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Abstract

Target threshold vs. pedestal contrast (TvC) functions for a vertical and a concentric target were measured on a vertical, a

horizontal, a plaid or a concentric Gabor pedestal. All patterns had Guassian envelopes. All except one of the TvC functions had

a dipper shape, that is, the target threshold first decreased and then increased with the pedestal contrast. The TvC function for a

vertical target on a horizontal pedestal was monotonically increasing. A divisive inhibition model with two orientation selective

mechanisms, sensitive to vertical and horizontal, fits the data reasonably well. A significant improvement in fit is obtained by adding

one or two more mechanisms. These additional mechanisms are different for different observers. Some are consistent with oblique

receptive fields, some with concentric receptive fields, and some are indeterminate.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Most of the research on visual pattern detection and

discrimination has been done with oriented patterns,
frequently sinewave gratings or Gabor patches. This

emphasis on oriented patterns has two roots. The first is

the knowledge that most of the neurons in the primary

visual cortex of animals are tuned to orientation and

that different cells are tuned to different orientations

(DeAngelis, Ohzawa, & Freeman, 1993; Hubel & Wie-

sel, 1962, 1968). There is evidence that the activations of

these neurons are correlated with the visibility of the
visual inputs (Tolhurst, Movshon, & Thompson, 1981).

Secondly, there is psychophysical evidence that the

mechanisms that mediate visual detection behavior are

also orientation selective (Wilson, Levi, Maffei, Rov-

amo, & DeValois, 1990).

This research has led to models of pattern detection

in which detection is based on the responses of an array

of mechanisms with receptive fields that are oriented and
tuned to spatial frequency (DeValois & DeValois, 1988;
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Graham, 1989; Legge & Foley, 1980; Watson, 2000;

Watson & Solomon, 1997; Wilson et al., 1990; Wilson,

McFarlane, & Phillips, 1983). These models describe

and predict the results of many experiments done with
grating and Gabor patterns. However, they have not

been vigorously tested using non-oriented patterns, such

as concentric patterns, as stimuli.

On the other hand, there are neurons with a con-

centric receptive field structure. Cells in the retina and

the LGN have approximately concentric receptive fields,

as do cells in the layer 4 of V1 that receive inputs from

the LGN. In addition, there are cells in the ventral visual
pathway in area V4 that are more sensitive to concentric

patterns than to gratings (Gallant, Braun, & Van Essen,

1993; Gallant, Connor, Rakshit, Lewis, & Van Essen,

1996). Other cells are more sensitive to spirals or radial

patterns. These studies do not establish that these

stimuli are the best stimuli for these cells; but they are

the best among the 90 sinewave grating, circular grating,

spiral, and radial stimuli that were tested. Most of these
cells are phase insensitive and their receptive fields

cannot be mapped into excitatory and inhibitory re-

gions. Fujita, Tanaka, Ito, and Cheng (1992) found

neurons in inferior temporal cortex tuned to specific

geometric patterns such as circles.
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Psychophysically, there is one study that examined

detection of oriented and concentric patterns. Kelly

and Magnuski (1975) compared the detection of con-

centric patterns with sinewave gratings. They measured

absolute threshold as a function of spatial frequency

for sinewave gratings, zero order Bessel functions of

the first kind, and circular cosine gratings. They found

that at low spatial frequencies both concentric patterns
had lower thresholds than sinewaves, but for frequen-

cies above about 1 c/deg concentric patterns had

thresholds that were increasingly higher than grating

thresholds. A quantitative analysis of their data indi-

cated that the threshold depends on the component of

maximum magnitude in the two-dimensional Fourier

transform of the stimulus patterns. These compo-

nents are oriented sinewaves. This result is consistent
with the hypothesis that at absolute threshold concen-

tric pattern detection is mediated by mechanisms that

have receptive fields tuned to orientation and spatial

frequency. It leaves open the possibility that concentric

mechanisms may be involved in the detection of con-

centric patterns when they are presented in the context

of other patterns. This could come about if concentric

mechanisms exist and oriented mechanisms are sup-
pressed more by the context than are the concentric

mechanisms.

Stromeyer and Riggs (1974) tried to test for curvature

detectors in human vision using contingent aftereffects

with inconclusive results. Dobbins, Zucker, and Cy-

nader (1987) showed that the end-stopped complex cells

are tuned to curvature of a light arc. This led to models

in which the mechanisms responsible for curvature
detection are similar to those for the detection of texture

borders (Koenderink & Richards, 1988; Wilson &

Richards, 1992).

Wilson, Wilkinson, and Asaad (1997) (see also Wil-

son & Wilkinson, 1998) measured coherence thresholds

for the detection of Glass (1969) patterns in random-dot

noise by varying the proportion of dot pairs oriented

consistent with the dot pattern to dot pairs oriented
randomly and determining the proportion that corre-

sponded to 75% correct. They found that concentric

Glass patterns had substantially lower thresholds than

radial, hyperbolic, or parallel patterns. They also

showed that the degree of spatial summation is nearly

perfect for concentric patterns, suggesting that a single

concentric mechanism is responsible for the detection.

They found less summation for radial glass patterns and
least for parallel glass patterns. They proposed a four-

stage model, in which the Glass pattern detectors

essentially linearly sum the outputs of curvature detec-

tors (Wilson & Richards, 1992), to account for their

results. Recent results, however, indicate that the greater

sensitivity to concentric Glass patterns is not a general

finding and may be a consequence of the use of a cir-
cular window in the Wilson et al. experiments (Dakin &

Bex, 2002).

Other recent research on spatial vision suggests that

concentric mechanisms have an important role in the

discrimination of patterns that contain two or more

sinewave components. For instance, Thomas and Olzak

(1996) (also see Olzak & Thomas, 1999) proposed a two-

stage model for pattern discrimination. The first stage of
their model consists of a set of oriented linear filters

tuned to different orientations and spatial frequencies.

Each mechanism in the second stage pools information

from the first stage filters. One type of second stage

mechanism pools information from the first stage filters

of all orientation preferences, but tuned to the same

spatial frequency. In the Fourier domain, the sensitivity

profile of these second stage mechanisms has an annu-
lus, or ‘‘doughnut’’, shape. Thus, in the space domain,

the sensitivity profile of such a mechanism has a con-

centric shape. However, none of these papers propose

that concentric mechanisms are involved in contrast

pattern detection.

In principle, the responses of cells at different levels

in the visual system could provide the basis for pattern

detection when patterns are presented in the context of
other patterns. Current models of pattern detec-

tion require that responses be summed nonlinearly

across all the mechanisms that contribute to detection.

It is possible that the behavioral response in a detec-

tion task could be determined by neural responses

occurring at any of several levels of the system and

therefore be determined by cells tuned both to oriented

and concentric patterns. Experiments in which target
patterns are detected in various contexts (sometimes

referred to as masking experiments) have been impor-

tant in testing theories of pattern detection and

revealing underlying mechanisms. How target threshold

changes or fails to change with the context provides

information about how the context influences the re-

sponse of the mechanism. More specifically, the target

threshold vs. pedestal contrast function (TvC function)
has been particularly useful (Foley, 1994; Legge &

Foley, 1980).

Our goal in this study was to measure TvC func-

tions when either the target or the context or both

were concentric patterns, to determine whether the re-

sults could be described by a model of pattern vision

that has worked well with other patterns (Foley, 1994;

Foley & Chen, 1999), and, if so, to use the model
to estimate the sensitivity of the detecting mecha-

nisms.

We measured TvC functions for the detection of a

vertical Gabor patch and a concentric Gabor patch in

the presence of a vertical Gabor, a horizontal Gabor, a

plaid Gabor, and a concentric Gabor (concentric cosine

with a Gaussian envelope).



Fig. 1. Left: the three types of pattern used in this experiment. Top:

concentric Gabor pattern. Middle: vertical Gabor pattern; the hori-

zontal Gabor was identical except for orientation. Bottom: plaid pat-

tern; the sum of the vertical and horizontal Gabor patterns, each at
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2. Method

2.1. Apparatus

The stimuli were generated using a computer graphics

system that consisted of a PC type computer, a True-

vision ATVISTA graphics board with 2 MB video

memory, a contrast mixer and attenuator circuit, and
two video monitors (Sony, model CPD-1304). Truevi-

sion Stage graphics software was used for image gener-

ation and control. The pedestal was generated on one

monitor and the target on the other, and they were

combined by a beam splitter. The resolution of the

monitor was 512 · 400 pixels. Viewed at a distance of

162 cm, the width of each pixel is approximately 1 min.

The intensity of an image was specified by an 8-bit in-
dexed lookup table. The frame rate was 60 Hz. The

methods of contrast control described by Watson,

Nielsen, Poirson, and Fitzhugh (1986) were adapted to

our system and experimental paradigm. The pedestal

and the target contrasts were controlled independently

by lookup tables and could be further attenuated by an

analog circuit to produce low contrasts without loss of

waveform definition. The lookup tables had the dual
role of controlling contrast and correcting for the non-

linear relation between voltage and screen intensity.

half the contrast of the plaid. Right: the amplitude of the two-

dimensional Fourier transform of each stimulus on the left.
2.2. Stimuli

We measured the threshold of a target pattern

superimposed on another pattern (pedestal). We used

four types of patterns for both targets and pedestals:

vertical Gabor, horizontal Gabor, plaid, and concentric

Gabor. These stimuli and their Fourier amplitude
spectra are illustrated in Fig. 1. The light intensity of any

point (x; y) from the center of a vertical Gabor was de-

fined by the equation:

Lðx; yÞ ¼ Lð1þ C cosð2pfxÞ expð�x2=r2Þ expð�y2=r2ÞÞ;
ð1Þ

where L was the background luminance, C is the con-

trast of the pattern, f was the spatial frequency, and r
was the 1=e space constant. In our experiment, the

spatial frequency was 2 cycles per degree and r was 0.5
degree. The horizontal Gabor was defined in a similar

way by swapping x and y in Eq. (1). The concentric

pattern was defined by the equation:

LðrÞ ¼ Lð1þ C cosð2pfrÞ expð�r2=r2ÞÞ; ð2Þ

where r ¼ ðx2 þ y2Þ0:5 is the radial distance. For the

horizontal, vertical, and concentric Gabors contrast is

defined as the Michelson contrast of the underlying
sinewave. The plaid was the sum of a vertical and a

horizontal Gabor pattern. Its contrast was defined as the

sum of the two component contrasts.
2.3. Procedure

The target contrast threshold was measured with a

temporal two-alternative forced-choice paradigm. The

pedestal was presented in both temporal intervals. The

target was randomly presented in one of the two inter-

vals with a probability of 0.5. The target and the ped-
estal were presented concurrently in the target interval.

They had a duration of 33 ms (two frames). The two

intervals were separated by 660 ms. An auditory feed-

back was given to the observer after each trial. The

QUEST procedure (Watson & Pelli, 1983) was used to

adjust the contrast so as to determine the target

threshold at the 0.91 probability correct level. The

QUEST sequence was terminated after 40 trials, or 50
trials if there were no errors on the last 20 trials.

Two of the observers made phenomenological reports

of the appearance of the target at threshold with and

without the masks over the range of mask contrasts.

2.4. Experimental Design

There were eight conditions corresponding to the two

targets each paired with the four pedestals. In each
condition we measured the target contrast threshold for

10 contrasts of the pedestal and no pedestal (absolute

threshold). In a typical session a single condition was
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used and the 10 pedestal contrasts and no pedestal

condition were presented in random order. Each of the

eight conditions was presented four times over the

course of the experiment, except for CCC for whom

each condition was presented three times. In a few

conditions where variance was high additional mea-

surements were made. An outlier test was used and 44/

1584 measurements (2.8%) were excluded from analysis
on the basis of this test.

There were five observers. CCC and JMF are the

authors and the other three were naive with respect to

the purpose of the experiment. Observer WSC com-

pleted only 6 or the 8 conditions. All had visual acuity of

20/20 or better, with or without correction, and no

known visual problems.
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Fig. 2. Threshold vs Pedestal Contrast (TvC) functions for the mean

thresholds over the five observers: (a) vertical target and (b) concentric

target. Smooth curves are best fit of a two oriented mechanism model

(models 2–6) to the data. Here the predictions for the vertical and

horizontal pedestals are the same.
3. Results

Qualitatively, there is good agreement among the five

observers. Except for the one case in which target and
pedestal are orthogonal, all the TvC functions have a

dipper shape, that is, as pedestal contrast increases the

target threshold first decreases and then increases. Be-

cause the functions for individual observers are not

completely smooth, we computed the average thresholds

across the five observers. These mean thresholds are

shown in Fig. 2, The mean standard error of these

measurements is 0.83 dB with a slight tendency for
standard error to increase with pedestal contrast. The

smooth curves through the data correspond to a model

that will be described below.

When the target is a vertical Gabor pattern, the ver-

tical Gabor pedestal facilitates and masks more than the

other pedestals. The horizontal pedestal does not facil-

itate at all and masks weakly, as has been shown pre-

viously (Foley, 1994). The plaid pedestal produces a
TvC function that has a form very similar to that for the

vertical pedestal, but shifted to the right by 5–6 dB. This

shift coincides approximately with the difference in

contrast between vertical pedestal and the vertical

component in the plaid pedestal. The concentric pedes-

tal facilitates less than the vertical or plaid pedestals and

produces a magnitude of masking which is between that

produced by the vertical pedestal and that produced by
the plaid.

When the target is concentric, the concentric pedestal

facilitates and masks more than the other pedestals. The

horizontal and vertical pedestals produce similar TvC

functions, with the function for the horizontal pedestal

being shifted about 2 dB to the right. The functions for

the horizontal and vertical pedestals have a somewhat

different form than the others; rising rapidly at first and
then more slowly. The plaid pedestal facilitates more

than the vertical or horizontal pedestals, and masking

increases almost as rapidly for the plaid as for the
concentric pedestal. The absolute threshold for the

vertical target is about 2 dB (or 26%) lower than the

threshold for the concentric target. This difference is

slightly smaller than that reported by Kelly and Mag-

nuski (1975).
4. Discussion

4.1. Basic model

We addressed two theoretical questions with respect
to these results. First, are the results consistent with a

version of the nonlinear excitation/divisive inhibition

model (Chen, Foley, & Brainard, 2000; Foley, 1994;

Foley & Chen, 1999); second, if so, how many mecha-

nisms are required to account for these results and what

are their sensitivities? The class of models that we fitted

is illustrated in Fig. 3.

In this class of models pattern detection is mediated
by pattern vision mechanisms. These mechanisms are

sensitive to the contrast of patterns. The excitation

produced by a pattern, i, in a mechanism, j, is the
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Fig. 3. Schematic illustration of the nonlinear excitation/divisive

inhibition model. In this illustration, we only show two mechanisms.

However, it is not difficult to extend it to multiple mechanisms, and

most of the models that we considered have three or four mechanisms.
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product of the contrast of the pattern Ci the sensitivity
of the mechanism to that pattern, sij:

E0
ij ¼ sijCi: ð3Þ

Sensitivities and excitations may be positive or negative.

The sum of the excitations produced by each pattern is

given by:

E0
j ¼

X
i

E0
ij: ð4Þ

This sum is halfwave rectified to give the net excita-

tion of the mechanism:

Ej ¼ max 0;E0
j

� �
: ð5Þ

Each mechanism produces divisive inhibition in itself

and in all the other mechanisms. The inhibitory signal

from mechanism k to mechanism j is the product of an

inhibitory weight, wjk, and the net excitation raised to

the power q:

Ijk ¼ wjkE
q
k ; ð6Þ

where the inhibitory weights are constrained to be po-

sitive.

The total inhibition on mechanism j is:

Ij ¼
X
j;k

Ijk: ð7Þ
The response of mechanism j is given by the nonlin-

ear equation:

Rj ¼ Ep
j= Ij
�

þ Zq
j

�
: ð8Þ

The threshold depends on the value of a detection

variable that is a nonlinear sum over all the mechanisms

of the difference between the response to the pedestal

plus the target and the response to target alone:

d ¼
X
j

ðRj;pþt

"
� Rj;pÞ4

#1=4

: ð9Þ

A target is at threshold when d ¼ 1.
The version of the model that we have used here is

constrained in the following ways: The parameters p, q,
and Z are the same for all mechanisms. There are only

two inhibitory weights, one for self-inhibition, ws, and

one for inhibition from different mechanisms, wd, which

are also the same for all mechanisms. We explored

models that allow more flexibility in the inhibitory

weights and we found that they improve very little on
the goodness of fit of the best models reported here.

The models that we considered varied in the number

of mechanisms assumed and in the constraints on the

excitatory sensitivities of these mechanisms. We started

with a simple two-mechanism model and we proceeded

by relaxing constraints and adding mechanisms until we

no longer obtained a statistically significant improve-

ment in goodness of fit. The models are identified by two
numbers separated by a hyphen. The first number is the

number of mechanisms and the second number is

the number of free parameters. Each model had the five

free parameters: p, q, Z, and the two inhibitory weights.

The other free parameters were excitatory sensitivities of

the mechanisms to the stimulus patterns.

We used four patterns, which we designate by v
(vertical), h (horizontal), c (concentric), and p (plaid).
We considered models that have a mechanism sensitive

to vertical, but not horizontal patterns (V-mechanism), a

mechanism sensitive to horizontal, but not vertical

patterns, (H mechanism). Some of the models have a

mechanism sensitive to concentric, but not to vertical or

horizontal patterns (O mechanism). Some have a

mechanism (A mechanism) that has non-zero sensitivity

to all four patterns.
The data were fitted by a Powell’s algorithm (Press,

Teukolsky, Vetterling, & Flannery, 1986) that seeks the

parameter values that minimize the sum of the squared

differences between the measured and predicted thresh-

olds (SSE). Since there are local minima in the SSE

space, we made 50 fits, each starting from a different

initial set of parameter values to determine the best fit.

The simple two-mechanism models 2–6 (see Table 1),
has a mechanism sensitive to the vertical Gabor and

not the horizontal (V-mechanism) and a mechanism

sensitive to the horizontal Gabor and not the vertical



Table 1

Summary of model fits to the simplest model and the two best models

Characteristics of the data sets Data set
CCC EAH JMF MAB WSC ALL

Number of TvC functions 8 8 8 8 6 8
Number of data points 86 88 88 88 66 88
Mean standard error 0.77 0.66 0.70 0.79 0.65 0.83
RMSE best 1.415 0.909 1.22 1.184 0.999 0.70
RMSE best/mean SE 1.845 1.385 1.752 1.505 1.534 0.846

Model2−6
SSE 213.61 109.92 211.08 178.54 85.86 70.94

Stimuli V H RMSE 1.58 1.12 1.55 1.42 1.14 0.90
v s1 0 Free parameters 6 6 6 6 6 6.00
h 0 s1
c s2 s2 s2 91.49 71.21 85.72 73.25 81.36 78.78
p .5xs1 .5xs1 ws 1.19 0.42 0.48 0.28 0.51 0.55

wd 0.0078 0.0354 0.02 0.04 0.0315 0.02
Z 3.86 2.41 3.02 2.95 2.12 2.93
p 3.58 2.07 2.46 2.24 2 2.51
q 3 1.71 2.03 1.98 1.63 2.09

Model 3−9
SSE 189.35 72.74 130.62 142.02 73.82 52.42

V H A RMSE 1.484 0.909 1.22 1.27 1.058 0.77
v s1 0 s4 Free Parameters 9 9 9 9 9 9.00
h 0 s2 s4
c fxs1 fxs2 s3 s2 106.75 72.44 78.01 80.26 89.02 85.91
p .5xs1 .5xs2 s4 s3 105.65 82.1 82.08 80.29 24.43 61.12

s4 -9.86 -7.46 58.01 -5.03 51.32 40.40
f 0.83 0.75 0.35 0.76 0.88 0.80
ws 1.03 0.44 0.2 0.31 0.57 0.55

The best fit to each data wd 0.0087 0.0357 0.44 0.04 0.0164 0.03
set is highlighted with gray. Z 2.43 2.48 2.68 3.01 2.22 2.83

p 3.14 2.22 2.52 2.44 2.25 2.49
q 2.72 1.85 2.15 2.16 1.87 2.07

Model 4−11
SSE 172.24 70.32 121.89 123.3 65.55 43.45

V H O A RMSE 1.415 0.894 1.177 1.184 0.999 0.70
v s1 0 0 s4 Free Parameters 11 11 11 11 11 11.00
h 0 s2 0 s5
c f*s1 f*s2 s3 s6 s2 111.83 81.76 92.15 84.88 88.26 86.02
p .5*s1 .5*s2 0 .5xs4+.5xs5 s3 67.24 51.01 85.18 77.98 91.36 79.52

s4 -15.4 91.94 58.41 -231.34 72.58 50.63
s5 -5.49 -119.12 48.97 93.65 27.16 37.64
s6 107.15 -0.46 71.96 -95.61 2.13 66.24
f 0.79 0.78 -0.0539 0.74 0.82 0.77
ws 1.09 0.42 0.58 0.34 0.62 0.58
wd 0.0041 0.0277 0.0154 0.0490 0.0220 0.0314
Z 3.87 2.49 2.74 3.01 2.27 2.87
p 3.76 2.17 3.05 2.55 2.4 2.60
q 3.21 1.82 2.57 2.24 2.01 2.18

Best model 47 35 35 47 47 47

Mechanisms H V V V V
V O C or O H O H
O H H              O               H               O
O ? ? C or 0

Mechanisms are listed in the order of their sensitivity to their best stimulus from greatest to least.

Mechanisms

V

The columns on the right side correspond to the six data sets, one for each observer and one for the mean across observer. The first section describes

some characteristics of the data sets. Each of the following sections describes the fit of one of the three models to the six data sets. On the left is a table

that shows the excitatory sensitivities of each mechanism in the model to each of the four stimulus patterns and the constraints on these sensitivities.

The columns on the right summarize the best fit of this model to each of the six data sets. This summary includes the sum of squared error of the fit,

the root mean squared error, the number of free parameters and the values of these parameters for the best fit. The best fit to each data set is

highlighted in gray. The table at the bottom shows the mechanism types in the best model.
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(H-mechanism). They have equal sensitivity to the ver-

tical and horizontal patterns, respectively, and both are

equally sensitive to the concentric pattern. They also
have equal sensitivity to the plaid, which is assumed to

be half their sensitivity to either the vertical or the

horizontal pattern.
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This heavily constrained model fits the data reason-

ably well. Table 1 shows the parameter values and the

root mean squared error (RMSE) for this model. The

fits of the model to the mean data of observers are

shown in Fig. 2 as smooth curves. The RMSE is

only slightly larger than the standard error. There is

systematic over-estimation of the threshold for the

concentric target on the concentric pedestal and under-
prediction on the plaid pedestal. The model was also

fitted to the individual data sets. These fits were not as

good. The RMSEs for individual observers are about

two times the standard error of the measurements.
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thresholds over the five observers: (a) vertical target and (b) concentric

target. Smooth curves correspond to the predictions of the best fitting

model (models 4–11).
4.2. Other possible models

We proceeded to fit 13 other models that differed in

the number of mechanisms and the constraints placed

on their sensitivities. These models seemed to us to be

plausible alternatives; they do not exhaust the set of

possible 3 and 4 mechanisms models. All of the mech-

anisms were of the four types described above, V, H, O,

and A. Most of the models formed a nested set and we
found the ‘‘best’’ model for each data set, which we

defined as the model whose best fit was not improved to

a statistically significant extent (P > 0:05) by adding

additional free parameters (Table 2). We did a test for

improvement in fit to determine in which cases the

improvement in fit is statistically significant (Khuri &

Cornell, 1987). A summary of the best fits to two of

these models is given in Table 1. The best model for each
of the six data sets is highlighted with a gray back-

ground. Models 3–9 (a three-mechanism model with

nine free parameters) was best for EAH and JMF;

models 4–11 (a four mechanism model with 11 free
Table 2

Tests of statistical significance of improvement in fit for nested models

Models 3–9 vs 2–6

F 3.288 13.460 16.22

df num 3 3 3

df den 77 79 79

p 0.0251 0.0000 0.000

Models 4–11 vs 2–6

F 3.603 8.672 11.26

df num 5 5 5

df den 75 77 77

p 0.0056 0.0000 0.000

Models 4–11 vs 3–9

F 3.725 1.325 2.757

df num 2 2 2

df den 75 77 77

p 0.0287 0.2718 0.069

F ¼ ððSSEred� SSEfullÞ=ðpar full� par redÞÞ=ðSSEfullÞ=ðdata pts� par ful

the difference in the number of free parameters. The number of degrees of fre

the full model. This corresponds to the number of data points minus the num

are in bold print.
parameters) was best for CCC, MAB, WSC and ALL

(average across observers). The RMSE of these best fits
1 6.772 3.099 9.304

3 3 3

79 57 79

0 0.0004 0.0314 0.0000

9 6.899 3.408 9.743

5 5 5

77 55 77

0 0.0000 0.0094 0.0000

5.845 3.469 7.948

2 2 2

55 55 77

7 0.005 0.0381 0.0007

lÞ, where the number of degrees of freedom for the numerator equals

edom for the denominator equals the number of degrees of freedom for

ber of free parameters. Values of F that are significant at the 0.05 level
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averages 1.48 times the standard error. Fig. 4 shows the

best fit to the average across observers. Figs. 5 and 6

show the best fits for two individual observers.
The excitatory sensitivity parameters (Table 1) indi-

cate which mechanisms were involved in the detection of

each pattern. In the two-mechanism model the vertical

target was detected by the V mechanism, the horizontal

pattern by the H mechanism, and the plaid and con-

centric patterns by both mechanisms. In the other two

models, the V and H mechanisms are sensitive to these

same patterns, the O mechanism is sensitive only to the
concentric pattern, and the A mechanism is sensitive to

all four patterns.

The difference between these two best models is that

models 4–11 has an O mechanism that is sensitive to

concentric, but not sensitive to vertical or horizontal

patterns. An oriented mechanism sensitive to an oblique

orientation would have these properties (e.g., a mecha-

nism tuned to 45 deg with narrow tuning function).
There is both psychophysical and physiological evidence

for the existence of such mechanisms. What is most

interesting in these best models is the nature of the A

mechanism. For JMF, WSC and ALL this mechanism
has positive sensitivity to vertical, horizontal, and con-

centric patterns. For the other three observers this

mechanism has a negative sensitivity to one or two of

these stimuli.

In order to get a better understanding of the impli-
cations of these model fits, for each of the mechanisms

in the best models, we computed a receptive field whose

sensitivities to the four patterns correspond most closely

to those of the model mechanism. These receptive fields

were constrained to have Gabor spatial sensitivity pro-

files with a center spatial frequency of 2 c/deg in cosine

phase with and centered on the target patterns or

Gaussian windowed concentric cosine receptive fields of
the same frequency. The orientation, the width and

height space constants, and the maximum sensitivity of

the Gabor receptive fields were varied to find the best

match to the sensitivities of the model mechanisms; only

the radial space constant and the maximum sensitivity

of the concentric receptive fields were varied. The V and

H mechanisms correspond to Gabor receptive fields that

have space constants of about 0.5 deg in both width and
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height, but are tilted away from the vertical and hori-

zontal by about 20 deg. This tilt is a consequence of the

ratio of their sensitivity to the vertical (or horizontal)

pattern to their sensitivity to the concentric pattern.

The receptive fields corresponding to the A mecha-

nisms are harder to characterize. For three observers

they have positive sensitivities to all four patterns and so

they must be very broadly tuned to orientation. For
JMF and ALL either a concentric receptive field or a

small oriented Gabor receptive field can have a similar

pattern of sensitivities. For ALL the concentric field is

not isotropic. All these receptive fields are small with

envelope standard deviations of 0.12 deg or less. For

WSC neither type of receptive field fits the sensitivities

well.

For CCC and EAH the negative sensitivities of the A
mechanism are small and setting them to 0 has little

effect on goodness of fit, which means that this could be

a second oblique mechanism. The A mechanism sensi-

tivities for MAB do not correspond to any Gabor

receptive field. So for this observer, as for WSC, we did

not find either type of receptive field with a closely

corresponding set of sensitivities.

In conclusion, a three or four mechanism model fits
each of the data sets well with RMSEs less than 1.5

times the standard error of the measurement. The sen-

sitivities of most of the model mechanisms correspond

to those of oriented Gabor receptive fields of plausible

sizes. Two of the A mechanisms could have small ori-

ented receptive fields or concentric receptive fields. For

two others, neither of these receptive field types has a

corresponding pattern of sensitivities.
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