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Abstract This study conducts risk assessment for an ar-
ray of health effects that may result from exposure to
disinfection by-products (DBPs). An analysis of the
relationship between exposure and health-related out-
comes is conducted. The trihalomethanes (THMs) spe-
cies have been verified as the principal DBPs in the
drinking water disinfection process. The data used in
this study was collected from the Taiwan Water Cor-
poration (TWC) from 1998 to 2002. Statistical analysis,
multistage of Benchmark model, Monte Carlo simula-
tion (MCS) and sensitive analysis were used to estimate
the cancer risk analysis and assessment. This study in-
cluded the statistical data analysis, epidemiology inves-
tigation and cancer risk assessment of THMs species in
drinking water in Taiwan. It is more significant to
establish an assessment procedure for the decision
making in policy of drinking water safety predomi-
nantly.

Keywords DBPs Æ Monte Carlo simulation Æ
Multistage of benchmark model Æ Sensitive analysis

1 Introduction

Chlorination has been the major, economical and
effective drinking water disinfection strategy from
microorganisms. This disinfection process may induce
serious waterborne infectious diseases dangerous to
public health. Research consequence of Rook (1974) and

Bellar et al. (1974) exhibited that disinfection by-prod-
ucts (DBPs) were produced in the disinfection process.
Nowadays, such disinfection process is most adopted in
drinking water treatment commonly (Houston 1913;
Yang et al. 1998; Hsu et al. 2001).

Disinfection by-products are defined as hazardous
materials with carcinogenic risk by Taiwan USEPA.
Animal and epidemiology study evaluations have shown
that developmental toxicity and adverse effects are the
main potential risks to humans. The result from animal
studies demonstrated evidence of liver, kidney, intestinal
tumor genesis, urinary bladder, rectum and colon cancer
(Morris et al. 1992; Doyle et al. 1997; Cantor et al. 1998)
and some associated effects of intrauterine growth and
retardation (Kramer et al. 1992). Low birth weight,
small for gestational age, central nervous system defects,
oral cleft defects and cardiac defects (Bove et al. 1995),
retarded fetal growth (Gallagher et al. 1998) and spon-
taneous abortion (Waller et al. 1998) that are caused by
disinfected water. Epidemiologic studies were conducted
that examined the possible associations between con-
sumption of chlorinated drinking water and cancer
mortality, risk or incidence (Page et al. 1976; Cantor
et al. 1978, 1987, 1998; Yang et al. 1998, 2000).
The results suggest a positive association between
consumption of chlorinating drinking water and cancer
of the rectum, lung, bladder and kidney (Yang et al.
1996).

This study has been carried out from 1998–2002, in
order to develop risk assessment and management for
THMs species in drinking water for the purpose of
preserving a safe environment and protecting human
health in Taiwan. Risk assessment is a systematic, ana-
lytical method used to determine the probability of ad-
verse effects. The purpose of this study conferred the risk
assessment to process the derived THMs species in the
drinking water of Taiwan. By following the estimation
procedure of risk assessment, the outcomes will interpret
the condition of the level of impact by THM species. The
consequence may be a good decision-making process for
risk management in the drinking water.
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2 Methods

The risk assessment paradigm was developed by the US
NRC (National Research Council 1983) to evaluate the
procedures of framework. It contained hazard identifi-
cation, dose-response assessment, exposure assessment
and risk characterization, mainly.

2.1 THMs species data in Taiwan since 1998–2002

This study assumed and divided the geographical dis-
tribution of Taiwan into five parts (northern, midland,
southern, eastern and external islands). Official Data
obtained from Taiwan Water Corporation (TWC)
since 1998 to 2002. There are 35, 45 and 13 water
treatment plants and 25, 52 and 54 supply systems in
Northern, Midland and Eastern regions. 30 water
treatment plants and 45 supply systems in Southern
and External islands regions, respectively. The moni-
toring stations examined the temperature, pH per
month and THMs species for three months. Four
thousand nine hundred and forty water quality moni-
toring data are obtained from those monitoring sta-
tions that was published in the annual TWC subscriber
drinking water reports.

2.2 Cancer risk analysis and assessment

2.2.1 Hazard identification of THMs species

Hazard identification involves a qualitative assessment
of the presence of, and the degree of hazard that an
agent could have on potential receptors. USEPA has
developed a scheme that contains two broad categories
of sufficient and insufficient evidence in Table 1. Hossein
(1995) defined THM species as TCM, BDCM, DBCM
and TBM, respectively. Animal and epidemiology
studies exhibited THMs species by considered weight of
evidence in EPA reports on cancer guideline descriptions
about Group B2 as TCM, BDCM, DBCM and Group C
is TBM (USEPA 1999), respectively.

2.2.2 Dose-response assessment

Dose-response relationships are then used to quantita-
tively evaluate the toxicity information, and to charac-
terize the relationship between dose of the contaminant
administered or received and the incidence of adverse
effects on the exposed population. Specially, the purpose
of the assessment developed for the risk management
ensures the safety and offers procedures to control the
quality of drinking water.

Table 1 Basic processes
involved in USEPA
carcinogenesis

Group A Human carcinogen Sufficient human evidence for causal
association between exposure and cancer

Group B1 Probable human Limited evidence in humans
Group B2 Probable human Inadequate evidence in humans and

sufficient evidence in animals
Group C Possible human carcinogen Limited evidence in animals
Group D Not classifiable as to

human carcinogenicity
Inadequate evidence in animals

Group E No evidence of carcinogenicity
in humans

At least two adequate animal tests or
both negative epidemiology and
animal studies

Table 2 Animal experimental
carcinogenic data derived from
THMs species

IRIS (2003)

Chemicals Data set Data values Reference

Dose (mg/kg/day) N Incidence

TCM Moderate or marked fatty
cysts in males plus females

0 27 1 Heywood et al. (1979)
15 15 9
30 15 13
25 50 1
50 50 8

BDCM B6C3F1 mice, male 0 46 1 NTP (1987)
25 49 2
50 50 9

DBCM Mouse/B6C3F1, female 0 50 6 NTP (1985)
50 49 10
100 50 19

TBM F344/N rat, female 0 50 0 NTP (1988)
25 50 1
50 50 8
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In the dose-response assessment step, the goal deter-
mined the relationships between the route, dose, fre-
quency and duration of exposure conditions and the
health that effect chemical hazards. Additionally, apply
the uncertainty or safety factors and mathematical
model may an approach by USEPA.

Benchmark model (USEPA http://www.epa.gov/
ncea, 2003b) supported the assessment tool focused on
the low-dose in the animal experiment that may cause an
observed adverse influence. Generally, the adverse ef-
fects included reproductive, developmental toxicity or
mortality phenomenon etc.

In this study, we adopted the USEPA risk assessment
guidance (1986) and the reference data (Table 2) of
animal studies from Integrated Risk Information System
(IRIS, 2003) to process the BMD/BMDL value of THM
species mathematically. BMD/DMDL value can inter-
pret the toxicity information of THM species in the low-
dose level.

2.2.3 Exposure assessment

Exposure is defined as human contact with THM species
through different pathways. Referring to the exposure
factor data handbook (USEPA 1997), USEPA risk

assessment guidance for superfund Volume-Human
Health Evaluation Manual (USEPA 1989), and Risk
Assessment Information System (RAIS 2003a) assumed
the pathways to reasonable maximum exposure (RME)
to THM species as ingestion, inhalation and dermal
intake, evaluated based on chronic daily intake (CDI).

Table 3 References data and formula for exposure assessment

Parameters Value Reference

Weight of population, C ¼ Ci�Pi
Ptotal

Ci: concentration of i region
Pi: population of water supply in the i region
Ptotal: total population of water supply in the i region
Exposure pathway of ingestion, CDI ¼ ðCW�0:8�IR�EF�EDÞðAT�BWÞ
Chronic daily intake (CDI) [mg (kg day�1)]
THMs concentration of drinking water (CW)
Intake quantity (IR) 2.5 (L day�1) Wu (1999)
Average exposure time (AT) 70 (year) · 365 (day/year) USEPA (1989)
Exposure during (ED) 70 (year) USEPA (1989)
Exposure frequency (EF) 365 (day year�1) USEPA (1989)
Body weight (BW) Male: 64.8±10 (kg) Taiwan DOH

Female: 56.3±9.09 (kg) http://www.doh.gov.tw/statistic/index.htm
Absorptivity of body 100% Assumption
Exposure pathway of inhalation,
CDI ¼ ðCair�VR�EF�ET�EDÞ

ðAT�BWÞ
THMs vapor concentration in the bathroom (Cair)
Mean vapor quantity of daily inhalation (adult) (VR) 12.3 (m3 day�1) Wu et al. (2003)
Flow velocity (QL) 0.032 (L min�1) Wu et al. (2003)
Air flow velocity (QGS) 50 (L min�1) Little (1992)
Volume of bathroom (Vs) 6.6 (m3) Wu et al. (2003)
Henry constant (H) TCM: 0.150 RAIS (2003a)

BDCM: 0.087
DBCM: 0.032
TBM: 0.022

Transferred coefficient of liquid mass · valid
air/surface area, KOL A

0.019 Little (1992)

Exposure pathway of dermal intake,
CDI ¼ ðCW�PC�SA�EF�ET�EDÞðAT�BWÞ
Dermal intake permeable coefficient (PC) TCM: 8.9·10�3 (cm h�1) USEPA (1997)

BDCM: 5.8·10�3 (cm h�1)
DBCM: 3.9·10�3 (cm h�1)
TBM: 2.6·10�3 (cm h�1)

Surface area dermal intake contact (SA) (4BW+7) (BW+90)�1 USEPA (1997)
Exposure time (ET) 20 (min day�1) MCKone (1989)
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Fig. 1 Announced consequences in death of colon, rectum and
bladder cancers by DOH of Taiwan
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For many drinking water DBPs, the potential for
exposure and uptake occurs by ingestion but also
through dermal absorption or inhalation (Lee et al.
2004). Since 1990, scientists proposed that inhalation
and dermal absorption were considered in the risk
assessment of drinking water (Jo et al. 1990; Maxwell
et al. 1991; Weisel and Jo 1996; Weisel et al. 1999; Lin
and Hoang 2000).

Moreover, the study assumed the behaviors of
‘‘drinking water’’, ‘‘take a shower’’, and ‘‘skin contact in
the shower’’ represent the exposure pathways of inges-
tion, inhalation and dermal intake simplistically (Dan
2003; Chen 2003). The mathematic model by Little
(1992) exhibited THM species concentration within the
air was influenced by many parameters adopted to
evaluate the concentration in the bathroom. All expo-
sure pathway formulas and parameters are displayed in
Table 3. We adopted the weight of population pattern to
calculate the concentration of THM species in the five
regions of Taiwan. It is more reasonable to interpret the
weight of population in the exposure concentration le-
vel. Utilized the concentration, it can obtain the CDI
values from different exposure routes, respectively.

2.2.4 Risk characterization

In this step, the hazardous identification, dose-response
and exposure assessment procedures are summarized
and integrated into quantitative and qualitative expres-
sions of the risk level. For carcinogenic effects, the risk is
expressed as the probability that an individual will ex-
hibit dose-response characteristics. Under the assump-
tion that the slope factor is a constant, the risk related to
the intake pathways in this study directly.

Linear low-dose cancer risk equation Risk
¼ CDI� SF;

where
Risk a unitless of an individual developing cancer,
CDI chronic daily intake averaged over 70 years

[mg (kg day�1)],
SF slope factor, expressed in milligram (kg day�1).

Estimating the risk or hazard potential requires a
combination of simultaneous exposures to more than
one pathway and carcinogenic effect. In this paper we
assumed THM species dose are additivity. And there are
no synergistic or antagonistic interactions. Equally, the
total cancer risk assumes that all carcinogens are equal,
and the slope factors derived from the animal data are
given the same weights as factors derived from the hu-
man data. It can express into below:

Total exposure cancer risk ¼
Risk ðexposure pathway 1Þ
þRisk ðexposure pathway 2Þ
þ . . .þ Risk ðexposure pathway iÞ
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2.2.5 Uncertainty and sensitivity analysis

There are several types of uncertainty parameters. An
important task in risk analysis is to determine what kinds
of uncertainty are likely to affect the MCS finding sug-
gested byUSEPA (1997) in processing the uncertainty and
sensitivity analysis. Essentially, MCS involves conducting
and comparing repeated inputs that sample the system
parameter distributions. This study utilized @ Risk view
(version 4.5) software to execute the data probability
distribution and simulate the sensitivity using MCS.

3 Results and discussion

3.1 Investigated result of epidemiologic studies

The consequence of epidemiologic studies that inhibited
several cancers caused by THM species are colon,

rectum and bladder cancers, respectively. Annual re-
ports from the Department of Health, Taiwan (DOH
http://www.doh.gov.tw/statistic/index.htm) announced
the mean numbers for these cancers, which were dis-
criminated by location from 1996 to 2000. Fig. 1
exhibited the ratio of death count versus water supply
population (TWC http://www.water.gov.tw/sample1/
about/data1.asp#3). The investigation results exhibited
Northern region has a higher death count (colon (1,535),
rectum (1,188) and bladder (566)), but Southern region
displays higher ratio (colon (0.15&), rectum (0.14&)
and bladder (0.09&)) in these cancers evidently.

3.2 Statistic analysis of THMs species data

Statistical results in Table 4 exhibit the means, maxi-
mum, minimum and standard deviations values in sub-

Fig. 2 BMD/BMDL values
from a TCM, b BDCM,
c DBCM and d TBM data by
first stage multistage model fit
with 95% confidence limits
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scriber levels. The TCM level is the predominant deri-
vation of THMs in Taiwan. The Northern and Southern
regions presented higher mean concentrations, shown by
the epidemiology study investigation of Taiwan DOH.

In the BDCM, DBCM and TBM levels are pre-
dominant in external island. Previous research (Garcia-
Villanova et al. 1997; Golfinopoulos et al. 1996) verified
groundwater and seawater contain bromide compounds
if the water sources are near the seacoast. It conformed
to the situation of external island of Taiwan.

3.3 Hazard identification

A number of epidemiological studies were performed to
investigate adverse effects in human exposed to TCM,
BDCM, DBCM and TBM, respectively.

Table 5 collates the physical–chemical properties,
harmfulness, slope factors and quantity of Benchmark
dose (BMD) of THMs species completely. Obviously,
evidences of animal study revealed THMs species may
carcinogenic hazardous materials.

3.4 Dose-response assessment

This study adopted a multistage type of benchmark
model approved by USEPA (2003b) to process the dose-
response assessment. The chronic toxicity and carcino-
genic potential of total THMs species at low dose situa-
tion were interpreted. Figure 2 shows the BMD/BMDL
value for the total THMs species calculated from the
Benchmark model from animal data (95% confidence
limits and first stage model fit). Furthermore, the range

Fig. 2 (Contd.)
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of BMD/BMDL value in first/second multistage model
had shown in Table 5. Generally, the BMD values of first
are higher than second stage, but the BMDL values are
similar between first and second stage model. USEPA
proposed the standard BMD and BMDL values of TCM
is 1.69, 1.15; BDCM is 2.28, 1.35; DBCM is 1.88, 1.20;
and BMD is 17.6, 10.3 mg/kg day�1, respectively.

3.5 Exposure assessment

THM species data processed the weighted average
method via the regional population and specific year to
acquire the statistical analysis. The MCS method was
used to evaluate the CDI dose and obtain the proba-
bility distribution results by performing 1,000 frequency
calculations.

Figure 3 shows the MCS consequence exhibited in
the ingestion pathway, southern region exist the higher
CDI values, in opposite to female examined higher CDI
endured than male (CDI ranges are 1.07·10�4 to
1.63·10�3 and 9.22·10�5 to 1.42·10�3 mg (kg day�1),
respectively). The variance in body weight between
females and males is the main reason for the CDI
ingestion level. Moreover, in the respired estimated,
consequence exhibited in ingestion pathway, external
island exist higher CDI values. Similarly, females
exhibited higher levels than males (CDI range is
7.28·10�6 to 1.42·10�3 mg (kg day�1) and 4.29·10�5 to

4.96·10�3 mg (kg day�1), respectively) because of their
shower behavior. This included the difference between
municipal and rural areas and gender. In the estimated
skin contact, the dermal intake pathway was similar to
the ingestion pathway. The Southern region exhibited
higher CDI values and females were higher than males
(CDI ranges are 2.55·10�7 to 2.95·10�5 and 2.42·10�7
to 2.81·10�5 mg (kg day�1), respectively). In the con-
tact time during showers, females took longer showers
than males. The Taiwan DOH announced and suggested
that showers not exceed 12 minutes, otherwise, the
health risk will increase.

3.6 Risk characterization

The THM species slope factor from the dose-response
curve showed a low dose situation from the linear model
(Table 5). Assumption the cancer risk is CDI multipli-
cation slope factor and total cancer risks include dif-
ferent exposure pathways. The total cancer risk
assessment order was southern, northern, central over
the external island segment. The average value for fe-
males was 4.04·10�6 to 4.67·10�4 and 9.25·10�6 to
4.07·10�4 for men, respectively. Figures 4 and 5 exhib-
ited the THM species distribution via different exposure
pathways to estimate the CDI value, risk assessment and
contribution percentage simultaneously. The cancer risk

CDI x 10
-6

(mg/kg/day)

Pr
ob

ab
il

it
y 

x 
10

2

Risk x 10-6

P
ro

ba
bi

li
ty

 x
 1

04

Fig. 3 MCS results of CDI
values in the ingestion,
inhalation, dermal intake
exposure pathways and total
risk probability distribution
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quantitative analysis evaluation for Taiwan (Arc View
plot) is shown in Fig. 6. It is shown that the Southern
Taiwan region presents a higher risk.

In term of the inhalation pathway distinct revealed
the magnificent in the risk assessment of THMs species,
continuous is ingestion and dermal intake pathways,
respectively. TCM is the main contribution to the risk
assessment in Taiwan (50% approximately), and TBM is
predominance in external island (50% approximately).

3.7 Sensitivity analysis

The sensitivity analysis processed the ±20% extra risk
to interpret the effective THM species parameters,
including body weight, intake quantity and exposure
duration in formula of exposure assessment. Analysis
was performed using the radar plots exhibited in Fig. 7.
The research regions displayed a negative correlation
consistent with the exposure duration and positive cor-
relation in body weight dramatically. Furthermore, the
TCM concentration is the predominant influence
parameter in Taiwan, whereas the external islands are

influenced by the DBCM concentration shown in
Table 6.

4 Conclusions

In the mean concentration distribution of total THMs in
Taiwan external islands (48.39 lg L�1), southern
(17.28 lg L�1), northern (12.11 lg L�1) and middle
segments (9.59 lg L�1). By investigation consequences,
the TCM concentration is the major DBP species in the
local regions of Taiwan, and the external islands is
characterized by TBMs, respectively.

A multistage Benchmark model (USEPA 2004) was
used to evaluate the dose-response assessment. Conse-
quence exhibited at the 95% confidence level, the
BMD and the quantity of lower-bound confidence
limit for the BMD (BMDL) of TCM were 1.69 and
1.15 mg (kg day�1), dibromochloromethane (DBCM)
are 1.88 and 1.20 mg (kg day�1), dichloromethane
(DCBM) are 2.28 and 1.35 mg (kg day�1) and TBM are
17.6 and 10.3 mg (kg day�1), respectively. The exposure
was compared with the reaction dose concentration of
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THMs species in drinking water. In terms of lower
quantity of BMD/BMDL showed doses opposite to the
cancer risk obviously.

In the exposure assessment calculated by MCS,
inhalation was found as the principal pathway. The next
pathway was ingestion followed by dermal intake. The
quantity of average risk in male and female is 3.14·10�5
to 1.04·10�4 and 3.64·10�5 to 1.16·10�4 in northern,
9.25·10�6 to 7.25·10�5 and 4.04·10�6 to 8.40·10�5 in
middle, 1.14·10�4 to 4.07·10�4 and 1.33·10�4 to
4.67·10�4 in southern, and 6.07·10�5 and 7.09·10�5 in
external island, respectively. The Southern region pre-
sented a high cancer risk and corresponded with the

result of epidemiology. Furthermore, females presented
higher CDI values (intention risk level) than males in
Taiwan.

Consequence of sensitivity analysis exhibited body
weight and exposure duration are provided the influence
in cancer risk analysis and assessment predominantly.
Exposure time and body weight are the effective
parameters used in the sensitivity analysis. The greater
the exposure time, the greater the cancer risk endured. A
negative correlation exists between body weight and the
unit dose sustained risk probability.

Quantifying the risk factors is important for popu-
lation and decision-making policy for drinking water

Fig. 5 Different contribution
percentage of THMs species
and exposure pathways in
cancer risk assessment [(a) is
male and (b) is female]
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Fig. 6 Quantity of cancer risk
assessment of Taiwan (Arc View
plot)

Table 6 Cancer risk assessment
sensitivity analysis

Numbers exhibited are the
extent of sensitivity, and 1 is the
most sensitivity
BW Body weight, IR intake
quantity, ET exposure time

Regions Parameters TCM BDCM DBCM TBM BW IR ET

Northern Ji-Long 3 4 5 7 1 6 2
Tai-Pei 3 4 5 6 1 5 2
Tao-Yuan 3 4 6 6 1 5 2
Shin-Chu 3 4 5 6 1 5 2

Middle Miao-Li 3 4 6 7 1 5 2
Tai-Chung 3 4 5 6 1 5 2
Nan-Tou 3 4 6 7 1 5 2
Chang-Hua 3 6 4 7 1 5 2
Yun-Lin 3 4 5 7 1 6 2

Southern Chia-Yi 3 4 6 7 1 5 2
Tai-Nan 3 4 5 7 1 6 2
Kao-Chiong 3 5 4 7 1 6 2
Ping-Dong 3 4 5 7 1 6 2

External island Peng-Hu 7 6 3 5 1 4 2

Table 7 Legislation limit values for different counties in DBPs level

Chemicals Taiwan USA WHO Japan Sweden Australia

TCM – – 0.20 0.06 – –
DBCM – – 0.10 0.03 – –
DCBM – – 0.06 0.10 – –
TBM – – 0.10 0.09 – –
Total THMs species 0.10 Stage one: reduced to 0.08; Stage two: reduced to 0.04 1.0 (mg/L)a 0.10 0.05 0.25
Trichloroacetic acid – – 0.10 0.3 – 0.10
Dichloroacetic acid – – 0.05 0.04 – 0.10
HAAs – Stage one: reduced to 0.06; Stage two: reduced to 0.03 – – – 0.15

aMean THMs ratio
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safety. Fortunately, the Benchmark model and MCS
@Risk supply the methodology were used for risk cal-
culation. The standard for the total THMs species in
Taiwan was 100 ppb presently. Table 7 displays the
legislation limit values for different countries for DBPs
levels. We suggest that the standard be separated using
separate TCM, BDCM, DBCM and TBM standards.
This may establish a control management for individual
material to reduce the harmful risk.
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