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This paper presents a Gibbs sampler for the estimation of Thurstonian ranking
models. This approach is useful for the analysis of ranking data with a large number
of options. Approaches for assessing the goodness-of-fit of Thurstonian ranking
models based on posterior predictive distributions are also discussed. Two simula-
tion studies and two ranking studies are presented to illustrate that the Gibbs
sampler is a promising solution to the numerical problems that previously plagued
the estimation of Thurstonian ranking models.

1. Introduction

Few data collection techniques make weaker assumptions about the judgmental process than
the ranking method. Only the ordinal information in the responses is utilized and, in contrast
to the rating task, nuisance effects as a result of individual differences in response scale usage
are avoided. Although there are a variety of approaches to choose from for the analysis of
ranking data, a Thurstonian framework seems particularly well suited. Based on the
assumption that ranking data are as a result of judgments following a multivariate normal
distribution, Thurstonian models facilitate a straightforward formulation of both linear
models for the means and structural equations for the covariance matrix of the judgments
(Arbuckle & Nugent, 1973; Bockenholt, 1992, 1993).

Other approaches for analysing ranking data (e.g., Babington-Smith, 1950; Feigin &
Cohen, 1978; Luce, 1959; Mallows, 1957; Pendergrass & Bradley, 1960) do not provide such
a rich structure because they assume that options are judged independently of each other. If
this assumption is violated, these models may be less informative for describing a data set.
Both Marden (1995) and Fligner & Verducci (1993) provide comprehensive overviews of
these and other ranking models proposed in the psychological and statistical literature.
However, despite their obvious appeal, Thurstonian models are used only infrequently in
applied research. The main reason for this lack of applications is related to difficulties in
estimating the parameters of Thurstonian models. High-dimensional integration is required
when analysing ranking data based on a large number of options. Unfortunately, numerical
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integration and analytical approximation techniques are only useful when ranking a small
number of options.

The major purpose of this paper is to present a computationally attractive approach based
on the Gibbs sampler for estimating the parameters of Thurstonian ranking models. This
method is especially useful for ranking problems with a large number of options. Special
cases ranging from first choices, paired comparison and triad ordering, to full-rank orders can
also be treated in the same framework. In fact, the approach presented is similar to that of
McCulloch & Rossi (1994) who introduced the Gibbs sampling approach for the analysis of
first-choice data with a multinomial probit model. Using a variant of the Gibbs sampler, these
authors showed that the time-consuming evaluation of the likelihood function can be avoided
by sampling from the exact posterior distribution of the multinomial probit model (see also
Albert & Chib, 1993).

In addition to model estimation, it is shown how the Gibbs sampling approach can be used
to assess the fit of high-dimensional Thurstonian ranking models by the construction and
calculation of reference distributions for specific parameter-dependent statistics (Gelman,
Meng & Stern, 1996). The practicability of the estimation and model assessment approach is
demonstrated by the analysis of ranking data sets with four and ten options.

2. Thurstonian ranking models

In a ranking task, n judges are asked to rank m distinct options with respect to some criterion.
Thurstone (1927) postulated that the ranking outcome is determined by latent random
variables z;;(i = 1,...,n;j = 1,...,m). The rank of option j for person i depends on the
value of z;;. For example, an option is ranked first if its value is largest and it is ranked second
if its value is second largest, etc. Individual differences in the perception of the options are
represented by the assumption that the z;;s follow a multivariate normal distribution function
with
Zij = B} + &ijs

where B;-‘ is the mean value of option j, and the joint distribution of &; is m-variate normal with
mean vector 0 and covariance matrix 2*.

The ranking outcome is summarized by the ordering vector r. For instance, when
r; = (h,j,...,1,k), option h is judged superior to option j which in turn is judged superior to
the remaining options, with the least preferred option being k. The probability of observing
this rank order is

P(riIB*,=%) = Pz — 2i; > 0) N . N(zy — 2z > 0)) = P(C*z; > 0),

where Cf is an (m — 1) X m contrast matrix that describes the differences among the options.
Because the z;s follow a multivariate normal distribution, the distribution of their differences
is also multivariate normal. Consequently, the probability of a rank order can be determined
by evaluating an (m — 1)-variate normal distribution,

Y
- Q2rn)(m — 12
where 8; = C/* and I'; = CI=*(C)) g

P(r;|*,=%) f f exp {—1(8; — %) T7(8; — x) }dx, (1)
0 0
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Because of the difference structure, adding a constant to the 8* values does not change the
ranking probabilities. As a result, a more compact representation is obtained by setting
B = 0, or equivalently, by defining 8; (i = 1,...,m — 1) as B — Br. In a similar fashion, we
adjust the covariance matrix =* by pre- and postmultiplying it by the contrast matrix G to
obtain £ = GZ*G ,, where G is defined as

1 0 0 O -1

G- 0 1 0 O -1
-1

0o o0 0 O 1 -1

Thus, §; and I'; can be rewritten as §; = C;Band I'; = C,Z(C;) ,, where C; is obtained from C;
by eliminating the mth column of Cj.

When the number of options gets large, numerical integration of equation (1) becomes
time-consuming. It is therefore not surprising that in applications of Thurstonian ranking
models, only ranking probabilities with up to four options have been estimated. Clearly, there
is a need for a method that facilitates the estimation of Thurstonian models for a larger
number of options. The following section presents the Gibbs sampler as a feasible alternative
to numerical integration.

3. The implementation of the Gibbs sampler
3.1. The Gibbs sampler

The Gibbs sampler, which was adapted from the Metropolis algorithm (Metropolis et al.,
1953; Hastings, 1970), was formally introduced by Geman & Geman (1984) in the context of
image processing. The iterative Markov chain Monte Carlo (MCMC) algorithm facilitates the
determination of joint posterior densities of many random variables by the simulation of
various fully conditional distributions (for a detailed derivation and explanation, see Tanner,
1996; Chib & Greenberg, 1995). It has been shown that after a reasonably large number of
iterations the joint density of the simulated random variables geometrically converges in
distribution to the joint density of the true parameters. As a result, the Gibbs sampler provides
a solution to a high-dimensional integration problem by replacing it with a sequence of
easier calculations of conditional distributions. Below we apply this approach to the
parameter estimation of Thurstonian ranking models. In this context, we find the Gibbs
sampler to be particularly attractive for its conceptual and computational simplicity and ease
of implementation.

3.2. Parameter estimation of Thurstonian ranking models

Given the matrix of observed ranking patterns R (with row vectors r; (i = 1,...,n)), we need
to estimate the joint posterior distribution of (8,X)

(B, ZIR) X n(B,X) 1;[1 P(r;|, 2).

Following the approach by McCulloch & Rossi (1994), we employ a normal prior N(S, Z()
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for estimating B, i.e.,

1 "
©(BlBoTo) X Tl Fexp {—2(B — By) g (B — Bo)}
and an independent Wishart prior, W(y,, V), for 20_1, ie.,

1
TE(Z_lllb,Vo) x |Z_1|(Lb —m)/2 exp [tr{—EZ_IVO_IH.

To minimize the influence of the priors, they are specified to be diffuse. Thus, vy is set to a
small number and the variances of S, are specified to be large. In the reported applications,
weusedy = p+ 1,25 = 100G G,By = 0,and specified Vj = 4G G as part of the prior for
the covariance matrix. The estimation of the posterior density =[S, £|R] is difficult because it
requires the evaluation of the likelihood function. Fortunately, this problem can be avoided
by the introduction of the latent judgments [z;;]. When augmenting (5,%) by the n X (m — I
matrix Z with elements [z;; — Z;,], the joint posterior density of [Z, 8,X] given R is

(Z,B,2IR) x n(RIZ)n(ZIB,Z)n(B,3).

Based on this decomposition, it is straightforward to specify the Gibbs sampler via the
following sequence of conditional distributions of z;, 8 and X : n(z;lr;, 8,%) fori = 1,2,...,n
(step 1); n(BIZ,Z) (step 2); n(Z|Z,B) (step 3). Clearly, the information provided by R is
redundant when Z is available. Next, we discuss each of the steps in detail.

Step 1. Given B,% and r;, one draws from the conditional posterior of x;(i = 1,2,...,n),
which is an (m — 1)-variate normal distribution truncated at 0 with mean C;8 and
covariance matrix C,»ZC}. The latent judgment vector z; is obtained from X; by pre-
multiplying X; by the inverse of C;,z; = C[_IX[.

The truncated multivariate normal distribution of X; is readily simulated by Hajivassiliou’s
(1993) truncated multivariate normal (TMVN) Gibbs sampler. This method cycles
repeatedly through m — 1 fully conditional, truncated univariate normal distributions
and converges to the TMVN as a limiting distribution. A detailed discussion of this
approach is provided by Hajivassiliou, McFadden & Ruud (1996); FORTRAN and
GAUSS computer code of the TMVN Gibbs sampler are available via anonymous ftp
from econ.yale.edu. Vijverberg (1997) reviews several comparative studies which
demonstrate that this Gibbs sampler simulator is among the best of currently available
simulation algorithms for the (truncated) multivariate normal distribution.

Step 2. Draws from the conditional distribution of [B|Z,%] are obtained from a normal
distribution since

BIZ,x ~ N(B*,5%),
where

DIRNG S S B
and

1

B* = 25 =y'By + n27'%),

in which Z contains the column means of Z (see Gelman, Carlin, Stern & Rubin, 1995).
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Step 1. Step 2. Step 3.

ZIR, 8,5 ~ N(B,E) by IMVN (| B|Z, S~ N(8*, %) —~E|Z,B~ W (vp+n,(Vy! + T, &) )

f |

Figure 1. Markov chain Monte Carlo for the estimation of Thurstonian ranking models.

Step 3. The conditional distribution of £ '|Z, 8 can be derived as a Wishart posterior by
combining the conjugate Wishart prior with the likelihood

n —1
=71z, p] ~ W(Lw n, (Vah Zeieé) )
i=1

&; = Z[—ﬂ.

Thus, the posterior distribution of =|Z, 8 is inverse Wishart, denoted by W_1(~) (see
Zellner, 1971). An efficient method for obtaining draws from this conditional distribu-
tion is first to generate the precision matrix =" from the posterior Wishart distribution
and then to invert it. Samples from the Wishart distribution are generated by using
Bartlett’s (1933) decomposition (see also Johnson, 1987).

where

The flow diagram in Fig. 1 summarizes the MCMC for the estimation of Thurstonian
ranking models. After repeating the draws from the three conditional distribution many times,
the draws will converge to a single draw from the joint posterior of Z, 8 and X. The sampling
process is continued to obtain additional draws from the posterior.

Predictions of Thurstonian ranking models are invariant under elementwise, monotonic
and strictly increasing transformations such as positive scalar multiplication and scalar shifts.
Our approach to this identification problem is to report the identified parameters given by the
standardized mean differences // \/mhe standardized variance ratios defined as cjj/cl 1> and the
correlations of the mean differences defined as o/ \/cjjckk (j,k=1,. — 1). To simplify the
interpretation of the identified parameters, it is convenient to compute *»* from ¥. A unique
solution can be obtained by setting the variances of 2* to 1 and constraining one of the
covariances to a fixed value (Dansie, 1986). This approach is illustrated in the application section.

Computations were carried out in Version 3 of GAUSS (1995). A listing of the GAUSS
program is available upon request from the authors. Our implementation of the Gibbs sampler
on a 486 PC with 16MB RAM took about 5 seconds per cycle with 10 options and 178 distinct
rankings and about 0.3 seconds per cycle with four options and 24 distinct rankings.

3.3. Convergence diagnostics

Because, in general, it is unclear how many iterations are necessary until convergence, it is
important to investigate this issue in each application. Although a variety of convergence
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diagnostics are available for this purpose, it should be noted that it is not possible to determine
with certainty whether a finite Gibbs sample is representative of an underlying stationary
distribution (see Cowles & Carlin, 1996, for a recent review of convergence diagnostics).

To assess convergence in each of our reported applications, we ran at least three parallel
chains with a minimum of 11000 draws. In addition to visually inspecting the chains by
overlaying their sampled values on a common graph, we computed autocorrelations and
several convergence diagnostics proposed by Geweke (1992), Gelman & Rubin (1992; see
also Brooks & Gelman, 1998), Raftery & Lewis (1992) and Heidelberger & Welch (1983).
These diagnostics are implemented in a freely available S-PLUS program called CODA
(Best, Cowles & Vines, 1997).

In the most complex application with ten options and 53 parameters to be estimated
(n = 178) convergence occurred in less than 2000 draws. In all other cases, convergence to
the stationary distribution occurred more rapidly with a considerably smaller number of
iterations.

4. A simulation study

In this section, we present the results of two small simulation studies that compare results
obtained by maximum likelihood estimation and the Gibbs sampler for two different sample
sizes. Data sets were generated for m = 4 options and n = 500 or n = 100 judges in the first
and the second study, respectively, with mean vector

p* = [—-.25,.25,0, —.25]

and covariance matrix

3
.6
1

*
oy

FIENEEN
- ol

.6

There are m(m + 1)/2 — 2 identified parameters to be determined. The identified parameters
include three standardized means, two variance ratios, and three correlations of the mean
differences.

For both sample sizes, 1000 data sets were generated and fitted by maximum likelihood
methods. The third and sixth columns of Table 1 contain the means of the parameter estimates
and their standard deviation for n = 500 and n = 100, respectively. We note that forn = 500
all parameter estimates are virtually unbiased but that for n = 100, the variance ratios are
overestimated and the correlations of mean differences are underestimated. The remaining
columns contain maximum likelihood estimates and the posterior means and standard
deviations (in parentheses) of the Gibbs sampler for a single generated data set. Posterior
means and maximum likelihood estimates agree to two decimal places for n = 500. For
n = 100, differences between posterior means and maximum likelihood estimates are
somewhat larger but still very minor with respect to the variance ratios and correlations of
mean differences. The posterior standard deviations and the standard deviations of the
maximum likelihood estimates are also very similar. Clearly, these results indicate that the
Gibbs sampler provides a promising approach for the estimation of Thurstonian ranking
models.
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Table 1. Identified population parameter values, maximum likelihood (based on 1000 and 1
replications, respectively) and Gibbs sampler estimates (based on 1 replication)

n = 500 n = 100
Parameter True ML (1000) ML (1) Gibbs (1) ML (1000) ML (1) Gibbs (1)

‘j‘cr 000 .000 (.051)  —028  —.029 (.052) .000 (.116)  .173  .176 (.117)
—\?;T 423 425 (.054) 424 424 (054) 425 (.123) 587 591 (.123)
ﬁ* 280 280 (.054) 348 346 (.055) 281 (.120) 600 595 (.127)

o 778 779 (.071) 799 804 (.079) 792 (.178) 927 954 (.197)

o 444 447 (.056) 417 425 (055) 453 (.126) 425 454 (120
# 756 755 (.033) 720 718 (.034) 756 (.081) 768 756 (.067)
Vf“j 500 498 (.054) 460 459 (.056) 493 (.120) 558 549 (.112)
7"* 661 660 (.042) 601 607 (.044) 652 (.100) 683 663 (.096)

Note: Figures in parentheses are standard deviations in the case maximum likelihood estimates posterior standard
deviations in the case of Gibbs sampler estimates.

4.1. Model fit tests: The posterior predictive check method

Typically, the fit of a ranking model is assessed by computing observed and expected
frequencies of ranking patterns based on the Pearson or likelihood ratio statistics. This
approach is not feasible when the number of options to be ranked is large because only a small
subset of the possible ranking patterns may be observed. As a result, there is little justification
that the likelihood ratio statistic will follow a chi-square distribution under the null
hypothesis. Instead, model fit may be assessed by comparing standardized differences
between the observed and predicted ranking probabilities in different partitions of the data
(Cohen & Mallows, 1983). Although the distribution of a fit statistic comparing certain
partitions of the ranking data is not known, it can easily be generated within the Gibbs
sampling framework. In Section 5, we apply the posterior predictive check (PPC) method for
model assessment. The use of posterior predictive checks to assess model fitness was
introduced by Guttman (1967). Recent applications and extensions of this work can be
found in Gelman et al. (1996).

Suppose the Gibbs sampler converged after £ — 1 iterations. Starting from the th iteration,
H (possibly dependent) draws are collected. A data set containing n ranking patterns,
R (h = 1,...,H) is simulated for each of the H parameter vectors. Next, some statistic is
calculated for each of the H generated data sets and tabulated. The resulting distribution is
called reference distribution because it is used to compute the percentile rank of the statistic
obtained from the observed data. Statistics with low or high percentile ranks are indicative of
misfit of the model. Although this approach is useful in assessing local (mis)fits as defined by
the statistic, with a slight modification, it can also be applied for an overall goodness-of-fit
assessment (Gelman et al., 1996).

To assess the fit of a Thurstonian ranking model, we compute three discrepancy measures
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based on the paired comparisons, triple and quadruple rankings in a data set. Inspecting the fit
of higher-order rankings is also possible but may be limited by the sample size n. For the
paired comparison discrepancy measure, we compute for each generated data set and the
observed data the number of times option i is preferred to option j (i # j;i,j = 1, ...,m). These
paired comparison probabilities for the generated and observed data sets are referred to as

bs .. . . .
n " and n{;". In addition, we compute the corresponding expected paired comparison

ij
probabilities

PRI
() B — B

)
i = (,\/(Aan &y A<h>/

and a discrepancy measure for the generated data

repy A(h))2

(m, n
Tep) repy Iepy eppy _ —/
TP (R, BP 2P = Y P

I<j Ty

as well as for the observed data

obs ~(h)\2

(myj —7m;;)
obs obs Tep), eppy _ J L
TR <0 Y —
I<j Tij

Finally, the posterior predictive p-value, PPP, for the paired comparison is determined as
PPP - P[Trep;,(Rrep;,’Breph’zreph) > Tobs(Robs;,’Breph’zreph]).

The same procedure is followed for the triple and quadruple rankings that can be obtained
from the observed and generated data sets.

5. Applications
5.1. Desirability of political goals

To illustrate the PPC method, we selected Croon’s (1989) ranking data of 2262 German
respondents about the desirability of the four political goals: (1) the maintenance of order in
the nation; (2) giving people more say in the decisions of government; (3) fighting rising
prices; (4) protecting freedom of speech. In his analysis of the data set, Bockenholt (1993)
showed that the Thurstonian model is not well suited to describe the rankings. Instead, he
found that a ranking model allowing for two distinct subpopulations provided a more
adequate representation of the data: One subpopulation preferred items (1) and (3), while
the other subgroup preferred items (2) and (4). This result is consistent with Inglehart’s
(1977) distinction between a materialistic ((1), (3)) and post-materialistic ((2), (4)) value
orientation in political goals.

Table 2 contains the identified parameter estimates obtained by maximum likelihood and
the Gibbs sampler. As in the simulation study, there is almost perfect agreement between
the estimates. To simplify the interpretation of the covariance structure, we set o3, = 0 and
cfi = 1(i = 1,...,4). The resulting covariance matrix is given is Table 3(a). Note that
items (1), (3) and items (2), (4) are more highly correlated with each other than with any
of the other items. The selection of the fixed value for o3, is arbitrary as long as =*
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Table 2. Parameter estimates obtained by maximum
likelihood and Gibbs sampler for Croon (1989) data

Parameter ML Gibbs
ﬁ? 727 727 (.028)
V“’; 162 .162 (.025)

S22
V“*; 798 798 (.028)
G33
= 583 587 (.042)
o 926 927 (.042)
VL_ 336 336 (.028)
VA—— 675 674 (.021)

T_ 393 393 (.028)
022033

Note: figures in parentheses are the posterior standard deviations.

remains positive definite. In Tables 3(b) and 3(c), we depict two equivalent solutions for x*
by setting o34 equal to .3 and .6, respectively. Note that the order of the elements of £ is not
affected by the choice of the value for o3,. It is straightforward to show that the relationship
between the elements of two different covariance matrices =™ and £*? is linear and given by

*(1) *(2)
o = (1 =)+ do)

Table 3. Three equivalent covariance matrices ~* for the
Croon (1989) data

(@)

1.000

—.156 1.000
323 —.007 1.000

—.080 .370 .000* 1.000
(b)

1.000
.191 1.000
526 295 1.000
244 .559 .300% 1.000
(©

1.000
538 1.000
729 .597 1.000
.568 748 .600* 1.000

Note: Values superscripted with * are fixed.
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where

o - 1 —#ZaZbcs:E’l).
1 —#Zasz:f)
Pearson’s x test of the observed and expected ranking probabilities estimated by maximum
likelihood, P* = 60.8(df = 23 —8 = 15,p < .001), indicates that the Thurstonian model
does not provide an adequate representation of the data. A similar but more detailed result is
provided by the PPC method. The estimated posterior predictive p-values (based on H = 500
draws) are .204 for the paired comparison margins, .004 for the triple rankings and .000 for
the quadruple rankings. Thus, only the observed paired comparison probabilities are fitted
well by the Thurstonian ranking model.

This example demonstrates that the discrepancy measures can be useful in determining
overall model fit. In particular, when the sample size is small in comparison to the number of
possible ranking outcomes, the PPC method is an important tool in detecting systematic
misfit.

5.2. Preference for gifts

The following data set consists of the rankings of 10 options from a study on compound
preferences (McKeon, 1961). McKeon was interested in determining whether a preference
value of compound stimuli consisted of two options can be predicted by the additive
combination of the preference values of each of the two options. To test this hypothesis,
he applied a partially balanced incomplete block design by constructing 11 blocks with
10 single and/or composite alternatives in each block. One hundred and seventy-eight
subjects were instructed to rank the ten (either single and/or compound) alternatives within
each block based on their suitability as gifts for friends. The first block contained ten single
gifts. Each of the other blocks contained one single item and nine pairs of items as compound
stimuli. The ten possible single gifts were: (1) camera; (2) typewriter; (3) portable radio;
(4) record player (5) dictionary; (6) pen and pencil set; (7) cigarette case and lighter;
(8) briefcase; (9) bookcase; and (10) desk lamp.

McKeon (1961) converted the ranking results for each block to paired comparison data
which he used to estimate the scale values under the Case V constraint (i.e., £* = I). In our
analysis of the McKeon data, we focus on the first block that contains the rankings of the ten
single options. Table 4 gives the ‘option by rank position’ table based on the rankings of the
178 subjects. The last two columns are the mean ranks and the corresponding standard
deviations, respectively.

To compare our results with those obtained by McKeon (1961) we also fitted the Case V
model to the data. Table 5 contains the standardized scale values obtained by McKeon (1961)
in the second column and the posterior means obtained by the Gibbs sampler in the third
column. The corresponding posterior standard deviations are given in parentheses. The
correlation between the scale values of McKeon and the posterior means is very high (.998),
despite the fact that the Gibbs sampler considers the full information in the rankings while
McKeon obtained his results from the paired comparison data under the wrong assumption
that the pairs are independent. However, the Case V model does not provide an adequate
representation of the data. The posterior predictive p-values (based on H = 500 draws) are
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Table 4. ‘‘Object by Ranking Position’” Table for McKeon’s (1961) data after rank
transformation (rank 1, most preferred; 10, least preferred)

Rank position

Object 1 2 3 4 5 6 7 8 9 10 Mean rank Std. err.
0, 37 30 33 35 10 9 6 8 5 5 3.60 18
0, 45 49 34 24 7 7 6 1 2 3 2.90 15
0, 35 42 36 31 13 6 6 5 3 1 3.21 15
0, 33 29 24 23 19 16 8 15 10 1 4.06 .19
Os 4 9 13 13 20 28 30 27 26 8 6.30 17
Oy 2 4 3 10 29 31 29 29 34 7 6.75 15
0, 3 3 2 2 9 12 11 17 22 97 8.55 .16
Oy 4 1 7 5 7 18 16 29 49 42 7.84 .16
0Oy 13 7 14 23 42 17 27 18 12 5 5.42 17
0, 2 4 12 12 22 34 39 29 15 9 6.39 .15

0O,, camera; O,, typewriter; O;, portable radio; O,, record player; Os, dictionary; Og, pen and pencil set; O, cigar-
ette case and lighter; Og, briefcase; Oy, bookcase; O, desk lamp.

both .000 for the paired comparison margins and triple rankings. (Quadruple rankings were
not computed because of the small sample size.) In contrast, the Thurstonian model with an

unconstrained covariance matrix yields a much better fit of the data. The posterior predictive
p-values (based on H = 500 draws) are .518 for the paired comparison margins and .270 for
the triple rankings. The fourth column of Table 5 contains the estimated standardized
posterior means and standard deviations of the general Thurstonian model. Interestingly, the

Table 5. McKeon’s (1961) Case V solution and mean vector of
estimated posterior parameters (with standard deviation) for Case V
model and unconstrained covariance matrix (m = 10,n = 178)

McKeon’s
scale values DI | >* general
- 845 1920 (.084) 841 (.093)
—j~ 1.092 1.141 (.084) 1.180 (.108)
G2
: 1.047 1.037 (.083) 1.030 (.101)
G33
- 699 792 (.082) 743 (.089)
“&7 030 .038 (.082) 034 (.083)
“& —.109 —.097 (.078) —.132 (.083)
B& —725 —.836 (.085) —.831 (.093)
b —.462 —.498 (.084) —.626 (.089)
Ogg
292 310 (.080) 387 (.084)
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Table 6. Posterior means and standard deviations for = for the McKeon (1961) data (values
above and below the diagonal of the first matrix are covariances and correlations, respectively)

Means

1.000 .601 .652 .664 .208 236 202 125 287
.705 727 592 572 .180 122 151 .081 178
718 764 .825 714 119 178 238 .044 218
.650 .657 770 1.043 125 175 235 .094 .206
327 333 207 .193 403 133 134 125 155
429 .260 357 312 382 302 179 .090 104
214 .188 278 244 223 .346 .890 .203 124
191 144 .073 .140 299 .249 327 431 .094
431 212 .360 .303 .368 284 .198 216 443

Std. Dev.

fixed

.053 .099

.051 .045 .108

.059 .060 .043 141

.082 .087 .089 .086 .076

.076 .090 .082 .081 .081 .060

.088 .093 .087 .089 .092 .087 .208

.089 .094 .094 .089 .087 .091 .088 .096

.078 .088 .085 .086 .081 .085 .090 .091 .080

standardized scale values are very similar to the Case V solutions. The posterior means and
standard deviations of the X variates are given in Table 6. We note that the gifts can be
separated into two groups consisting of options 1 to 4 and 5 to 10. This result suggests a
simplified representation of the covariance matrix with equal correlations between the
options within each group.

In summary, these results show that the general Thurstonian ranking model provides a
satisfactory account of the data. McKeon’s (1961) restrictive assumption that the gift options
are perceived independently by the respondents is not supported. Instead, there appear to be
systematic dependencies in the ranking data that are captured by the unconstrained
covariance matrix.

6. Conclusion

This paper discussed an application of the Gibbs sampler for estimating the parameters of
Thurstonian ranking models and applied a model check procedure based on the posterior
distribution of the parameters. Two simulation studies and two applications demonstrated that
the Gibbs sampler facilitates the application of Thurstonian ranking models to large-scale
problems which encountered computational difficulties in the past.

Since the Gibbs sampler is still a relatively new technique, there is a need for further
research and applications of this procedure. Open issues include well-defined methods for
assessing convergence of the Gibbs sampler, a comprehensive list of Thurstonian models
based on structural equations and their implementation via the Gibbs sampler, and more
diagnostic checks and specification tests. However, despite this long list of future work, we
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expect many more applications of the rich and flexible class of Thurstonian ranking models in
the near future. The Markov chain Monte Carlo approach appears to be a promising solution
to the numerical intractabilities that previously plagued the estimation of Thurstonian ranking
models.
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