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This paper presents the results of a Monte Carlo study which investigates the
validity of the method of posterior predictive checks (PPC) for testing the ®t of a
Thurstonian Case V ranking model. The PPC method is employed as an alternative
to standard goodness-of-®t tests which are of limited use even when the number of
items to be ranked is small. Several test quantities are formed to assess the ®t of the
Case V ranking model to data for various sample sizes and for two types of
violationsof the Case V assumptions:heterogeneous stimulus variances and rankers
from different populations. The study concludes that the PPC method is useful in
detecting local and global mis®ts of a Thurstonian Case V model, even when the
ranking data are sparse.

1. Introduction

Thurstone’s (1927) random utility approach has been in¯uential in the development of

ranking models (BoÈckenholt, 1992; Cohen & Mallows, 1983; Fligner & Verducci, 1986;

1988; Hausman & Wise, 1978; Kamakura & Srivastava, 1984; Marden, 1995; Yao, 1995). By

postulating that the random utilities associated with the choice options follow a multivariate

normal distribution, Thurstonian models provide a straightforward and appealing representa-

tion of ranking data. However, the use of Thurstonian models in applied research has been

limited due to dif®culties in estimation when a large number of objects are to be ranked. Yao

and BoÈckenholt (1999) adopted the Gibbs sampler (Geman & Geman, 1984) to estimate the

parameters of Thurstonian models for ranking data with a large number of objects. As a

result, the problem of numerical intractabilities in estimation was solved. However, to ensure

meaningful interpretations of the parameter estimates, it is necessary and equally important to

check whether the proposed model provides an adequate representation of the data set.

Typically, the Pearson and likelihood ratio statistics are well de®ned for assessing model ®t

based on their x2 approximations. They are computed on the basis of the discrepancies

between observed and expected frequencies of ranking patterns. However, a poor x2

approximation for Pearson or likelihood ratio (LR) statistics can result from sparseness
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and empty cells. This suggests that a different approach is necessary to assess the ®t of

Thurstonian ranking models when the number of ranked objects, and consequently the

number of possible ranking patterns, is large.

Yao & BoÈckenholt (1999) demonstrated how posterior predictive checks (PPC), a

Bayesian tail-area approach (Box, 1980; Guttman, 1967; Rubin, 1984) based on the posterior

distributions of the parameters, can be used to assess the ®t of Thurstonian models to ranking

data with a large number objects. In fact, the posterior distributions of the parameters are

readily obtained as by-products of their estimation procedure. However, little is known about

the validity of PPC in assessing the ®t of a Thurstonian ranking model.

There are three goals in this study. Our ®rst goal is to examine the validity of the PPC

approach in ®tting a Thurstonian Case V model to two types of non-Case V ranking data,

namely Case III data and a mixture of Case V data for both small and large numbers of ranked

objects. In addition, we compare the power of PPC and LR statistics for detecting mis®t when

the x2 approximation to the LR statistic is valid. In general, the PPC approach has the

appealing feature that it does not rely on the asymptotic distribution of any pivotal quantity

such as the LR statistic, so that any potential test quantity can be used to assess model ®t

(Gelman, Meng & Stern, 1996). The choice of a test quantity is determined by various

considerations such as sample size and type of misspeci®cation. Therefore, our second goal is

to see whether certain test quantities are particularly effective at revealing overall or certain

types of mis®t and consequently to ®nd the best test quantity among those under considera-

tion. Different types of test quantity are constructed for assessing the ®t of subsets of the data

(local), the overall ®t of the data (global), and the ®t of some qualitative (axiomatic) property

of the data. However, it is expected that the effectiveness of PPC will also depend on other

factors, such as sample size and the type of misspeci®cation. As a result, our third goal is to

investigate the in¯uence of three factors: type of misspeci®cation, sample size, and type of

test quantity on the performance of PPC. These issues are addressed with the help of a Monte

Carlo simulation study.

This paper is structured as follows. First, Thurstonian ranking models are brie¯y

reviewed and the PPC implementation is presented. Second, the results of several Monte

Carlo simulation studies conducted to demonstrate the effectiveness of PPC in mis®t

detection of a Thurstonian Case V model are discussed. Comparisons between the results

from PPC and LR are then presented, and the paper concludes with a discussion of the main

results.

2. Thurstonian ranking models

Suppose a subject is asked to rank k objects, O1, O2, . . . , Ok , according to some prescribed

criterion. According to Thurstone (1927), the unobserved judgments of each stimulus are

realizations of a random variable, and the corresponding ranking of a series of stimuli is based

on the relative order of the values of the random variables on the underlying judgments.

Thurstone (1927) introduced the notion of the so-called `discriminal process’ and proposed

that the values assigned to each stimulus are normally distributed. For any subject or a

homogeneous group of subjects, the discriminal process associated with any given stimulus

can be described by a random variable vij (Bock & Jones, 1968; BoÈckenholt, 1990, 1992)

vij 5 mi 1 eij,
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where mi is the `affective value’ which refers to the modal response judgment for object i, and

ej is a random componentwhich re¯ects the deviation from the modal response for person j on

a particular occasion. The rank order of k stimuli is determined by the order of their

corresponding random utilities vij, i 5 1, 2, . . . , k. For example, the probability for observing

the rank order s 5 (1, 3, 2, . . . , k) is

P(s) 5 P(v1j > v3j > v2j > . . . > vkj).

It is assumed that eij follows a normal distribution, eij ~ N(0, j2
i ), for i 5 1, 2, . . . , k, and

therefore the joint distribution of the ej is multivariate normal with mean vector 0 and

covariance matrix S. As a result, the vj follow a multivariate normal distribution with mean

vector m 5 (m1, . . . , mk) 9 and covariance matrix S.

Thurstone (1927) proposed the following cases:

· Case V model: S is a diagonal matrix with equal diagonal elements, i.e., S 5 j2I.
However, based on the ranking data, j cannot be uniquely identi®ed. Without loss of

generality, j2 can be arbitrarily set to be 1.

· Case III model: S is a diagonal matrix with unequal diagonal elements.

These two cases appear to have drawn much attention throughout the literature because of

their simple zero-covariance structures (Burros & Gibson, 1954; Iverson, 1987; MacKay &

Chaiy, 1982) and therefore they were used in this study. Moreover, in addition to its

simplicity in interpretation, the Case V model was chosen as the null model in this study

because it does not require estimating additional parameters for the variance-covariance

structure.

3. Posterior predictive checks

In assessing the goodness of ®t of ranking models, Pearson and LR statistics are commonly

used where each of the possible ranking patterns is considered as a separate cell in a

multinomial distribution. However, the problem of large sparse multinomials is encountered

when the number of ranked objects is large and the use of x2 approximations to Pearson and

LR statistics is inappropriate.

The Bayesian posterior predictive checks (Gelman et al., 1996; Meng, 1994; Rubin, 1984)

do not rely on the asymptotic distribution of any pivotal statistic, such as the LR statistic. In

the PPC approach, a test quantity T can be de®ned as a function of both the data and unknown

(nuisance) parameters (Gelman et al., 1996).

The PPC technique takes into account the uncertainty of the nuisance parameters by

averaging over the in¯uence of different plausible nuisance parameters under the hypothe-

sized model. In this way, the PPC method allows us to measure the direct discrepancy

between the hypothesized model and the data, whereas the maximum likelihood approach

measures the discrepancy between the best-®tting model and the data.

In a Bayesian framework, a replication Yrep is de®ned as future observed ranking data

under the hypothesized model and the same nuisance parameter which produced the current

observed ranking data Y. In our context, the hypothesized Case V model de®nes the

variance±covariance structure S 5 I of the ranking data, not the mean structure, m. There-

fore, m is regarded as a nuisance parameter of the model. However, both m and S are required

to generate replication of ranking data. After observing Y, it is obvious that not all possible m
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are equally likely to have generated Y. Therefore, we characterize m by its posterior

distribution under the hypothesized Case V model, p(m | Y, I), to account for the uncertainty

of m. A replication is then de®ned as a single draw from p(Yrep
| m, I), averaged over the

posterior distribution of m. In other words, the reference distribution of replications (Yrep) is

(Gelman, Carlin, Stern, & Rubin, 1995):

p(Yrep
| Y, I) 5

…
p(Yrep

| m, I)p(m | Y, I)dm,

where p(m | Y, I) is the posterior distribution of m under the hypothesized Case V model.

After de®ning a replication, we can then compute test quantities from the replicated

ranking data, Yrep. If the model ®ts, the test quantity from the observed data, Y, is expected to

be similar to those computed from the Yrep. Consequently, an extreme test quantity or a

systematic difference reveals the mis®t of the hypothesized Case V model.

To evaluate how extreme the observed test quantity T is, the posterior predictive p-value

(PPP) (Rubin, 1984; Meng, 1994; Gelman et al., 1996) is de®ned as

PPP 5 P(T(Yrep, m) $ T(Y, m) | Y, I),

where m ~ p(m| Y, I) and T is a discrepancy measure. Note that if T is a non-directional

measure (i.e., values that are too small or too large are both considered extreme),

then PPP is de®ned as two-tailed. In other words, PPP is the proportion of the test

quantities from the replicated data that is more extreme than the test quantity with

respect to the observed data. An extreme PPP implies that the observed test quantity is

unlikely under the hypothesized model, and therefore shows some evidence against the

model.

Adopting the PPC method, we obtain replications under both the Case V model and the

draws from the posterior distribution of the nuisance parameter m, p(m | Y, I). To minimize the

in¯uence of the prior, an informative but vague prior on m such that m ~ Nk(0, S2I) is

employed, where S2 is relatively large. Assuming independence between the subjects,

p(Y | m, I) equals
Qn

j5 1 p(yj | m, I) for n randomly selected subjects, where yj is the ranking

vector of subject j. Therefore,

p(m | Y, I) ~ p(m)p(Y | m, I)

~ p(m)
Yn

j5 1

p(yj | m, I).

Under the Thurstonian model, p(yj | m, I) can be determined by evaluating a (k 2 1)-variate

normal distribution. However, p(m | Y, I) does not have a known density form and hence the

estimation of p(m | Y, I) is somewhat dif®cult.

Fortunately, the computational dif®culty in obtaining the posterior distribution of m can be

overcome by adopting the Gibbs sampler (Yao & BoÈckenholt, 1999). The Gibbs sampler

algorithm (Geman & Geman, 1984) simpli®es the computation by reducing the simulation

from a high-dimensional distribution into iterative draws from lower-dimensional fully

conditional distributions. In this study, we adopt the Gibbs sampler technique to construct the

posterior distribution of m (see Appendix). After obtaining the draws from the posterior

distribution of m to generate replications, we can construct a posterior predictive distribution

of a PPC test quantity, T , as a by-product of the replicated ranking data. In summary, the
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following strategy is used to obtain a posterior p-value for assessing model mis®t in a

Bayesian framework:

1. Draw samples m1, m2, . . . , mm from the posterior distribution of m under the hypothesized

Case V model, i.e., p(m | Y, I).
2. Generate the replication ranking data Yrep

l based on ml and S 5 I for l 5 1, 2, . . . , m.

3. Select a test quantity T and compute both T (Y, ml) and T(Yrep
l , ml) for l 5 1, 2, . . . , m.

4. Calculate PPP 5 (1/m)SlIl, where the indicator variable Il is 1 if T (Yrep
l , ml) $ T (Y, ml)

and zero otherwise.

5. Use the obtained PPP to assess the validity of the hypothesized Case V model.

4. Simulation studies

The purposes of the study were (a) to compare the diagnostic power of the various test

quantities under consideration, (b) to compare the PPC approach to the LR test with various

sample sizes, and (c) to investigate how the three factorsÐtype of misspeci®cation, sample

size, and type of test quantityÐin¯uence the ef®cacy of the mis®t detection based on PPC.

Two simulation studies were conducted to assess the validity of the PPC method in

checking the (mis)®ts of the Case V model to ranking data with either four or seven objects. In

order to assess the validity of the PPC method, 50 ranking data sets were generated under

each factor combination, and the frequency of mis®t detections was observed.

4.1. Type of misspeci� cation

The Case V model has drawn the most attention throughout the literature because it is easy to

estimate and interpret. However, because of its simplicity, the Case V model does not always

provide an adequate representation of the data.

The Case III model relaxes the equal-variances assumption of Case V by allowing the

variances to vary. Furthermore, in contrast to Case III and Case V where the judges are

assumed to be from a homogeneous population, the mixture model can be formulated which

assumes that the judges are from multiple (two in this study) homogeneous populations (see

BoÈckenholt, 1993):

· Mixture model : v ~ pNk(m1, S1) 1 (1 2 p)Nk(m2, S2).

In particular, the two populations chosen in this study consist of one group of individuals

whose utilities follow a Case V model and the other group of individuals who simply

randomly assign the ranks to the objects. Case III and mixture data were used as two types of

violations of the Case V assumptions, namely heterogeneous stimulus variances and rankers

from different populations. In addition, Case V data sets were also simulated as a reference to

indicate how the PPPs of the test quantities behave when the true model is ®tted to the data.

That is, we considered the following three cells:

The criteria used to generate the three types of data are summarized in Table 1.
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4.2. Sample sizes

For each type of misspeci®cation with four objects, sample sizes of 50, 100, 150 and 250 were

used to evaluate the effect of sample size on mis®t detection. However, when the number of

ranked objects is large, all practical ®nite samples represent small samples relative to the total

possible ranking outcomes. Therefore, a sample size of 100 was arbitrarily chosen for the case

of seven objects.

4.3. Test quantities

To determine whether the replicated and the observed ranking data are likely to be from the

same population, several test quantities were computed for both data sets, and their posterior

predictive distributions were constructed. Moreover, the PPPs associated with the observed

test quantities were obtained.

Although choosing a test quantity can be quite arbitrary, the goal is to use test quantities

that are effective in revealing mis®t in special features of the data. Three types of discrepancy

measure are used in this study. Local test quantities are computed for each object or subset of

the data to assess the lack of ®t for subsets of objects. Global test quantities measure the

overall (mis)®ts of the data based on the discrepancy between the observed and expected

frequencies or probabilities. Moreover, an axiomatic statistic is constructed on the basis of an

important axiomatic property of the Case V model.

4.3.1. Local test quantities. Cohen & Mallows (1983) suggested partitioning the ranking

data into disjoint groups, where each group is regarded as a cell to avoid the sparseness

problem. In particular, they proposed comparing the observed and expected frequencies for

each pair of ranked objects in order to assess the ®t of the model when the number of ranked
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Table 1. Criteria used to generate simulated ranking data based on speci®c mean vectors and

covariance structures for k 5 4 and k 5 7

Simulated data Affective values Covariance structure

k 5 4
Case III (A) m 5 ( 2 1 2 0.33 0.33 1)9 j

2
1 5 j

2
2 5 j

2
3 5 1, j

2
4 5 4, jij 5 0 ; i Þ j

Case III (B) m 5 ( 2 1 2 0.67 0.67 1)9 j2 5 4, j2
2 5 j2

3 5 j2
4 5 1, jij 5 0 ; i Þ j

Mixture (A) m1 5 ( 2 1.33 2 0.44 0.44 1.33) 9
Mixture (B) m1 5 ( 2 1.5 2 0.1 0.1 1.5)9

m2 5 (0 0 0 0)9 S1 5 S2 5 I4

m 5 pm1 1 (1 2 p)m2, p 5 0.7

Case V m 5 ( 2 1 2 0.33 0.33 1) 9 S 5 I4

k 5 7
Case III m 5 ( 2 1.5 2 1 2 0.5 0 0.5 1 1.5)9 j

2
1 5 . . . 5 j

2
6 5 1, j2

7 5 4, jij 5 0 ; i Þ j

m1 5 ( 2 1.5 2 0.1 2 0.5 0 0.5 1 1.5)9
Mixture m2 5 (0 0 0 0 0 0 0)9 S1 5 S2 5 I7

m 5 pm1 1 (1 2 p)m2, p 5 0.7

Case V m 5 ( 2 1.5 2 1 2 0.5 0 0.5 1 1.5)9 S 5 I7



objects is large. In their estimation of the expected frequency for each pair, the sample mean

and variance of the ranks were used as estimates of the population mean (m) and error

variance (j2) in a Thurstonian Case V model. Since these values are informative in describing

a Thurstonian model, they were both used as local test quantities, and are denoted as follows:

· Mean of the i th object’s ranks for n subjects (MR),

MR(i) 5
1

n

Xn

j5 1

yij for object i (i 5 1, 2, . . . , k).

· Variance of the ith object’s ranks for n subjects (VR),

VR(i) 5
1

n 2 1

Xn

j5 1

( yij 2 Åyi)
2 for object i (i 5 1, 2, . . . , k).

Here Y are the ranking data, Yj is the ranking vector of subject j, yij is the rank that subject j
assigned to object i, and n is the number of subjects.

4.3.2. Global test quantities. Yao & BoÈckenholt (1999) computed three discrepancy

measures to assess the ®t of a Thurstonian model based on paired comparison, triple and

quadruple rankings in a data set. The discrepancy measures are the sums over the discrepancy

for each pair, triple, or quadruple. Similarly, we used the sum of squared normal deviates

(Cohen & Mallows, 1983) based on pairs and triples as the global discrepancy measures:

· Discrepancy measure based on paired comparisons (PA),

PA(Y, m) 5
X

i<j

(Pij 2 ÃPij)
2

ÃPij(1 2 ÃPij)
, ÃPij 5 F

mi 2 mj����������������������������
j2

i 1 j2
j 2 2jij

q

0

B@

1

CA.

· Discrepancy measure based on triple rankings (TRI),

TRI(Y, m) 5
X

i<j<l

(Pijl 2 ÃPijl)
2

ÃPijl(1 2 ÃPijl)
, ÃPijl 5 F2

dij

djl

© ª
,

1 rijl

rijl 1

© ª© ª
.

Here Pij is the probability that object i is preferred to object j in the data, ÃPij is its expected

probability, dij 5 (mi 2 mj)/
— ����������������������������

j2
i 1 j2

j 2 2jij

q ˜
and rijl 5 (jij 2 jil 2 j2

j 1 jjl)/(dijdjl). In fact,

since the Case V model was ®tted to the data in this study, we can further set j2
i 5 1 and

jjl 5 0 for i, j, l 5 1, . . . , k and j Þ l.
In addition, a chi-square type discrepancy measure which resembles the classical x2

goodness-of-®t measure was used (Gelman, Meng & Stern; 1993, 1996):

· Discrepancy measure (X2) similar to the Pearson statistic,

X2(Y, m) 5
Xk!

c5 1

( yc 2 E(yc | m))2

Var(yc | m)
.

Here c is a possible ranking pattern.

To compute the discrepancy measure X2, the cell frequency for each ranking pattern is

required. However, as the number of ranked objects grows large, it is infeasible to list cell
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frequencies for all possible patterns. Therefore, the test quantity X2 was excluded for the data

with seven objects. Instead, an object by rank position matrix was computed from each

ranking data set. The object by rank matrix (M) consists of counts m(r,c) representing the

number of times the rth object is ranked the cth most preferred object:

· M-based discrepancy measure (MX2),

MX2(Y, m) 5
Xk2

c5 1

(yc 2 E(yc | m))2

Var(yc | m)
.

Here c is a cell in M instead of a possible ranking pattern. Note that M is the table of ®rst-

order summary in Diaconis (1989). Tables of higher-order summary can also be used to form

chi-square discrepancy measures.

4.3.3. Axiomatic test quantity. The underlying assumptions or speci®c properties of the ®tted

model can also be used to create test quantities for assessing model ®t using PPC (Hoijtink &

Molenaar, 1997). For the Thurstonian Case V model with distinct affective values for the

ranked objects, strong stochastic transitivity (SST), strong unimodality, and complete

consensus are satis®ed (Bossuyt, 1990; Critchlow, Fligner, & Verducci, 1991; Falmagne,

1985; Henery, 1981). A Case III model may only satisfy weak stochastic transitivity (WST)

but not SST. A mixture of Case V models may not even satisfy WST. Violations of these

properties sometimes occur due to sampling variability. However, we expect the systematic

violations of SST under some Case III and mixture data to occur more frequently than the

violations due to sampling variability under Case V data.

SST and WST are de®ned as follows: for any triple (i, j, k) in a given choice set, suppose

Pij $ 1
2

and Pjk $ 1
2
. Then:

1. WST holds if Pik $ 1
2
;

2. SST holds if Pik $ max{Pij, Pjk}.

Here Pij is the probability that object i is preferred to object j. We use the test quantity VSST
(violation of strong stochastic transitivity) to evaluate the goodness of ®t of the property of

SST. VSST is de®ned as follows:

· Violation of strong stochastic transitivity,

VSST(i1 ,...,it ,...,i—k
3

˜) 5 (di1 , . . . , dit , . . . , di—
k
3

˜ ),

where dijt 5 1 if SST is violated for the triple set it and 0 if not. And the strict partial order

with transitive indifference (Michell, 1990) imposed upon the possible patterns of VSST is

de®ned by

VSST(i1 ,i2 ,...,i—k
3

˜) $ VSST(i1 ,i2 ,...,i—k
3

˜) if di1 $ di1 , di2 $ di2 , . . . , and di—
k
3

˜ $ di—
k
3

˜ .

When SST is satis®ed for a data set, VSST 5 (0, 0, . . . , 0) is the least in terms of this

relation (¸). Note that this relation does not de®ne a strict simple but a strict partial order

among the response patterns. For instance, (0,0,1,1) and (0,1,0,1) are considered indifferent in

this case. The PPP of VSST is de®ned as

PPP 5 P(VSSTrep ¸ VSSTobs).
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For example if VSSTobs 5 (1, 1, 0, 0), then PPP 5 P(VSST rep
i ¸ (1, 1, 0, 0)) 5 P(VSST rep

i [
{(1,1,0,0),(1,1,1,0), (1,1,0,1), (1,1,1,1)}).

Finally, an analysis of variance (ANOVA) of the three factorsÐtypes of misspeci®cation

(M), samples sizes (N) and various test quantities (T )Ðwas performed on the posterior p-

values, with all interaction terms included in the analysis. Since the dependent variable is the

obtained p-value, a 2sin 2 1 ���
p

p
transformation was applied to reduce dependencies between

the means and variances of the dependent variables.

5. Results

5.1. Simulations with k 5 4 objects

For the various test quantities described in the previous section, we constructed posterior

predictive distributions to assess the ®t of the posited model (Case V). For illustration, results

of most of the test quantities, for a single Case III(A) simulated data set, with sample size

n 5 150 and for k 5 4 objects, are presented in Fig. 1. The results of MR(i) and

VR(i) (i 5 1, 2 and 3) are similar to those of MR(4), therefore they are not presented. The

posterior predictive distribution of VSST is also not presented since there is no natural

ordering of all the response patterns.

Figure 1 shows histograms of 100 simulations from the posterior predictive distribution of

the test quantities, T (Yrep). The observed test quantities are represented as vertical lines at

T(Y) in the histograms. In addition, the scatterplots for generalized test quantities show the

100 simulations of T(Yrep, m) versus T(Y, m) along with the lines representing the points

where T (Yrep, m) 5 T(Y, m). The PPPs are reported at the top of each plot. The PPP of VSST
equals 0.11.

As can be seen in Fig. 1, most of test quantities have extreme PPPs, which are clear signs

of model mis®t. However, no extreme PPP is obtained for MR(4), PA and VSST . The

results suggest that some, but not all, test quantities are effective in detecting mis®t using

PPC.

Instead of only looking at a single dataset, Fig. 2 presents the distributions of PPPs based

on 50 replications for each test quantity of all the simulated data with n 5 150.

As can be seen in Fig. 2, the distributions of MR(4) and PA from misspeci®ed data sets

differ only slightly from those from correctly speci®ed Case V data. This implies that neither

MR(4) nor PA is useful in detecting mis®t since an extreme PPP is never obtained. On the

other hand, the distributions of PPPs for the other test quantities using the misspeci®ed data

signi®cantly differ from those for the Case V data. This suggests that these test quantities

could be used as discrepancy measures. As a result, the mean of an object’s rank position and

the discrepancy based on paired comparisons were eliminated from all analyses discussed

below.

Our analysis shows clearly that paired comparisons outcomes (PA) are not effective in

assessing mis®t. Instead we recommend ®t assessment on the basis of triple rankings (TRI).
The computation of TRI requires the standardized differences and the correlation between

two pairs within each triple set. In contrast, PA only uses the standardized differences of each

pair. Thus, the `correlation’ in TRI is an important factor in revealing the mis®t of a Case V

model.
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5.1.1. Comparison between LR and PPC. Although a cutoff p-value is seldom used as a

decision rule in Bayesian modeling, in order to compare the PPC approach to the LR test it is

useful to choose a single cutoff point to de®ne extremeness in the PPC.

In contrast to the fact that in classical testing the p-values follow a uniform distribution

under the true model regardless of the choice of the test statistics, the distributions of the

PPPs under the Case V model (i.e., the correctly speci®ed model) vary among the test

quantities in Fig. 2. Thus, the extremeness of a PPP depends on the statistic under

consideration. In fact, the histograms deviate from a uniform distribution even for sample

sizes as large as 250 (not shown in the ®gures).

To investigate the adequacy of a cutoff PPP, the proportion of misrejections for Case V

data was obtained when the cutoff PPP was used as a decision rule to reject the Case V

model. Our goal was to choose a single cutoff PPP so that the proportions of misrejection for
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Figure 1. Posterior predictive distributions of MR(4), VR(4), PA, TRI, X2 and MX2 for a single Case
III(A) data set with k 5 4 and n 5 150.



all test quantities were at most 0.05. Examination of the proportions of misrejection indicated

that a cutoff PPP of 0.05 was reasonable for all statistics under consideration. Consequently,

the cutoff PPP of 0.05 was chosen to evaluate the extremeness of PPPs. Table 2 presents the

proportions of extreme p-values from LR and PPC for the four non-Case V and the Case V

data.

Surprisingly, for Case III(A) data the proportions of mis®t detection for VR(4) from PPC

are equal to or larger than those from LR. Other test quantities also provide comparable

results for PPC and LR for both Case III(A) and (B) data. For mixture (A) data, neither the test
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Figure 2. Distributions of posterior predictive p-values of MR(4), VR(4) (or VR(1)), PA, TRI , X2, MX2,
and VSST , for 50 replications of the three types of data with k 5 4 and n 5 150.



quantities nor LR have enough power to consistently detect the mis®t. However, in both of

the mixture (A) and (B) data, the X2 statistic appears to have proportions of mis®t detection

similar to LR. These results suggest that PPC is somehow less powerful but still a useful

alternative to LR in the sense that this method provides comparable results.

Not surprisingly, the effectiveness of a test quantity seems to depend on the type of

misspeci®cation. The VRs contain information about the relative magnitudes of

the variances(j2). Consequently, VR(4) and VR(1) appear to be effective in detecting

mis®t for the Case III (A) and (B) data, respectively, but not for the mixture data. VSST

does not seem to be effective in detecting mis®t although its distributions under the

misspeci®ed data sets differ from the ones obtained under the Case V data. As a result,

VSST was also eliminated from all analyses discussed below. However, these results are to be

expected for the Case III (A) and mixture data since the particular parameter sets used to

generate these data satisfy SST. In other words, their SST violations are simply due to

sampling variability. In contrast, the parameter set for Case III(B) does not satisfy SST.

Consequently, its distribution of PPPs for VSST differs signi®cantly from those of other

data sets. Although its proportions of extreme PPPs (using a cutoff of 0.05) do not seem

satisfactory, it is expected that VSST will have more power for data with a higher degree of

SST violations.

When we compare the extremeness of the PPPs for n 5 50 and n 5 250, the mis®t

detection for cases with n 5 250 seems signi®cantly better than for those with n 5 50. In fact,

almost no test quantities effectively reveal any kind of mis®t for sample sizes as small as 50.

Obviously, the effectiveness of a test quantity is sensitive to sample size. Furthermore, the

sensitivity to sample size seems to differ across test quantities. Therefore, we further
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Table 2. Proportions of extreme p-values for likelihood ratio test (LR) and posterior

predictive checks (PPC) based on all the test quantities for k 5 4 and n 5 50, 100, 150

and 250

LR PPC LR PPC
VR(4) TRI X2 MX2 VSST VR(1) TRI X2 MX2 VSST

n Case III (A) Case III (B)

50 0.34 0.70 0.26 0.26 0.28 0.10 0.36 0.60 0.16 0.16 0.36 0.24
100 0.66 0.92 0.74 0.60 0.80 0.48 0.86 0.92 0.82 0.68 0.88 0.12
150 0.90 1.00 0.90 0.86 0.96 0.18 0.92 0.96 0.92 0.88 0.94 0.32
250 1.00 1.00 1.00 0.96 1.00 0.14 0.98 1.00 1.00 0.96 1.00 0.12

Mixture (A) Mixture (B)
50 0.22 0.04 0.08 0.14 0.06 0.06 0.34 0.04 0.14 0.32 0.22 0.18

100 0.12 0.10 0.10 0.14 0.10 0.00 0.82 0.18 0.60 0.78 0.68 0.20
150 0.24 0.14 0.10 0.18 0.10 0.10 0.86 0.16 0.74 0.90 0.58 0.18
250 0.36 0.32 0.28 0.26 0.20 0.04 1.00 0.24 0.98 1.00 1.00 0.14

Case V
50 0.14 0.00 0.00 0.06 0.02 0.18

100 0.04 0.02 0.02 0.04 0.02 0.00
150 0.04 0.00 0.04 0.00 0.02 0.00
250 0.04 0.00 0.02 0.06 0.04 0.02

Note: A cutoff of 0.05 for p-values is used for both LR and PPC.



investigated the effects of sample size and misspeci®cation type on the mis®t detection ability

of the test quantities.

5.1.2. Effects of factors. The results of the three-factor (sample size, type of mis-

speci®cation, and test quantities) ANOVA of the transformed posterior p-values are

presented in Table 3. The data sets used in the analysis are Case III(A) and mixture (B)

because they have comparable LR statistics. Due to the large number of PPPs from all test

quantities for the 50 replications in the ANOVA, all effects appear to be statistically

signi®cant. Therefore, the strength of association measure, q2, was used to measure the

practical signi®cance of effects. Both the p-values and q2s for all effects are reported in

Table 3.

According to the guidelines suggested by Cohen (1988), all but misspeci®cation type (M)

show large effects (i.e., q2 $ 0.14). To interpret the results in terms of the effectiveness of the

chosen test quantities, there are differences between their effectiveness but no test quantity is

a superior indicator of mis®t for both types of misspeci®cation. In fact, the existence of a

large MNT effect implies that the effectiveness of a test quantity depends both on its

sensitivity to sample size and on the type of misspeci®cation.

5.2. Simulations with k = 7 objects

To investigate the behaviour of PPC in small samples, k 5 7 objects were used. The classical

x2 test is not useful in this case because of the large number of sparse cells. The sample size

n 5 100 was used across all types of misspeci®cation. The posterior predictive distributions

of various test quantities based on 50 replications were constructed to assess the lack of ®t of

the posited Case V model. The results are presented in Fig. 3 and Table 4.

Figure 3 presents the distributions of PPPs based on 50 replications for selected

test quantities of all the simulated data with n 5 100. As shown in Fig. 3, the distributions

of PPPs of VR(7), TRI and MX2 from the Case III data are very different from the Case V

data. That is, they are useful in assessing model mis®t in small samples. Their proportions

of mis®t detection are reported in Table 4. VR(7) and TRI appear more effective for
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Table 3. Analysis of variance table for the three-factor study on the posterior p-values for

k 5 4 objects. The three factors are: type of misspeci®cation (M), sample size (N), and test

quantity (T); the datasets are Case III (A) and mixture (B)

Source SS df MS F Pr > F Ãq
2

M 25.645 1 25.645 171.97 0.0001 0.097
N 320.863 3 106.954 717.20 0.0001 0.573
T 80.412 3 26.804 179.74 0.0001 0.251

M*N 102.074 3 34.025 228.16 0.0001 0.299
M*T 346.417 3 115.472 774.32 0.0001 0.592
N*T 148.346 9 16.483 110.53 0.0001 0.381

M*N*T 177.919 9 19.769 132.56 0.0001 0.426

n 5 1600 MSE 5 0.149 R2 5 0.837

Note: q2
5 0.01 is a small association; q2

5 0.06 is a medium association; and q2
5 0.14 or greater is a large

association.



detecting mis®t for Case III and mixture data, respectively. MX2 is effective for Case III data

as well.

In summary, among all the test quantities, VR, TRI, and MX2 appear most effective

in detecting the mis®t of the Case V model to Case III data. However, only TRI
showed some power in detecting the mis®t when data were generated under a mixture of

Case V model. The results are similar to those obtained from the simulations with k 5 4

objects.
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Figure 3. Distributions of posterior predictive p-values of MR(7), VR(7), PA, TRI, and MX2 for 50
replications of the three types of data with k 5 7 and n 5 100.



6. Conclusions

The goal of this paper was to evaluate the validity of the PPC approach and to search for

effective test quantities in assessing mis®t for Thurstonian Case V models. Two simulation

studies were conducted, and the PPC technique was shown to be useful in assessing the mis®t

of the Thurstonian Case V model.

The validity of the PPC method was veri®ed by comparison with the LR method for k 5 4

objects, where the classical likelihood approach was feasible because in this case sparseness

is not a problem. The results of the comparison between PPC and LR suggest that the power

of the PPC method is close to the classical LR approach.

In searching for useful test quantities, the discrepancy measure based on triple rankings

(TRI), and the generalized chi-square type test quantities (X2 and MX2), appeared effective in

revealing the mis®t for both Case III and mixture data. Moreover, the variance of an object’s

rank position (VR) is a powerful test quantity for testing mis®t for Case III, but not for mixture

data.

In an analysis of the in¯uence of different test quantities, type of misspeci®cation and

sample size on mis®t detection, we found that the effectiveness of the PPC method was

dependent on all three factors. The presence of a three-way interaction for these three factors

implied that the interaction of the effectiveness of test quantities with types of misspeci®ca-

tion was dependent on sample size. None of the test quantities proved to be a consistently

superior mis®t indicator of a Case V model for both types of misspeci®cation. Although most

test quantities tend to become better at detecting mis®t as the sample size increased, their

sensitivity towards sample size differed.

Most importantly, PPC is valuable when the number of objects to be ranked is large and the

LR approach is not feasible. In the study with a sample size of 100 with k 5 7 objects, where

over 98% of the possible ranking patterns are not observed, the MX2 revealed the overall

mis®t and both the VR and TRI test quantities also suggested mis®t of the Case V model for

Case III data. These results demonstrate that the PPC method provides a useful alternative

towards assessing the mis®t of a Thurstonian ranking model, especially for sparse tables

where the classical approaches are inappropriate.
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Table 4. Proportions of extreme posterior predictive p-values

of effective test quantities in the case of k 5 7 and n 5 100

(cutoff for extreme PPPs 5 0.05).

Test Quantities Case III Mixture Case V

VR(7) 0.98 0.34 0.00
TRI 0.88 0.58 0.00
MX2 0.78 0.30 0.00



References

Bock, R. D., & Jones, L. V. (1968). The measurement and prediction of judgment and choices.
San Francisco: Holden-Day.

BoÈckenholt, U. (1990). Multivariate Thurstonian models. Psychometrika, 55, 391±403.
BoÈckenholt, U. (1992). Thurstonian models for partial ranking data. British Journal of Mathematical

and Statistical Psychology, 45, 31±49.
BoÈckenholt, U (1993). Estimating latent distributionsin recurrent choice data. Psychometrika, 58, 489±

509.
Bossuyt, P. (1990). A comparison of probabilistic unfolding theories for paired comparison data. New

York: Springer-Verlag.
Box, G. E. P. (1980). Sampling and Bayes inferences in scienti®c modelling and robustness. Journal of

the Royal Statistical Society, Series A, 143, 383±430.
Burros, R. H., & Gibson, W. A. (1954). A solution for Case III of the law of comparative judgment.

Psychometrika, 19, 57±64.
Cohen, A. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Erlbaum.
Cohen, A., & Mallows, C. L. (1983). Assessing goodness of ®t of ranking models to data. The

Statistician, 32, 361±373.
Critchlow, D. E., Fligner, M. A., & Verducci, J. S. (1991). Probability models on rankings. Journal of

Mathematical Psychology, 35, 294±318.
Diaconis, P. (1989). A generalization of spectral analysis with application to ranked data. Annals of

Statistics, 17, 949±979.
Falmagne, J. (1985). Elements of psychophysical theory. New York: Oxford University Press.
Fligner, M. A., & Verducci, J. S. (1986).Distance based ranking models. Journal of the Royal Statistical

Society, Series B, 48, 359±369.
Fligner, M. A., & Verducci, J. S. (1988).Multistage ranking models. Journal of the American Statistical

Association, 83, 892±901.
Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (1995). Bayesian data analysis. London:

Chapman & Hall.
Gelman, A., Meng, X. L., & Stern, H. S. (1996). Posterior predictive assessment of model ®tness via

realized discrepancies. Statistica Sinica, 6, 733±807.
Gelman, A., Meng, X. L., & Stern, H. S. (1993). Bayesian model invalidation using tail area

probabilities. Unpublished manuscript. University of California, Department of Statistics,
Berkeley.

Geman, D., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian
restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6,
721±741.

Guttman, I. (1967). The use of the concept of a future observation in goodness-of-®t problems. Journal
of the Royal Statistical Society, Series B, 29, 83±100.

Hajivassiliou, V. A. (1993). Simulation estimation methods for limited dependent variable models. In
G. S. Maddala, C. R. Rao, & H. D. Vinod (Eds.), Handbook of statistics (Vol. 11). Amsterdam:
Elsevier.

Hausman, J. A. & Wise, D. A. (1978). A conditional probit model for qualitative choice:
Discrete decision recognizing interdependence and heterogeneous preferences. Econometrica,
46, 403±426.

Heidelberger, O., & Welch, P. D. (1983). Simulation run length control in the presence of an initial
transient. Operations Research, 31, 1109±1144.

Henery, R. J. (1981). Permutation probabilities as models for horse races. Journal of the Royal
Statistical Society, Series B, 43, 86±91.

Hoijtink, H., & Molenaar, I. W. (1997). A multidimensional item response model: Constrained latent
class analysis using the Gibbs sampler and posterior predictivechecks. Psychometrika, 62, 171±189.

Iverson, G. J. (1987). Thurstonian psychophysics: Case III. Journal of Mathematical Psychology, 31,
219±247.

Kamakura, W. A., & Srivastava, R. K. (1984). Predicting choice shares under conditions of brand
interdependence. Journal of Marketing Research, 21, 420±434.

Rung-Ching Tsai and G. Yao290

http://www.ingentaconnect.com/content/external-references?article=/0033-3123^28^2958L.489[aid=20719]
http://www.ingentaconnect.com/content/external-references?article=/0033-3123^28^2955L.391[aid=20718]
http://www.ingentaconnect.com/content/external-references?article=/0007-1102^28^2945L.31[aid=20464]
http://www.ingentaconnect.com/content/external-references?article=/0033-3123^28^2958L.489[aid=20719]
http://www.ingentaconnect.com/content/external-references?article=/0033-3123^28^2919L.57[aid=20721]
http://www.ingentaconnect.com/content/external-references?article=/0039-0526^28^2932L.361[aid=20467]
http://www.ingentaconnect.com/content/external-references?article=/0022-2496^28^2935L.294[aid=20722]
http://www.ingentaconnect.com/content/external-references?article=/0090-5364^28^2917L.949[aid=20723]
http://www.ingentaconnect.com/content/external-references?article=/0162-1459^28^2983L.892[aid=20725]
http://www.ingentaconnect.com/content/external-references?article=/1017-0405^28^296L.733[aid=20259]
http://www.ingentaconnect.com/content/external-references?article=/0162-8828^28^296L.721[aid=20261]
http://www.ingentaconnect.com/content/external-references?article=/0012-9682^28^2946L.403[aid=20726]
http://www.ingentaconnect.com/content/external-references?article=/0030-364X^28^2931L.1109[aid=20473]
http://www.ingentaconnect.com/content/external-references?article=/0033-3123^28^2962L.171[aid=20728]
http://www.ingentaconnect.com/content/external-references?article=/0022-2496^28^2931L.219[aid=20729]
http://www.ingentaconnect.com/content/external-references?article=/0022-2437^28^2921L.420[aid=20730]
http://www.ingentaconnect.com/content/external-references?article=/0007-1102^28^2945L.31[aid=20464]
http://www.ingentaconnect.com/content/external-references?article=/0039-0526^28^2932L.361[aid=20467]
http://www.ingentaconnect.com/content/external-references?article=/0022-2496^28^2935L.294[aid=20722]
http://www.ingentaconnect.com/content/external-references?article=/0090-5364^28^2917L.949[aid=20723]
http://www.ingentaconnect.com/content/external-references?article=/0162-1459^28^2983L.892[aid=20725]
http://www.ingentaconnect.com/content/external-references?article=/0162-8828^28^296L.721[aid=20261]
http://www.ingentaconnect.com/content/external-references?article=/0012-9682^28^2946L.403[aid=20726]
http://www.ingentaconnect.com/content/external-references?article=/0022-2496^28^2931L.219[aid=20729]


MacKay, D. B., & Chaiy, S. (1982). Parameter estimation for the Thurstone Case III model.
Psychometrika, 47, 353±359.

Marden, J. I. (1995). Analyzing and modeling rank data. London: Chapman & Hall.
Michell, J. (1990). An introduction to the logic of psychologicalmeasurement. Hillsdale, NJ: Erlbaum.
Meng, X. L. (1994). Posterior predictive p-values. Annals of Statistics, 22, 1142±1160.
Rubin, D. B. (1984). Bayesianly justi®able and relevant frequency calculations for the applied

statistician. Annals of Statistics, 12, 1151±1172.
Thurstone, L. L. (1927). A law of comparative judgment. Psychological Review, 34, 273±286.
Yao, G. (1995). Bayesian estimation of Thurstonian ranking models based on the Gibbs sampler.

Unpublished doctoral dissertation. University of Illinois at Urbana-Champaign.
Yao, G., & BoÈckenholt, U. (1999). Bayesian estimation of Thurstonian ranking models based on the

Gibbs sampler. British Journal of Mathematical and Statistical Psychology, 52, 79±92.

Received 3 March 1999; revised version received 25 November 1999

Appendix: posterior distribution of m via Gibbs sampler

Consider n subjects randomly drawn to rank k items, where Y is an (n 3 k) ranking matrix

with row vector yj(j 5 1, 2, . . . , n) representing the rank outcome for participant j. The

ranking outcome yj is determined by the utilities vj for participant j (j 5 1, 2, . . . , n). For

example, vj 5 (0.35 0.24 0.31) results in the ranking outcome yj 5 (1 3 2) for subject j.
Under the Thurstonian Case V model, vj is normally distributed with mean m and covariance

S 5 I. A latent variable V is augmented so that we are able to sample m from p(m | V, Y, I)
directly.

By using the Gibbs sampler, we can sample (Y, m) from their joint posterior distri-

bution by iterating the following cycle of successive draws from the full conditional

distributions:

1. Draw vjs from p(vj | m, yj, I) for j 5 1, 2, . . . , n.

2. Draw m from p(m | V, Y, I) 5 p(m | V, I).

In step 1, to incorporate the information of Y, a (k 2 1) 3 k contrast matrix Cj referring to

the adjacent items in the ranking pattern is formed for each yj, j 5 1, 2, . . . , n. In the

Thurstonian Case V model, v ~ Nk(m, I), therefore Cjv ~ Nk 2 1(Cjm, CjC 9
j) follows a multi-

variate normal distribution. For each yj, one draws xj from the conditional posterior of

Cjv | m, yj which is a (k 2 1)-variate normal distribution truncated at O with mean Cjm and

covariance matrix CjC 9
j. The rejection procedure can then be used to obtain random draws, xj,

from the truncated multivariate normal distribution. vj can then be obtained by vj 5 C 2
j xj,

where C 2
j is the generalized inverse of Cj. But as k grows large, this method becomes

inef®cient since a large number of draws are rejected before one which satis®es the condition.

Fortunately, a more ef®cient process was introduced by Hajivassiliou (1993) to generate

samples from a truncated multivariate normal distribution (TMVN) by adopting the Gibbs

sampler algorithm. Instead of drawing directly from a TMVN, the TMVN Gibbs sampler

cycle obtains draws through the successive (k 2 1) fully conditional truncated univariate

normal distributions. The program used for this study will either ®nd the convergent value v(t)

or use t 5 20 replications as default. This procedure is most useful when the number of items

is large.

Testing Thurstonian Case V ranking models using posterior predictive checks 291

http://www.ingentaconnect.com/content/external-references?article=/0033-3123^28^2947L.353[aid=20731]
http://www.ingentaconnect.com/content/external-references?article=/0090-5364^28^2922L.1142[aid=20273]
http://www.ingentaconnect.com/content/external-references?article=/0090-5364^28^2912L.1151[aid=20732]
http://www.ingentaconnect.com/content/external-references?article=/0033-295X^28^2934L.273[aid=20432]
http://www.ingentaconnect.com/content/external-references?article=/0007-1102^28^2952L.79[aid=20733,cw=1]


In step 2, since

p(m | V, Y, I) 5 p(m | V, I) ~ p(m)p(V | m, I)

~ exp( 2 1
2
m 9 (S2I)2 1m) exp 2 1

2

Xn

j5 1

(vj 2 m)9 I2 1(vj 2 m)

Á !

~ exp( 2 1
2(m 2 mn) 9 S 2 1

n (m 2 mn))

~ Nk(mn, Sn),

where p(m) ~ Nk(0, S2I), mn 5 (nS2/(1 1 ns2)) ÅY and Sn 5 (nS2/(1 1 nS2))I. Thus, we draw m

directly from p(m | V, Y, I) ~ Nk(mn, Sn).
Under weak conditions, Geman & Geman (1984) showed that as the number of iterations

t N ` , the joint density of (V(t), m(t)) will geometrically converge in distribution to the joint

density of (V, m). Hence, after iterative drawings from the above two conditional posterior

distributions for a suf®cient number of times, the sequence {(V(1), m(1)), (V(2), m(2)), . . .} will

converge to a single draw (V, m) from the joint posterior distribution. There are no ®rmly

established rules to determine the number of iterations required to achieve convergence.

Nevertheless, the convergence of the sequences is ensured by Heidelberger & Welch (1983)

stationarity tests. In the present study, 1500 iterations were used in the simulation to reach

convergence. We discarded the ®rst 500 so-called burn-in draws and collected every 10th of

the remaining 1000 draws to minimize autocorrelations between successive draws. The 100

collected draws were used to construct the posterior distribution of m, namely p(m| Y, I).
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