significant uncertainty, due to extremely

complicated spatial patterns or errors in measuring the

characteristics of the investigated pollution sources.

Therefore, when delineating contaminated areas and

assessing risk of soil pollution during the decision-making

process, uncertainty assessment of sampling data and

unsampled locations is essential (Goovaerts 2001; Van

Meirvenne and Goovaerts 2001; Amini 2005; Schnabel

2004; Lin 2002; Hassan and Atkins 2007; Lin 2008). Using

adequate samples and mapping techniques to reliably

delineate soil contamination by heavy metals can improve

the efficiency of environmental decision-making and

action. Reliable data analysis of spatially distributed data

requires appropriate statistical tools and sampling strate-

gies (Fortin and Edwards 2001; Lin et al. 2008). Spatial

sampling schemes have been developed to determine the

sampling schemes that cover the variation of environ-

mental variables in a given area (Minasny and McBratney

2006). Soil sampling and mapping potentially contamina-

tion areas are often costly and time-consuming, especially

if expensive multiple laboratory analyses are required or if

the investigated area is large (Zhao et al. 2008). Moreover,

implementing efficient sampling methods to understand the

spatial distribution of heavy metals is essential.

Probability theory and geostatistics provide methodolo-

gies for modeling data and process uncertainty and then

propagating that uncertainty all the way to a stochastic

conclusion (Journel 1996). The stochastic simulation can

estimate either the mean value of heavy metal concentra-

tions or the probability of exceeding a given threshold level.
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The geostatistical simulation builds the local probability

distribution of a regionalized variable for each unsampled

location. The simulated value is then randomly drawn from

the probability distribution. The conditional cumulative

distribution function (ccdf) can be modeled using either

parametric (e.g., multivariate Gaussian distribution) or non-

parametric (indicator) approaches (Goovaerts 2001). Unlike

classical interpolation techniques, geostatistical techniques,

such as stochastic conditional simulation can be applied to

generate multiple realizations, including an error component

(Lin et al. 2008). Recently, stochastic simulation techniques

have been applied in delineating soil pollution areas and

assessing risk of soil pollution in studies such as Deutsch and

Cockerham (1994); Saito and Goovaerts (2000); Goovaerts

(2001); Lin et al. (2001); Franco et al. (2006); Bourennane

et al. (2007). Furthermore, uncertainty assessment is basi-

cally performed using stochastic simulation algorithms that

are becoming more common in soil science (Pachepsky and

Acock 1998; Goovaerts 2001; Van Meirvenne and Goova-

erts 2001; Castrignano and Buttafuoco 2004; Zhao et al.

2005; Bourennane et al. 2007; Cherubini et al. 2009). As a

result, the realizations match the sample statistics, and the

conditioning data provide a visual and quantitative measure

of local uncertainty and spatial uncertainty (Goovaerts

1996). However, to avoid long running times of hundreds or

thousands of simulations, it is necessary to generate a rela-

tively small set of conditional realizations capturing most of

the variability. To reduce the number of conditional real-

izations needed to capture the spatial uncertainty, we

introduced an effective sampling method (i.e. Latin hyper-

cube sampling) into a geostatistical stochastic simulation

algorithm. Latin hypercube sampling (LHS) is a stratified

random procedure that efficiently samples variables from

their multivariate distributions (McKay et al. 1979; Iman

and Conover 1980; Xu et al. 2005; Minasny and McBratney

2006; Carre et al. 2007; Lin et al. 2008). For sampling

existing data, traditional LHS cannot be directly applied to

multivariate distribution because the samples selected by

LHS may not exist in the real world (Minasny and

McBratney 2006), particularly for soil sampling data. Con-

ditional LHS (cLHS), which is based on the empirical dis-

tribution of original data, provides full coverage of each

variable by maximally stratifying the marginal distribution

and ensuring a good spread of sampling points (Minasny and

McBratney 2006).

This study mapped and assessed spatial patterns and

uncertainties of heavy metals (Cr, Cu, Ni, and Zn) using

cLHS and stochastic conditional simulation (i.e. sequential

indicator simulation (SIS)) in Changhua County, central

Taiwan. The SIS was applied to map spatial patterns based

on the set of cLHS samples. Finally, the local uncertainty

and spatial uncertainty were determined on the basis of SIS

realizations with regulatory thresholds of the heavy metals.

The realizations can be used to identify heavy metal con-

taminated areas and associated uncertainty by setting a given

critical probability. Briefly, this study utilized cLHS to

obtain 100, 300, 500, 700, and 900 samples from existing

1,082 heavy metal samples in the study area. Experimental

indicator variograms of the selected samples were then

calculated and compared with the experimental indicator

variograms of the 1,082 samples based on same cut-off

values (the 25th, 50th, and 75th percentiles of Cr, Cu, Ni, and

Zn of 1,082 samples). The SIS was applied to simulate 1,000

realizations of heavy metals in 7,488 grid cells (25 9 25 m).

Moreover, the realizations of heavy metal concentrations

obtained by SIS with regulatory thresholds were mapped the

spatial probability of contaminated areas and the uncer-

tainties of soil contaminations.

Materials and methods

Study area and soil sampling data

The study area is Changhua County which is a critical

agricultural region in Taiwan. The east area is the

Changhua city and the west one is the Lugang town. Most

industrial plants in the study area comprise metalwork,

electroplating, textile, and metal surface treatment indus-

tries (Fig. 1). The industrial plants have been suspected of

discharging wastewater into irrigation channels in this

study area (Lin et al. 2002a, b; 2010). In this study, the data

of 1,802 topsoil (0–15 cm) samples’ Cr, Cu, Ni, and Zn

concentration were obtained from the soil heavy metal

investigation project done by the Environmental Protection

Administration (EPA) of Taiwan, between February and

August 2002, and sampling sites as shown in Fig. 1. The

sampling density was about 1 sample per 1.45 ha based on

the irregular shape of farmland in the study area and the

coordinates of the sampling locations were recorded by

GPS. About 1 kg of each soil sample was collected using a

stainless steel spade and a plastic scoop, and stored in a

plastic food bag. After air drying at room temperature, 3 g

soil samples was disaggregated, sieved to 0.85 mm (20

mesh) and ground to a fine 0.15 mm (100 mesh) powder.

Each 3 g milled sample was then digested for 2 h at room

temperature with 7 mL HNO3 and 21 mL HCl (acua regia

1:3) to slowly oxidize organic matter in the soil. The digest

was filtered before analyzing the levels of Cr, Ni, Cu, and

Zn in the sample which was determined by inductively

coupled plasma-optical emission spectrometers (ICP-OES).

Conditional Latin hypercube sampling

The cLHS procedure represents an optimization problem:

given N sites with data (Z), select n sample sites (n � N)
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such that the sampled sites form a Latin hypercube. For k

continuous variables, each component of Z (size N 9 k) is

divided into n (sample size) equally probable strata based

on their distributions, and z (size n 9 k) is a sub-sample of

Z. The procedures of the cLHS algorithm (Minasny and

McBratney 2006) are the following.

1. Divide the quantile distribution of Z into n strata, and

calculate the quantiles for each variable qi
j; . . .; qnþ1

j .

Calculate the correlation matrix C of Z.

2. Pick n random samples from N; calculate the corre-

lation matrix of T of Z.

3. Calculate the objective function. The overall objective

function is

O ¼ w1O1 þ w2O2 þ w3O3; ð1Þ

where O1, O2, O3 are different components of objective

function to take into account continuous variables, cat-

egorical variables, and correlation of the elements,

respectively and w is the weight given to each compo-

nent of the objective function. For general applications,

all w are set to 1 for all components of the objective

function.

(a) The components of objective function are defined

as:

O1 ¼
Xn

i¼1

Xk

j¼1

gðqi
j� zj� qiþ1

j Þ � 1
���

��� ð2Þ

where gðqi
j� zj� qiþ1

j Þ is the number of zj that

falls between quantiles qi
j and qiþ1

j

(b) For categorical data, the objective function is to

match the probability distribution for each class

of

O2 ¼
Xc

j¼1

g0ðzjÞ
n
� kj

����

���� ð3Þ

where g0ðzjÞ is the number of z that belongs to

class j in sampled data, and kj is the proportion of

class j in Z.

(c) To ensure that the correlation of the sampled

variables will replicate the original data, compo-

nent is added to the objective function, which is

defined as:

O3 ¼
Xk

i¼1

Xk

j¼1

cij � tij

�� �� ð4Þ

where c is the element of C, the correlation

matrix of Z, and t is the equivalent element of T,

the correlation matrix of z.

4. Perform an annealing schedule: M ¼ exp½�DO=T �;
where DO is the change in the objective function, and

T is a cooling temperature (between 0 and 1), which is

decreased by a factor d during each iteration.

5. Generate a uniform random number between 0 and 1.

If rand. \ M, accept the new values; otherwise,

discard changes.

6. Try to perform changes: generate a uniform random

number rand. If rand. \ P, pick a sample randomly

from z and swap it with a random site from unsampled

sites r. Otherwise, remove the sample from z that has

the largest gðqi
j� zj� qiþ1

j Þ and replace it with a

random site from unsampled sites r.

7. Go to step 3. Repeat steps 3–7 until the objective

function value falls beyond a given stop criterion or a

specified number of iterations.

Fig. 1 Locations of sampling

sites, the factories, and

irrigation systems in Changhua

County of Taiwan
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Sequential indicator simulation (SIS)

In the sequential indicator simulation algorithm, modeling

of the N-point conditional cumulative distribution function

(ccdf) is a sequence of N univariate ccdfs at each node (grid

cell) along a random path (Kyriakidis 2001; Lin et al.

2009). The sequential indicator simulation algorithm

requires the following steps (Deutsch and Journel 1992;

Kyriakidis 2001; Lin et al. 2009):

1. Define a random path that visits each location of the

domain once, in which all nodes fxi; i ¼ 1; . . .;Ng
discretizing the domain of interest domain. A random

visiting sequence ensures that no spatial continuity

artifact is introduced into the simulation by a specific

path visiting N nodes.

2. At the first visited N nodes x1:

(a) Model, using either a parametric or nonparamet-

ric approach, the local ccdf of Z(x1) conditional

on n original data fZðxaÞ; a ¼ 1; . . .; ng:
FZðx1; z1 ðnÞj Þ ¼ probfZðx1Þ� z1 ðnÞgj ð5Þ

(b) Generate, via the Monte Carlo drawing relation, a

simulated value zðlÞðx1Þ from this ccdf FZðx1 :

z1 ðnÞÞj ; and add it to the conditioning data set,

now of dimension n ? 1, to be used for all

subsequent local ccdf determinations.

3. At the ith node xi along the random path:

(a) Model the local ccdf of Z(xi) conditional on n

original data and the i - 1 near previously

simulated values fzðlÞðxjÞ; j ¼ 1; . . .; i� 1g:
FZðxi;zi ðnþ i�1Þj Þ¼ probfZðxiÞ�zi ðnþ i�1Þgj

ð6Þ

(b) Generate a simulated value zðlÞðxiÞ from this ccdf,

and add it to the conditioning data set, now of

dimension n ? i.

4. Repeat step 3 until all N nodes along the random path

are visited.

In the SIS, the indicator kriging estimator is used to

model the prior ccdf at each unsampled location (Juang

et al. 2004). Since modeling the prior ccdf at each un-

sampled location should use previously simulated values at

other sampled locations, the simulated values for all un-

sampled locations are referred to as a joint realization

(Goovaerts 1996; Juang et al. 2004). In this study the cutoff

values for each soil heavy metal are the 25th, 50th, and

75th percentiles.

Indicator kriging estimates the probability of exceeding

a specific threshold value zk at a given location (Lin et al.

2002a). In indicator kriging, the data [z(x)] are transformed

into an indicator as follows:

iðx; zkÞ ¼
1; if zðxÞ� zk

0; otherwise

�
ð7Þ

At an unsampled location (x0), probability of zðx0Þ� zk

can be estimated using a linear combination of neighboring

indicator variables. This ordinary indicator kriging

estimator is

Prob½zðx0Þ� zk=ðnÞ�� ¼
Xn

a¼1

kaiðxa; zkÞ ð8Þ

where iðxa; zkÞ represents the indicator values at xa; a ¼
1; . . .; n; ka is the kriging weight of iðxa; zkÞ determined by

solving the following kriging system.

Xn

b¼1

kbciðxa � xb; zkÞ þ l ¼ ciðxa � x0; zkÞ ð9Þ

Xn

b¼1

kb ¼ 1 ð10Þ

where l is the Lagrange multiplier; ciðxa � xb; zkÞ is the

indicator variogram between indicator variables at the ath

and bth sampling points; ciðxa � x0; zkÞ is the variogram

between the indicator variables and a ¼ 1; . . .; n:

Local and spatial uncertainty

Uncertainty of soil contamination with heavy metals at a

single location (x0) can be modeled by a probability model

(Goovaerts 1999; Juang et al. 2004; Zhao et al. 2005;

Cherubini 2009). Therefore, the probability of a soil heavy

metal at x0 exceeding the regulatory threshold (zr) can be

denoted by prob½zðx0Þ[ zr�:

prob½zðx0Þ[ zr� ¼ nðx0Þ=1; 000 ð11Þ

where n(x0) is the number of realizations if z(x0) is higher

than the threshold in the 1,000 realizations. In Taiwan, the

regulatory thresholds (zr) for heavy metal Cr, Cu, Ni, and

Zn concentrations in soil are 250, 200, 200, and

600 mg kg-1, respectively. Furthermore, the multi-

location uncertainty, which is the jointly prevailing

uncertainty at several specific locations, can be used to

assess the reliability of delineation based on the probability

prob[z(x0) [ zr] (Juang et al. 2004). Therefore, uncertainty

when mapping heavy metals at several locations

simultaneously is spatial uncertainty, which can be

determined by prob[z(x0) [ zr] C Pc, where Pc is the

critical probability (Juang et al. 2004; Zhao et al. 2005).

The area is assumed with m locations (x01; x
0
2; . . .; x0m: The

joint probability (Pj) of heavy metals in m locations of the
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area exceeding threshold (zr) can be written as follows

(Juang et al. 2004; Zhao et al. 2005):

Pj ¼ prob zðx01Þ[ zr1; zðx02Þ[ zr2; . . .; zðx0mÞ[ zrm

� �

¼ nðx01; x02; . . .; x0mÞ
�
1; 000 ð12Þ

where 1,000 is the number of simulation, and

nðx01; x02; . . .; x0mÞ is the number of realizations in which all

simulated heavy metal concentrations of m location in the

area are greater than the threshold (zr) in 1,000 realizations.

Results and discussion

Statistics of the sampling data

Figure 2 shows the locations of the 100, 300, 500, 700, and

900 samples selected from the 1,082 original samples of

Cr, Cu, Ni, and Zn by cLHS. Table 1 summarizes the

descriptive statistics of Cr, Cu, Ni, and Zn for 100, 300,

500, 700, and 900 samples selected by cLHS from the

original samples. Descriptive statistics are used to describe

the main features of samples. For example, the standard

deviation represents that captures the variability of the

sample values, the skewness is a measure of symmetry, the

kurtosis is a measure of the peakedness of a probability

distribution, Q25 is the first quartile, and Q75 is the third

quartile. The results show that the sub-samples obtained by

cLHS adequately represent 1,082 samples. As the number

of cLHS samples exceeds 700 (64.7% of 1,082 samples),

the distribution of studied heavy metals becomes similar to

that of the original distribution of 1,082 samples, especially

as far as the skewness and kurtosis are concerned. More-

over, the descriptive statistical results illustrate that cLHS

is an efficient sampling method to catch multivariate dis-

tributions (Minasny and McBratney 2006; Lin et al. 2008).

Because multiple heavy metals are sampled, considering

the multivariate distribution of heavy metals by cLHS is

useful for planning and assessing before taking further

environmental action, such as monitoring, risk assessment,

and remediation (Xu et al. 2005).

Fig. 2 Locations of cLHS

sampling sites in a 100, b 300,

c 500, d 700, and e 900 samples
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Table 1 Descriptive statistics for the original samples and the cLHS samples

No. Mean Med SD Min Max Q25 Q75 Skewness Kurtosis

Cr 100 207.8 129.7 208.7 24.0 1,270.0 73.0 260.5 2.27 6.54

300 213.9 127.4 266.6 22.6 3,037.0 76.1 240.9 5.27 45.13

500 201.3 129.0 191.1 26.4 1,070.0 74.6 247.0 2.02 4.24

700 210.6 123.8 235.7 22.6 3,070.0 72.6 248.1 4.01 31.62

900 205.7 125.8 221.3 22.6 3,070.0 71.4 247.0 3.94 32.51

1,082 205.4 126.4 217.7 22.6 3,070.0 73.8 247.2 3.81 31.22

Cu 100 201.4 122.0 200.1 15.0 1,210.0 71.4 269.0 2.29 6.78

300 215.1 123.5 299.3 11.0 3,810.0 72.4 256.0 6.74 60.99

500 198.7 120.0 203.7 11.0 1,380.0 73.3 260.0 2.50 7.90

700 213.7 122.0 259.8 11.0 3,810.0 68.2 273.0 5.22 54.65

900 207.0 122.3 244.2 15.0 3,810.0 69.7 260.0 5.18 55.87

1,082 206.4 123.0 236.3 11.0 3,810.0 73.2 260.0 4.98 53.67

Ni 100 287.3 197.0 252.4 30.7 1,290.0 105.0 388.6 1.57 2.32

300 284.7 197.0 308.1 22.5 4,020.0 112.0 367.7 6.38 70.41

500 276.3 198.0 237.0 22.5 1,605.0 112.0 366.0 1.77 3.82

700 297.6 205.0 292.6 22.5 4,020.0 109.0 398.0 4.09 38.52

900 297.0 209.0 278.4 22.6 4,020.0 116.3 402.0 3.76 36.19

1,082 296.9 209.0 274.2 22.5 4,020.0 121.0 392.5 3.56 32.79

Zn 100 595.7 370.0 644.3 82.4 4,540.0 219.0 682.0 3.23 14.13

300 542.1 382.0 499.3 60.5 3,650.0 218.0 647.0 2.36 7.49

500 539.8 395.0 473.5 60.5 3,350.0 221.5 654.0 2.24 6.63

700 562.0 370.0 552.0 60.5 4,540.0 212.0 655.0 2.73 10.60

900 559.1 368.0 555.1 62.2 4,540.0 207.1 665.0 2.74 10.41

1,082 553.3 368.0 534.9 60.5 4,540.0 216.0 654.0 2.71 10.41

Med median, Min minimum, Max maximum, Q25 the first quartile, Q75 the third quartile

Fig. 3 The indicator variogram

of heavy metals: a Cr, b Cu,

c Ni, d Zn based on 100, 300,

500, 700, 900, and 1,082

samples
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Indicator variogram of sampling data

In this study, experimental indicator variograms of sub-

samples were constructed using the same lag interval in

GS ? software to compare the spatial structures between

the original soil samples and cLHS samples. Figure 3

shows the experimental indicator variograms of 100, 300,

500, 700, and 900 cLHS samples of Cr, Cu, Ni, and Zn,

respectively. The experimental indicator variograms of

100, 300, and 500 sub-samples of Cr and Cu underestimate

those of the original samples. The experimental indicator

variograms of 100 sub-samples of Zn underestimate those

of the original samples. Conversely, the experimental

indicator variograms of 100 and 300 sub-samples of Ni

overestimate those of the original samples. These experi-

mental indicator variograms reveal that as the number of

samples increases from 700 to 1,082, the ability of exper-

imental indicator variograms to capture the spatial structure

of the original data increases. Table 2 demonstrates indi-

cator variogram models for the 25th, 50th, and 75th per-

centiles of heavy metals in 700, 900, and 1,082 samples.

These indicator variography results also show that the

cLHS approach can simultaneously select samples from

multivariate distributions of heavy metals in soil to capture

spatial structures of all heavy metals. Finally, the statistical

and indicator variogram analyses of sub-samples illustrate

that the cLHS approach can be applied to capture the

spatial structures of multiple heavy metals from existing

samples for further monitoring and risk assessment. In this

study, the effective sampling does not lose information

in basic statistics and spatial structure of the original data

(Xu et al. 2005; Minasny and McBratney 2006).

Simulated spatial patterns of soil heavy metal

concentration

In this study, SIS realizations are performed based on the

indicator variogram models for the 25th, 50th, and 75th

percentiles of the sample distribution (Table 2) of 500,

700, 900 cLHS samples and original samples for Cr, Cu,

Ni, and Zn in the study area. Figures 4a–d show the SIS

maps, respectively, of averages of 1,000 realizations of Cr,

Cu, Ni, and Zn in 7,488 grid cells in the study area using

the original data (1,082 samples). The spatial pattern of Cr

shown in Fig. 4 reveals high concentrations near industrial

plants, particularly the electroplating, dyeing and finishing,

and metalworking plants (Lin et al. 2010). The spatial

pattern also reveals high Cr concentrations in the northern,

central, eastern, and some southwestern areas of the study

area. The areas with high concentrations of Cu are in the

central and eastern parts of the study area in the vicinity of

the industrial plants, such as the surface treatment and

metalworking plants (Fig. 4). Nickel concentrations are

distributed throughout the studied area, except in the

southwest area (Fig. 4). The areas with high concentrations

of Zn are close to the industrial plants, such as the elec-

troplating, dyeing and finishing, and metalworking plants

in the northwest and near the surface treatment and elec-

troplating plants in the southwest (Fig. 4). Most areas with

high Cr, Cu, Ni, and Zn concentrations are located near

Table 2 Indicator variogram models for the 25th, 50th, and 75th

percentiles of heavy metals in 1,082, 900 and 700 samples

No. Heavy

metal

Model Parameters RSS r2

C0 C0 ? C R (m)

1,082 Cr 25% Exp. 0.020 0.184 216 1.730E-03 0.722

50% Exp. 0.026 0.247 171 1.202E-03 0.807

75% Exp. 0.025 0.190 120 2.075E-04 0.852

Cu 25% Exp. 0.017 0.184 240 2.008E-03 0.737

50% Exp. 0.025 0.247 186 7.016E-04 0.899

75% Exp. 0.024 0.190 108 5.293E-04 0.663

Ni 25% Exp. 0.015 0.179 222 2.614E-03 0.634

50% Exp. 0.022 0.237 228 3.608E-03 0.671

75% Exp. 0.018 0.183 159 5.723E-04 0.805

Zn 25% Exp. 0.024 0.190 222 1.464E-03 0.768

50% Exp. 0.028 0.250 171 3.795E-04 0.936

75% Exp. 0.021 0.189 144 8.077E-03 0.710

900 Cr 25% Exp. 0.019 0.195 222 1.854E-03 0.747

50% Exp. 0.026 0.247 177 1.359E-03 0.800

75% Exp. 0.024 0.019 107 2.948E-04 0.794

Cu 25% Exp. 0.019 0.184 237 1.816E-03 0.747

50% Exp. 0.024 0.246 198 9.480E-04 0.882

75% Exp. 0.022 0.191 120 6.752E-07 0.637

Ni 25% Exp. 0.013 0.178 219 2.211E-07 0.669

50% Exp. 0.124 0.219 260 7.409E-03 0.682

75% Exp. 0.016 0.182 156 4.957E-04 0.825

Zn 25% Exp. 0.024 0.190 225 1.503E-03 0.760

50% Exp. 0.027 0.250 183 4.654E-04 0.934

75% Exp. 0.228 0.189 147 1.109E-03 0.654

700 Cr 25% Exp. 0.018 0.190 177 1.211E-03 0.759

50% Exp. 0.024 0.247 177 1.323E-03 0.824

75% Exp. 0.025 0.197 165 3.978E-04 0.883

Cu 25% Exp. 0.020 0.197 198 1.961E-03 0.709

50% Exp. 0.025 0.247 180 8.824E-04 0.873

75% Exp. 0.025 0.201 153 5.656E-04 0.818

Ni 25% Exp. 0.017 0.193 183 2.418E-03 0.621

50% Exp. 0.049 0.237 278 3.548E-03 0.735

75% Exp. 0.022 0.186 237 9.884E-04 0.834

Zn 25% Exp. 0.023 0.191 177 9.684E-04 0.778

50% Exp. 0.026 0.250 168 5.214E-04 0.918

75% Exp. 0.023 0.193 207 7.342E-04 0.863

Exp. exponential model, C0 Nugget, C0 ? C Sill, R range, RSS
residual sums of squares
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Fig. 4 The contour map of

average concentration in 1,000

realizations based on the 1,082

samples: a Cr, b Cu, c Ni, d Zn

Fig. 5 The contour map of

average concentration in 1,000

realizations based on 900

samples: a Cr, b Cu, c Ni, d Zn
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Fig. 6 The contour map of

average concentration in 1,000

realizations based on 700

samples: a Cr, b Cu, c Ni, d Zn

Fig. 7 The probability

map exceeding

a Cr = 250 mg kg-1,

b Cu = 200 mg kg-1,

c Ni = 200 mg kg-1,

d Zn = 600 mg kg-1 of 1,000

realizations based on 1,082

samples
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Fig. 8 The probability

map exceeding

a Cr = 250 mg kg-1,

b Cu = 200 mg kg-1,

c Ni = 200 mg kg-1,

d Zn = 600 mg kg-1 of 1,000

realizations based on 900

samples

Fig. 9 The probability

map exceeding

a Cr = 250 mg kg-1,

b Cu = 200 mg kg-1,

c Ni = 200 mg kg-1,

d Zn = 600 mg kg-1 of 1,000

realizations based on 700

samples
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industrial plants and the irrigation systems of the study

area, as Fig. 4 shows (Lin et al. 2002a, b; 2008). Figures 5

and 6 show the patterns of Cr, Cu, Ni, and Zn simulated by

the SIS with 900 and 700 samples. The SIS yields similar

spatial distributions of the simulated hot spots based on

700, 900, and 1,082 samples. Moreover, the SIS realiza-

tions based on 700 cLHS samples reveal slightly less areas

with high heavy metal concentrations (300 mg kg-1[
Cr [ 150 mg kg-1, 300 mg kg-1[ Cu [ 150 mg kg-1,

600 mg kg-1[ Ni [ 300 mg kg-1, 600 mg kg-1[ Zn [
300 mg kg-1) than the simulations based on 1,082 samples

do. However, in the areas with even higher heavy metal

concentrations (Cr [ 300 mg kg-1, Cu [ 300 mg kg-1,

Ni [ 600 mg kg-1, Zn [ 600 mg kg-1), the SIS realiza-

tions based on 700 cLHS samples identify less areas than

SIS realizations based on 1,082 samples do. The simulated

maps indicate that, for SIS realizations, the number of soil

samples can be reduced by the cLHS for further soil

monitoring and risk assessment in the study area.

Local and spatial uncertainty of heavy metals

Uncertainty assessment is a preliminary step in decision-

making processes, such as delineation of hazardous area

(Castrignanò et al. 2004; Cherubini 2009). Bourennane

et al.(2007) argued that there are no validation criteria, such

as for local uncertainty. The ccdf value, defined as the

probability of being less than a threshold, could be referred

to as local uncertainty for an unsampled location (Goovaerts

2001; Cattle et al. 2002; Amini 2005; Juang et al. 2004). This

enables risk assessment when delineating locations, whether

or not they are contaminated (Juang et al. 2004). Figure 7

shows the probability maps of soil contamination by Cr, Cu,

Ni, and Zn exceeding the regulation thresholds (zr) calcu-

lated by local uncertainty equation (Eq. 11) based on the

simulations using 1,082 samples. Figures 8 and 9 demon-

strate the probability maps of Cr, Cu, Ni, and Zn contami-

nations exceeding the regulation thresholds based on the

simulations using 900 and 700 cLHS samples. The proba-

bility maps indicate that the soil concentrations of heavy

metals in areas near irrigation systems exceed regulatory

thresholds (Figs. 7, 8, 9). According to the 1,000 realiza-

tions, the areas most likely to exceed regulation thresholds

for Cr, Cu, Ni, and Zn content in the soil are those in the

northern and central regions of the studied area. Moreover,

the simulations with 700 and 900 samples obtained by cLHS

reveal fewer areas with high probability of contamination

than those with 1,082 samples.

The ccdf obtained by SIS only provides a measure of

local uncertainty related to a single location, and a series of

single-point ccdfs does not provide a measure of multi-

point or spatial uncertainty (Goovaerts 2001, Juang et al.

2004). Therefore, given critical probabilities (Pc), spatial

uncertainty is required to assess reliability when delineat-

ing contamination (Juang et al. 2004; Zhao et al. 2005).

The joint probabilities of given critical probabilities can be

used to measure the reliability of delineated contaminations

of heavy metals. Table 3 shows joint probabilities (Pj) with

given critical probabilities (Pc = 0.98, 0.97, 0.96 and 0.95)

when Cr, Cu, Ni, and Zn content in the soil exceeds reg-

ulatory thresholds. At a given critical probability, the

higher the joint probability is, the more reliable the mapped

contamination is. The risk could be low in mapping con-

tamination when critical probabilities are greater than 0.98,

particular in cLHS 900 samples. Moreover, the uncertainty

analysis results indicate that spatial uncertainty is higher

when delineating contaminations in the 1,082 samples than

when delineating contaminations in cLHS 700 samples,

except for the Zn contamination. The results of the anal-

yses also indicate that delineating soil heavy metal con-

taminations using 700 samples are more reliable than using

1,082 samples for with the exception of Zn contamination.

The uncertainty analyses results confirm the simulated

maps indicating that the number of soil samples can be

reduced by the cLHS for further soil monitoring, risk

assessment, and remediation in the examined area.

Conclusions

Given a sufficient sample size, geostatistical stochastic

simulation techniques are considered reliable for delineat-

ing contamination areas and for quantifying the uncertainty

of heavy metal distributions in soil. This study com-

bines cLHS and geostatistical simulation techniques in

Table 3 The joint probability (Pj) of four heavy metals at m simu-

lated locations in the contaminated area exceed regulatory thresholds

on various critical probabilities (Pc) in 1,000 realizations based on the

1,082, 900 and 700 samples

Pc Cr Cu Ni Zn

m Pj m Pj m Pj m Pj

No. 1,082 0.98 289 0.955 362 0.921 573 0.912 326 0.908

0.97 292 0.905 366 0.829 589 0.636 331 0.821

0.96 295 0.831 369 0.749 611 0.341 340 0.663

0.95 298 0.734 373 0.649 631 0.187 347 0.510

No. 900 0.98 237 0.961 301 0.933 471 1.000 276 0.923

0.97 241 0.869 312 0.771 475 0.912 282 0.809

0.96 246 0.759 316 0.691 483 0.682 288 0.732

0.95 248 0.704 327 0.456 494 0.445 295 0.604

No. 700 0.98 184 0.982 238 0.943 361 0.961 223 0.865

0.97 185 0.958 247 0.784 363 0.925 231 0.745

0.96 186 0.925 255 0.621 382 0.542 237 0.652

0.95 190 0.799 266 0.439 408 0.230 241 0.575
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multivariate distribution of heavy metal samples to select

effective samples replicating the original data and to sim-

ulate spatial patterns and uncertainty of heavy metals. The

nonparametric geostatistical simulation method (SIS) is

used to map and delineate the spatial distributions and

uncertainty of measured heavy metals. The cLHS approach

is an effective approach for sampling multiple heavy

metals from their multivariate distributions to replicate the

statistical distributions and spatial structures of the heavy

metals. The sampling results indicate that 700 soil heavy

metal samples obtained by cLHS are sufficient for repli-

cating the multivariate distribution and indicator vario-

grams of the original heavy metal samples and can be used

to monitor and delineate heavy metals in soil. The SIS

combined with a sufficient number of cLHS samples can be

used to simulate and map the spatial pattern and uncer-

tainty of heavy metals. It seems that there is a correlation

between the areas of high heavy metal concentration and

industrial plants and irrigation systems in the study area.

Based on regulatory thresholds, the proposed method is an

effective approach for delineating heavy metal pollutions

in soil sampling data when implementing environmental

monitoring.
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