WESTERN PACI FI C EARTH SCI ENCES
Vol .1, No.2, P.175-186, 5 Figs., 1 Tab., May, 20

PALEO-ENVIRONMENT STUDY AT YIHJU, SOUTHWESTERN
TAIWAN: A CASE STUDY ON GEOCHEMICAL ANALYSISOF
SULFUR AND CARBON

Hue+ Wi ¥, v GBu Ged, HEN €1 Bl Ep sUne Wel ILbanD Alck C. L& L

1. Deptartment of Geosciences, National Taiwan Universi
2.111inois State Geology Survey, Illinois, USA
ABSTRACT

A systemic determination of abundance and isotopic
composition of sulfur and carbon allowed us to r econstruct the
paleo-environment of the southwester n coastal plain of Taiwan
over the past one hundr ed thousand year s. High sulfur content,
S/C ratio and d*Svalues at two inter valsof thestudied cor eshow
that the study area has undergone two transgressional events.
Low concentrations of total organic carbon wer e gener ally
obser ved except for a short period of a mar sh envir onment.
Heavier d*3C values of organic carbon indicate that C4 plant was
ardatively impor tant sour ce of organicmatters asaresult of arid
depositional environment during the regression.

K ey words: paleo-environment, or ganic matter, d**C, d *S, transgr essional
event

INTRODUCTION

A coadal areaisatrangtional zone between two totdly different environments the land
and sea. Due to their physio-chemical differences, biogeochemical processesand associaed
productsare significantly discemible. A coastd areaisfurther quite sensitive to climate, sea
level, and sedimentary source change. Thus, sedimentary strata may record the history of
environmental change. Abundance of sulfur and carbonaswell astheir isotopeshasbeen used
as proxiesto demonstrate such changes (e.g., Peterson & Howarth, 1987; Berner, 1982).
Sedimentary sulfur normally gppearsin the form of pyrite but dso of monosulfide, elemental
sulfur, sulfatecompound and organicsulfur. Diagenes sand mineral transformationaremainly
controlled by the prevailing biogeochemical process, sulfatereduction, in marine sediments
(Chambers & Trudinger, 1979; Goldhaber & Kaplan, 1980; Fry et al., 1986). Coastal
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environmentsusudly havesufficient sulfate. Activesulfatereductionisfound inanoxicsediments
where thereis abundant sulfateand organic matters. Qulfate reduction bacteria use sulfateas
an dectrondonor tooxidize organiccarbon and producehydrogen sulfide, which subsequently
react with iron to become pyrite (Berner, 1970, 1984). This biogeochemical processprefers
32§, thusthe product (mainly pyrite) hasasignificant light isotope value (Harrison, 1957, 1958;
Lyn etal., 1975). On the other hand, organic sulfur may betrangormed from thedissolved
hydrogensulfideor directly disintegrated fromplantdebris. Therefore, both inorganicand organic
sulfurs could provide valuableinformation regarding the degree of sulfate reduction and its
influence onthe sediment record (e.g., Summons, 1993).

Organic carbonretainsthe syn-depositional signasfor source identification (Arthur etal .,
1988; Muller & Voss, 1999). Organic carbon preserved in coastd sedimentsmay be derived
from two major sources:. fragments of terredtrial plants and marine organisms with different
isotopicvalues(Denes, 1980). Theterrestrid C3 and C4 plants, through different photosynthesis
processes, show different d*C values: C3: -26~-28%pC4: -12~-14%4{Deines 1980; O'Leary,
1981). Ingeneral, C3 plant growsunder ahumid condition, while C4 plant growsat arelatively
arid climatic condition. The d**C values of organic mattersin modern marine sediments have
reportedly awide range (Deines, 1980); however, Hsieh and Chen (1999) pointed out that the
modern vaues are relatively constant ina local area. Therefore, the d*3C sgnaturecould be
used not only as an indicator of plant populations but also agood proxy of the history of sea-
level changeinthe coastal environment.

Sincecarbon and sulfurcycles arecoupled to each other, theratio of sedimentary organic
carbon to pyrite (C/Srétio) wasused asaproxy to diginguish deposits formed in submarineor
subaerial environments (Berner & Raiswell, 1983; 1984). Typical modern marine sediments
have an average C/Sratio of 2.8+0.8 (Berner, 1982), whereas the freshwater sediments have
relatively higher C/Sratio due to itslow sulfur content. However, itsuse as anindicator of
deposition environment was limited when iron becomes limited (Raiswell & Berner, 1985;
Calvert & Karlin, 1991; Lyons & Berner, 1992). A completesulfidation of Femay limitthe
sulfidecontentin Fe-poor rocks. Inaddition, unreasonable C/Svalues have beenreportedin
freshwater sediments with almost no sulfur content. Inthispaper weuse SIC ratio instead of
C/Sratiotoavoid such aproblem. Theboundary SC ratio adopted in thisstudy to identify the
depostiond environmentsis0.36+0.10(Hg. 5; Berner, 1982).

The studied coreis drilledat Yihju, asmall town in the coastal plain of southwestern
Tawan, geologically speaking, afordand basn (Fig. 1; Hsu, 1984). The core length isabout
200m recording at least 50kyr sedimentary history. With an attempt to unravel detailed
sedimentary history, measurement of concentrations and isotopic vaues of both sulfurand
carbon were carried out. Based on published radiocarbon ages, the Holocene transgresson
here garted a about 10kaand ended a 6.5ka. Thistransgressvetract consigs of intercal ated
silt, mud, sand, and also contains fossilsof foraminifers and mollusks, indicating that itwas
formed inacoastal environment (Linetal., 1998; Liu and Hsia, 1998). In an atemptto diagnose
the geochemica records of the transgression, organic and inorganic sulfur concentration and
their d**S valueswere analyzed. The d*3C of the organic material in the studied strata was
detected in order to understand the sources of these organic matters, and to reconstruct the
pdeodlimaticcondition.
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Figure 1. Map showing the study area and location of Y ihju corein southwestern coastd plain,
Taiwan. Theareaisbounded by western Foothills (right shaded area) and Taiwan Strait.

The sampling interval is every 10m. Sedimentswere separated into two aliquotswith
adequate amountsfor bothsulfur and carbon andy ses. For sulfurandysis, thediffusion method
(Hsieh & Yang, 1989; Hsieh & Shieh, 1997) was applied to extract theinorganic sulfur of
Pyrite-S, AV S and elemental S concentrations in sediments. The concentrations of these
inorganic sulfur pecieswereall derived by titration method. For the sulfur isotopic andyses,
theseinorganic sulfur were sequentially trandormed into Ag.S, later reoxidized into SO, in a
vacuum system (Fritz et al., 1974; Y anagisawa & Sakai, 1983; Ueda & Krouse, 1986). The
resdud sediments were mixed with Eschka compound and fused in high temperature about
570°C. Organic sulfur, then, will beextracted by rinsing the mixture withhot water, and finally
itwill be precipitated as BaSO, and transformed into SO, inavacuum system. Theerrorsfor
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concentrationsof inorganic and organic sulfur are +5% and £10%regpectively. On the other
hand, TOC was fird measured on EA1110 elemental analyzer with the aliquot for carbon
analysis. The error of TOC measurement was +2%. For d**C analysis, samples were first
treated with 2N HCI to remove the inorganic carbon. The organic carbon istrandormed into
CO, gas viacombustion in avacuum system. The C and Sisotopes wereanalyzed on Delta
Plus and Nuclides mass spectrometers. Results are expressed in per mil (%pas d**C relative
to PeeDee Belemnite (PDB), and d**Srdativeto troilitesulfur from the Canyon Diablo meteorite
(CDT). Theerrors for carbon and sulfur isotope values are £0.1%and £0.3%o

RESULTS

I norganic Sulfur

Asshown in Table1 and Hgure 2a, the concentrations of acid-volatilesulfur (AVS) and
elemental sulfur (ES) are both much lower than chromium (I1) reducible sulfur (i.e., Cr-S,
mostly pyritic sulfur) throughout theentire core. The concentrationsof Cr-Svary with depth as
well astheir d**S values. At depths of less than 100m and between 180m and 200m, high
concentraionsof Cr-S, asociated with lighter vaues of d**Swere observed, indicating that
these sediments might be deposited under amarine environment during the last transgression
(Fig. 2b).
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Figure2. Vertical profilesof (a) AV S(acid-volatilesulfur), Cr-S(pyritic sulfur), and ES(d emental
sulfur) and (b) d*S
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Table 1. Andytical data of inorganic, organicsulfur concentration and their gable carbon and

sulfur isotopes.
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Organic Sulfur

The average organic sulfur concentration is 0.56+0.11 (Tab. 1 and Fig. 3a). Higher
concentration of organic sulfur is observed at depth intervalsof 50~110mand 140~170m. Its
d**Sremained at arelatively constant value of 8%avith a few exceptionally low values at

depths of 70m and 200m (Fg. 3b), indicating theinfluence of 34S-depleted sulfate during the
timeof transgressions.
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Figure3. Vertical profiles of organic sulfur concentrations (@) and d**S(b).

OrganicCarbon
The totd organic carbon (TOC) contentsremain relatively stable between 0.1~0.5%
except for an extremey highvalueof 1.3%at 80m (Teble1 and Hg. 43). Atthe interval of -140

t0-200m, the d**Cvalues are about 3%lighter than modern marine vaue of -22%gprobably a
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result of mixing with marine phytoplankton andterrestriad organic materials (Fig. 4b; Hsieh &
Chen, 1999). At the interval of -60 to -130m, the rdatively heavier d**Cvaluesimply that C4
plant becomesan important source of organicmatter. Above thedepth of 60m, thed**Cvadues
turninto the range of modem shallow marineand lagoon sediments (Fig. 4b).
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Figure4. Vertical profilesof organic carbon concentration (&) and d*3C (b).

S/C Ratio

Asshownin Table1 andFgure5, theSCratiosshowasimilar trend asCr-S concentration.
Onthebasisof available age determinations, the upper 100m associated with higher S/Cratio
can becorrelated to Holocene. A second higher SIC ratioisobserved a depth of 170-180mas
an oldtranggresson, whichmight indicate thetranggressonal event of the high sea-stand during

OIS 5 (oxygen isotope stage 5, constructed by deep-seaforaminiferal analysis (Morley &
Hays,1981).
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Figure5. TheS/C ratio profileof Yihju core correlated with lithogtratigraphic columnar section,
14Cagesand the globd sealevd over the pag 200 kyrs. The shaded area representsthe &/
Cratio (0.26-0.46) boundary dividing subaerial and norma marine sediment. Sealevel
curveused inthispaper is adopted from Chgppd| & Shackleton (1986).

DISCUSS ONS

Holocene Tr ansgression

Based onourinorganicsulfur result, the uppermaost100m showsrd atively high concentration
associaed withlight d*S(Fgs. 4a& 4b).Highinorganicsulfur concentrationusudly represents
amarine environment where the sulfatereduction prevailsto trandorm seawater sulfate into
hydrogen sulfideand that *2Sis 9gnificantly enriched. As aresult, the uppermost 100 meters
are most likely to represent depaositsduring Holocenetransgresson. In addition, the high SC
ratios, generally greater than 0.36 except for the depth of 60 m, reveal that thisinterval is
developed under amarineenvironment (Fg. 5). On theother hand, theheavier d*3C of lower
depths (i.e.,100~140m) extends into very early Holocene (Fig. 4b). Thisindicates thatthisarea

has not been dominated by C3 plant, indicator of humid period such aspresent-day, until very
ealy Holocene.
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L ate Pleistocene Ter restrial Environment

Theinorganic sulfur concentrationsbetween the depths of 100 to 170m exhibit values
muchlessthan its overlying sediments. Less inorganic sulfur is accumulatedin aterrestrial
environment as aresult of no sulfatereduction dueto rather low sulfate concentration inthe
freshwater environment. Sincethis interval showslow inorganic sulfur concentration and low
SCrdios, :adimentsin thisinterval were most likely to depositinthesubaerial condition. Itis
reasonably correated to thetimeperiod of OIS 2-4, wherethe sea gand wasgenerally lower
than those of Holoceneand OI S5. Thed**C gradually shiftingto aheavier valuefrom depth of
140mupward to very early Holoceneindicaesthat the concurrentclimaewasrdativey dryer
than itsupper and lower partsof the core. Since thisarid event hasbeen foundin the Taipei
basin of northern Taiwan (Wei, 1997), the dry eventisprobably acoeval phenomenonin the
entire western Taiwan.

OIS5 Transgression

Our datadso show another highinorganic sulfur interval at depths of 180-200m, where
the d**Svdueis low and the S/Cratios are higher than 0.36 (Figs. 1 and 5). Therefore, we
suggest that an older transgressional period has occurred inthis area. Because of lack of age
control under 120m, we assumethat these sedimentswere deposited during Ol S5. Based on
their lighter d**C values, the dominantvegetation of Y ihju areawas C3 plant during this period
(Fg. 4b). Thisconduson is consigentwith that Ol S5isawe I-known humidand warm period.

Special Environments at -60m and -80m

Anunusually low value of inorganic sulfur concentration appearsat -60m. Inamarineor
coastal environment, three possbleconditions can result in suchavalue (1) lack of iron; (2)
decrease in supply of organic carbon, and (3) reoxidation of already formed pyrite. Iron is
usually abundantinthe coastd plain of southwestern Taiwan (F, 1995; Hsia, 1998). Based on
our TOCreault(Hg.4a), theorganic carbon supplement at thisdepthremains Smilar during its
sedimentary history. Thus, the organic carbon and iron concentrations are unlikely to be
responsiblefor thisunusudly low inorganic sulfurconcentration. Lin et al. (1998) showed that
this areawas asand bar environment based on grain-szeanalysis. Thisis dso confirmed by
theC4signd of avery heavier carbonisotopic vaue,indicating that thisareamight be emerged
and vegetated by C4 plants.

Anextraordinarily high TOC a -80m (Fig. 4a), aswell as the lowes d**Sof the organic
matter, showsthatan abruptchange of organicdeposition duringthisshortperiod. Theunusually
low d*3C of the organic carbon showsthat C4 plant, anindicator of an arid environment, was
predominating during deposition. A marsh environment may account for such characterigics.

The Sour ces of Or ganic Sulfur

Therearethreemajor ty pesof organic sulfursincorporated inthe sediments: nonchromium-
reducible organic sulfur (Non-CROS), chromium-reducible organic sulfur (CROS) and
hydrolyzable organic sulfur (HY OS) (Canfield etal., 1998). Theorganic sulfur concentration
incdludesmastly Non-CROSusing our extracting procedure. Thelightd*Sorganicsulfurobserved
at depthsbetween 70~80m and 200m (Fig. 3b) can easily be transformed from the diagenetic
addition of sulfide or polysulfideinto unsaturated organic compounds (SnningheDamgeetal .,
1989a,b; Kohnen etal., 1990, 1991; Wakeham et al., 1995). Thesulfide or polysulfideisusually
depleted in *Sin an open system, shifting CROSto arelatively light d**Svalueof Non-CROS.
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The marine organic material, whichislipid-dominant, could easly has thislight d*Ssignature.
Atthe periodsduring their deposition, themarine organic materia waspredominant withvery
little organic matter during the commencing stage of atranggressional event.

CONCLUSONS

1. Twointervasof highinorganic sulfur concentrationat the upper 100m and 180 to 200m
areprobably resulted fromthetransgressional events (Holoceneand OIS5).

2. Lowinorganic sulfur content and light d**Svalue a 60mwasaresult of limited sulfate
inasand bar environment. Theprevioudy formed pyrite canbeeasily oxidized inthissubaerial
environment.

3. The extraordinarily high organic carbon at -80m implies that probably a marsh
environment was formed, wherehigh biological productivity enhanced the organic carbon
deposition. Excepting this, however, thedeposition of organic carbon at Y ihju area has been
generally gable and limited ina rangeof 0.1~0.5%since lae Heigocene.

4. From depths of 60 to 130m, the d**C vduesshiftto aheavier C4 plant,implying that C4
plant was an important source of organic matters Theflourishing of C4 plant indicatesthat the
climate was relaively arid. Based on age daa, this sraumwasdeveloped from early OIS 2to
early OIS1.

5. Thelight d*Svadues of organic sulfur around -70~-80m and -200m are noticeably
influenced by *Sdepleted sulfide of marinesource. As aresult, themarine organic source was
dominantand the terresrial source decreased at these periods during thebeginning stage of
tranggression.
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