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ARTICLE INFO ABSTRACT

Chloride-induced damage of coastal concrete structure leads to serious structural deterioration. Thus, chloride
content in concrete is a crucial parameter for determining the corrosion state. This study aims at establishing
machine learning models for chloride diffusion prediction with the utilizations of the Multi-Gene Genetic
Programming (MGGP) and Multivariate Adaptive Regression Splines (MARS). MGGP and MARS are well-es-
tablished methods to construct predictive modeling equations from experimental data. These modeling equa-
tions can be used to express the relationship between the chloride ion diffusion in concrete and its influencing
factors. Moreover, a data set, which contains 132 cement mortar specimens, has been collected for this study to
train and verify the machine learning approaches. The prediction results of MGGP and MARS are compared with
those of the Artificial Neural Network and Least Squares Support Vector Regression. Notably, MARS demon-
strates the best prediction performance with the Root Mean Squared Error (RMSE) = 0.70 and the coefficient of
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determination (R?) = 0.91.

1. Introduction

The durability of concrete structure has always been a critical
concern in port and marine engineering [1]. Among all the factors af-
fecting the reinforced concrete durability, corrosion of reinforcement is
often considered as the most influential factor [2-4]. For marine con-
crete, chloride, which is dissolved in the surrounding environment,
gradually penetrates into the structure. Accordingly, steel reinforce-
ments in the structure are subject to corrosion when the chloride con-
tent reaches a sufficiently high level [5,6].

In the case of chloride ingression, if no timely maintenance measure
is carried out, the diffusion of chloride ion can cause serious con-
sequences for the strength and esthetics of the structure, resulting in the
reduction of the service life of structure [7,8]. Noticeably, chloride-
induced damage may trigger critical failure of the structure within a
relatively short amount of time. Therefore, the study on chloride ion
ingression in concrete is of practical need for better ensuring the dur-
ability of reinforced concrete structure.

Notably, the ability of ensuring the durability and service life of
reinforced concrete structure in marine environment depends upon the
accuracy in predicting chloride diffusion in concrete [9]. This predic-
tion of chloride diffusion can help to formulate predictive concrete
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deterioration model. Based on that, cost-effective strategy can be made
regarding the appropriate time of repairing or replacing the degraded
structural elements [8].

Conventional prediction approach based on Fick’s second law of
diffusion is commonly used to estimate the chloride diffusion process
[10]. Nevertheless, this traditional formula-based method suffers from
severe drawbacks such as the difficulty of parameter estimation [11]
and unsatisfactory prediction accuracy [12,13]. The reason is that the
dependence between chloride diffusion in concrete and its conditioning
factors is inherently complex and time-dependent [11,14]. These facts
demand more advanced tools for modeling the phenomenon of chloride
ion diffusion in concrete.

Hodhod and Ahmed [15] attempted to model the chloride diffu-
sivity process in high performance concrete with the application of an
Artificial Neural Network (ANN). Eskandari, Nik and Eidi [16] con-
structed an ANN-based inference model for estimating compressive
strength of mortar in marine environment. Intelligent models for pre-
dicting chloride content in concrete based on an ANN and regression
tree have been examined by Asghshahr, Rahai and Ashrafi [17]. Liao,
Chen, Wu, Chen and Yeh [12] studied the chloride diffusion in cement
mortar by means of the Least Squares Support Vector Regression. Re-
cent applications indicate that advanced machine learning methods

E-mail addresses: hoangnhatduc@dtu.edu.vn (N.-D. Hoang), chuntaoc@mail.ntust.edu.tw (C.-T. Chen), kliao@ntu.edu.tw, liaokuowei@gmail.com (K.-W. Liao).

http://dx.doi.org/10.1016/j.measurement.2017.08.031

Received 25 March 2017; Received in revised form 17 August 2017; Accepted 21 August 2017

Available online 24 August 2017
0263-2241/ © 2017 Elsevier Ltd. All rights reserved.


http://www.sciencedirect.com/science/journal/02632241
http://www.elsevier.com/locate/measurement
http://dx.doi.org/10.1016/j.measurement.2017.08.031
http://dx.doi.org/10.1016/j.measurement.2017.08.031
mailto:hoangnhatduc@dtu.edu.vn
mailto:chuntaoc@mail.ntust.edu.tw
mailto:kliao@ntu.edu.tw
mailto:liaokuowei@gmail.com
http://dx.doi.org/10.1016/j.measurement.2017.08.031
http://crossmark.crossref.org/dialog/?doi=10.1016/j.measurement.2017.08.031&domain=pdf
kliao
打字機文字
參考著作No.15


N.-D. Hoang et al.

provide much better tools for characterizing the chloride diffusion
process [18].

Nevertheless, since the chloride ion diffusion in cement mortar is
indeed a complex phenomenon, other advanced machine learning ap-
proaches should be investigated for tackling with the problem of in-
terest. Moreover, most studies employed learning algorithms that
cannot yield explicit model structures. The current study attempts to fill
this gap in the literature by examining the possibility of constructing
chloride diffusion modeling equations from experimental data. These
modeling equations can provide convenient tools for researchers and
engineers to express the relationship between the chloride ion diffusion
in concrete and its conditioning variables.

The Multi-Gene Genetic Programming (MGGP) and the Multivariate
Adaptive Regression Splines (MARS) are selected in this research due to
their successful applications in other fields of study [19,20]. Further-
more, to train and validate the prediction models, a data set including
132 cement mortar specimens in simulated marine environment has
been collected. The rest of the paper is organized as follows: the second
section describes the research method; the experimental setting and
results are reported in the next section; the final part provides some
conclusions on this study.

2. Research method
2.1. The experimental data set

To establish a data set for constructing and verifying the machine
learning solutions, a total number of 132 mortar specimens with dif-
ferent features has been prepared. It is noted that the fresh mixing
water is in compliance with the specifications of ASTM C494 - Standard
specification for chemical admixtures for concrete [21]. The mortar
specimens are made with Portland type I cement, which is complied
with the specifications of ASTM C150 - Standard specification for
Portland cement [22]. The fine aggregate for the specimens is machine-
made sand derived from crushed river rocks. The measured density
(saturated surface dry), water absorption (%), and maximum aggregate
diameter of the fine aggregate are 2.56, 1, and 4.75 mm, respectively.
The sieve analysis of the employed sand is provided in Table 1.

The water-to-cement ratio (w/c) of the mortar is 0.6. It is noted that
to mimic marine environment, a 3.5% sodium chloride water solution
was employed. This sodium chloride water solution has a sodium
chloride content higher than 99.5% and potassium iodate content of
20-35 ppm. Moreover, chloride ion concentration test is carried out via
a reagent-grade silver nitrate (AgNO3) solution produced by Fluka.

It is worth noticing that to record the rate of chloride diffusion in
the specimens, two groups of specimens were utilized during experi-
mental process. The specimens in the first group (Group 1) were molded
in cubic shape with edge 10 cm, designed to mimic chloride ion
diffusion in a beam, column, and wall. The specimens in the second
group (Group 2) were cylinders, designed to simulate chloride ion
diffusion in an entire concrete structure.

After being de-molded, it is noted that four sides of one-dimensional

Table 1
Sieve analysis result of the employed fine aggregate.

Sieve number Remaining (%) Accumulated remaining (%) Passing (%)

3/8” 0 0 100
Number 4 1.5 1.5 98.5
Number 8 31.7 33.2 66.8
Number 16 25.8 59.1 40.9
Number 30 15.1 74.2 25.8
Number 50 14.3 88.4 11.6
Number 100 11.6 100 0
Sum 100 356.4

Fineness modulus 3.6
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specimens are sealed by epoxy coat. In case of two-dimensional spe-
cimen, only the top and bottom faces of the specimens are sealed. The
specimens of the two categories are illustrated in Fig. 1. For sampling
purpose, the specimens of Group 1 and Group 2 tests are sliced at an
interval of 2 cm. Meanwhile, the reinforced cylinder specimens (the
second group) were sliced at an interval of 1.5 cm. It is noted that after
sampling, the procedure for determining the chloride ion content in
each layer was in compliance with AASHTO T260-97 [23].

To estimate the chloride ion concentration (Y) at measured points,
the mortar age (X;), the depth of measured position (X,), the diffusion
dimension (X3), and the presence of reinforcement (X4) are employed as
chloride ion concentration influencing factors. It is noted that the cases
of X3 = 0, X3 = 1, and X3 = 2 denote the status of no reinforcement,
steel reinforcement, and aluminum reinforcement, respectively. Table 2
and Fig. 2 summarize the records of all experimental tests in this study
and provide the statistical descriptions of the four influencing factors as
well as the target output.

2.2. Multi-Gene Genetic Programming (MGGP)

The Genetic Programming (GP) is one of the most influential ma-
chine learning methods inspired from real-world biological systems
[19]. This learning method automatically generates predictive equa-
tions based on the rules of natural genetic evolution. In the task of
function approximation, GP is capable of generating explicit prediction
equations autonomously without any assumptions about the prior form
of the underlying relationship. Unlike conventional regression analysis
approaches, GP evolves both the model structure and the model para-
meters of a prediction model to fit the data set at hand [24].

The Multi-Gene Genetic Programming (MGGP) is a powerful ex-
tension of the standard GP. In essence, MGGP is considered to be a
weighted linear combination of the outputs obtained from individual
GP models. Each individual model is called a gene. A typical MGGP
model is illustrated in Fig. 3. With a certain number of genes (NG), it is
noted that the linear coefficients (wg, w1,.., Wng) is computed from the
training data set via the ordinary least squares method [25].

The maximum tree depth (MTD) and the number of genes (NG)
should be pre-specified before the model training process. Generally,
large values of MTD and NG can lead to a better modeling performance
but the constructed model may suffer from the risk of overfitting. On
the other hand, appropriately small values of MTD and NG can help to
establish more compact and comprehensible modeling equations.
Similar to the mechanism of the standard GP, during the evolution
process, genes of MGGP are created, modified, or deleted via crossover
and mutation operators (see Fig. 4).

2.3. Multivariate Adaptive Regression Splines (MARS)

MARS [26] is a novel method for constructing modeling equations
from data. This method divides the high-dimensional learning space
into sub-ranges of prediction variables and establishes a mapping re-
lationship between those prediction variables and the targeted output
variable [27]. MARS uses piecewise linear function for fitting each local
model and employs an adaptive approach to determine the final model.
According to Freidman [26], MARS can be considered as a general-
ization of stepwise linear regression or a variant of regression tree with
the aim of achieving better modeling capability compared to conven-
tional regression approaches. Evidences of MARS as a powerful ma-
chine learning tool are observed in plentiful previous studies [20].

It is noted that a MARS-based model is expressed through a series of
simple basis functions which characterizes the relationship between

input and output variables. A basis function is shown as follows:
b, (x) = max(0,C—x) or by, (x) = max(0,x—C) (€8]

where b,, denotes a basis function; x is an input variable; C represents a
threshold parameter used to divide the original range of x into sub-
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Fig. 1. Illustration of the specimens.
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Table 2
Data summary.

Factors Notation Min Mean Std Max ’ @ ° @
Mortar age (day) X4 7.00 78.27 51.94 168.00
Depth of measured position (cm) Xy 0.75 2.69 1.52 5.00 e @ °
Diffusion dimension X3 - - - -
Presence of reinforcement X4 - - - -
Chloride ion concentration (mg/g Y 0.15 2.68 1.94 830 @ @
mortar)
— 2 :
ranges f(x) = wo + Wi [(1-X)(X21X3) 7] + Wa[(2xX)-sin(X,X3)]
The general form of the model is expressed as follows: Fig. 3. A typical MGGP model with two genes and three variables.
M .
FOO) =ag + 2 Qb () where MSE stands for mean square error of the model computed with
- m=~m .. . .
el 2) the training data. k denotes the number of basis functions. n represents

where ag,0,...,cy are weighting coefficients of the MARS model; f(x)
represents the model output. M denotes the number of weighting
coefficients.

The model establishment of MARS is divided into two steps: forward
and backward steps. In the first step, basis functions are added into the
model so that they can help to reduce the training error; this process
terminates when the maximum number of basis function is reached.
The second step aims at alleviating overfitting phenomenon by pruning
redundant basis functions; each sub-model of MARS is evaluated by the
generalized cross-validation (GCV) index [28,29]:

the number of observations in the training data. ¢ is a penalty coeffi-
cient; Friedman [26] and Jekabsons [29] recommend that this para-
meter should be searched within the range of [2,4].

3. Experimental setting and results
3.1. Experimental setting

The purpose of this section is to construct the modeling equation
from experimental data. The two machine learning approaches (MGGP

and MARS) are employed to establish the mapping function that de-
termine the relationship between input variables (the mortar age, the

GCV = MSE /(I_M)z depth of measured point, the diffusion dimension, and the presence of
n 3 reinforcement) and the targeted output (the chloride ion
X‘I X2 XS X4 Y
50 100 80 T 35
70 30
40 80 60
25
30 60 - 20
40
20 40 30 L
20 10
10 20
10 g
0 0 0 0
0 200 O 5 1 15 2 0 1

Fig. 2. Histograms of influencing factors.
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Fig. 4. Typical operations of MGGP.

concentration). It is noted that before the training and prediction
phases, the variables within the data set have been normalized by
means of the Z-score normalization [30].

In addition, before the data set is employed for model construction,
it is beneficial to perform a preliminary investigation on the relevancy
of each conditioning variable. At this step, the ReliefF [31] method is
employed to carry out the analysis. Based on probability and informa-
tion theories, ReliefF is capable of detecting conditional dependencies
between attributes and provide a unified view on the attribute re-
levancy in regression problems [32]. This method assigns a weight
value for each input variable that express its importance; the higher the
weight, the more relevant the input variable. The analysis result is
shown in Fig. 5. The ReliefF method has shown that X; (the age of
mortar) is the most influential factor, followed by X, (the reinforcement
presence), X, (the depth of measure position), and X3 (the diffusion
dimension). Since all weight values of factors are not null, all factors are
relevant for characterizing the chloride ion concentration.

It is noted that the chloride diffusion is a highly time-dependent
process. Therefore, the chloride diffusion cases in samples collected at
earlier ages are used as training data; meanwhile, the chloride diffusion
cases in samples recorded at later ages play the role as testing data. In
this experiment, the training and testing sets occupy 90% (119 samples)

0.12 T T T T
0.1
0.1
0.09
0.08

5 0.07
0.06
0.05

Feature Wei

0.04
0.03
0.02
0.01

1 2 3 4
Infuencing Factors

Fig. 5. Weights of factors computed by relieff.
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and 10% (13 samples) of the whole data set, respectively.

In addition, the Root Mean Squared Error (RMSE) and the coeffi-
cient of determination (R?) are used to quantify the prediction accuracy
of each model. RMSE expresses the deviation between the output values
actually observed and the output values computed from a trained
model. Meanwhile, R? shows the proportion of the variability in the
output variable explained by the model; and this index demonstrates
how well a prediction model regresses the chloride ion concentration
on the input variables.

It is noted that in our study, MGGP and MARS are implemented in
Matlab environment via the well-developed toolboxes of Searson [25]
and Jekabsons [29], respectively. Prior to the training phases of MGGP
and MARS, it is required to select suitable free parameters of those
models. In the case of MGGP, the most crucial parameter is the number
of genes (NG). The other model parameters of MGGP are chosen based
on the recommendation of Searson [25] and trial-and-error experiments
as follows: the population size = 50; the maximum number of gen-
erations = 300; the tournament size = 5. In addition, MARS training
process necessitates the specification of the maximum number of basis
functions (k,e) and the penalty coefficient (c). In this study, a ten-fold
cross validation process based on the training data set is employed to
select the suitable tuning parameters of MGGP and MARS. The most
desirable tuning parameters are associated with the model with the
lowest average RMSE in the testing phase.

3.2. Experimental results and comparison

This section reports the prediction results of MGGP and MARS.
Fig. 6 illustrates the performance of each model corresponding to dif-
ferent values of the tuning parameters. In Fig. 6, the horizontal axis
represents the value of the investigated model parameters; meanwhile,
the vertical axis denotes the cross-validation based average error (in
terms of RMSE) in testing phase. In the case of MGGP (see Fig. 6a),
when the number of genes increases from 1 to 5, the model error in
testing phases is reduced from 1.47 to 0.86. The MGGP model with
more than 5 genes does not show any improvement in prediction ac-
curacy.

In the case of MARS (see Fig. 6b), it is noted that model performance
associated with two model parameters, namely the maximum number
of basis functions (k,q) and the penalty coefficient (c), are in-
vestigated. The maximum number of basis functions (k;,q,) starts at 5
and gradually increases with an interval of 5. At each value of kyqx, the
model performance is appraised with each value of the penalty
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Fig. 6. Model parameter selection outcomes: (a) MGGP and (b) MARS.

Table 3
Basis functions of the MARS model.

Basis function (b) Formula

Basis function (b)

Formula

1 max(0, X, + 1.11) 12 byo X max(0, —X4 + 0.69)
2 max(0, —1.11 — X3) 13 max(0, —X; — 0.43) X , X3 + 1.54)
3 max(0, X4 — 0.69) 14 max(0, X; + 1.23) x max(0, X3 + 1.54) x max(0, —X, — 1.11)
4 max(0, —X4 + 0.0.69) 15 max(0, X; + 1.23) x max(0, X5 + 1.54) x max(0, —X, — 0.29)
5 max(0,—0.43 — X;) 16 max(0, —X; + 0.65)
6 by x max(0, X; — 0.65) 17 max(0, X; — 0.65) x max(0, —X, — 0.29)
7 by x max(0,—X; + 0.65) 18 max(0, X; — 0.38)
8 by x max(0, X, — 0.20) 19 max(0, X; — 1.18)
9 by x max(0, —X, + 0.20) 20 max(0, —X; + 1.18)
10 max(0, X; + 1.23) 21 by X max(0, X, — 0.69)
11 byo X max(0, X4 — 0.69) 22 b,y X max(0, —X4 + 0.69)
Table 4 functions; this means that 18 redundant basis functions have been cast
Result comparison. out by this algorithm in the second learning stage. The prediction
equation found by MARS is reported as follows:

Performance Models

LSSVM MGGP LM-ANN MARS Y = —20.60—0.64 X b; + 6.40 X by + 12.70 X b3 + 10.30 X by—1.21 X bs
Training RMSE 0.53 0.61 0.58 0.37 + 4.02 X bg—2.95 X b; + 0.18 X bg + 0.17 X by + 8.40 X byg

R? 0.92 0.90 0.90 0.95 —6.23 X b11—5.33 X b;3—0.21 X by3—0.86 X b1y + 0.15 X bys
Testing RMSE 0.89 0.87 0.83 0.70
R2 0.86 0.87 0.88 0.91 —2.34 X b15—073 X b17 + 1.69 X b18—776 X b19 + 10.80 X bzo

coefficient within the set of {0.1,0.5,1.0,1.5, --- ,4.0}. The set of parameters
corresponding to the lowest average RMSE in the testing phase is se-
lected as the most suitable one. Observed from the figure, when the
number of basis functions increase from 5 to 40, the model error in both
training and testing phases are reduced. The testing error (RMSE) at this
point of MARS model is 0.72 with the average value of the parameter
¢ = 1.00. With the numbers of basis functions > 40, we observe in-
creases in the testing error. This fact indicates that the value of kg
should be limited to be 40.

When the most suitable number of genes has been identified, the
MGGP model is trained with all records of the data set. The resulting
prediction equation discovered by a MGGP model is reported as fol-
lows:

Y = 0.27X,—0.281X;— X4 | + 0.59exp(—X;)—0.28cos(exp(X; + 2X,))

—0.66c0s(exp(Xs42x,))—0.871X41 + 0.72 (@]
where the model output Y and input variables X;, X5, X3, and X4 have
been defined previously in Table 2.

In addition, with the selected values of parameters (kpq = 40,
¢ = 1.00), the prediction model based on MARS has been identified. It
is worth noticing that the final MARS model consists of 22 basis

—5.30 X by;—1.93 X by, 5)
where the basis functions (b) are defined in Table 3.

Furthermore, the prediction results of MGGP and MARS are com-
pared to those of other widely employed machine learning approaches
including the Levenberg-Marquardt Artificial Neural Network (LM-
ANN) [33] and the Least Squares Support Vector Machine (LSSVM)
[34]. These two approaches are powerful tools for nonlinear data
modeling and their successful applications have been reported in pre-
vious studies [35-39]. In this experiment, the LM-ANN and LSSVM
models are executed via the Mathwork’ Neural Network Toolbox [40]
and the LS-SVMlab Toolbox [41], respectively.

Moreover, to determine an appropriate configuration of LM-ANN
(including the number of neurons and the learning rate), model selec-
tion processes based on a ten-fold cross validation have been used. The
starting number of neurons in the hidden layer is four (which is equal to
the number of input variables) and then incrementally increases to
20 neurons. Meanwhile, the learning rate parameters within the set of
(0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, and 1) have been
employed. The log-sigmoid function is selected as the ANN activation
function. Furthermore, the number of training epochs is set to be 5000.
Experimental result point outs that an ANN with the number of hidden
neurons = 8 and the learning rate = 0.1 achieves the best prediction
accuracy. On the other hand, to select the most desirable tuning



N.-D. Hoang et al.

Training Phase- Line of best fit (R 2 = 0.95)

Measurement 112 (2017) 141-149

Testing Phase- Line of best fit (R 2 = 0.91)
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Fig. 8. Prediction results of MARS: actual and predicted observations.

parameters for LSSVM, a metaheuristic algorithm has been employed;
the detail of the metaheuristic-based tuning process is provided in the
previous work of Pham, Hoang and Nguyen [42].

The detail of the result comparison is summarized in Table 4, which
reports the Root Mean Squared Error (RMSE) and the coefficient of
determination (R?) of each model in both training and testing phases. It
is noted that the results in Table 4 are average values obtained from ten-
fold cross validation processes. Observably, MARS has attained the best
prediction performance in the testing phase (RMSE = 0.70 and
R? = 0.91), followed by LM-ANN (RMSE = 0.83 and R? = 0.88),
MGGP (RMSE = 0.87 and R*> = 0.87), and LSSVM (RMSE = 0.89 and
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R? = 0.86). Thus, the prediction performance of MARS is found to be
better than those of the two approaches of LSSVM and LM-ANN. In
addition, the predictive capability of MGGP is worse than that of LM-
ANN and slightly better than that of LSSVM.

These facts demonstrate that machine learning methods including
MARS and MGGP are capable of establishing inference models for
predicting the chloride ion diffusion in cement mortar. Notably, the
formula produced by MGGP seems to be more compact than that
yielded by MARS. However, it is evident that MARS has discovered a
mapping function that is more accurate than the function found by
MGGP. This indicates that the functional mapping between the chloride
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diffusion in cement mortar and its influencing factors is indeed com-
plex. Therefore, a model with simple structure is incapable of de-
scribing such complex functional mapping in a satisfactory manner. The
details of the prediction outcomes yielded by MARS and MGGP are il-
lustrated in Figs. 7-10.

Furthermore, illustrative prediction curves of chloride ion con-
centration corresponding to different values of measurement depth
produced by the two models are provided in Fig. 11. These two curves
are constructed for the case in which the mortar age = 7, the diffusion
dimension = 1, and no reinforcement is used. As can be seen from
Fig. 11, there is a good agreement between the prediction curves and
the actual values of chloride ion concentration. Another observation is

that the model output of MGGP is clearly nonlinear; meanwhile, that of
MARS is piecewise linear.

4. Conclusion

This study investigates the possibility of employing machine
learning algorithms, including MGGP and MARS, for constructing pre-
diction equations for the modeling of the diffusion of chloride ion in
cement mortar. To train and verify these machine learning approaches,
a data set containing 132 records of mortar specimens has been col-
lected. The mortar age, the depth of measured point, the diffusion di-
mension, and the presence of reinforcement have been employed to
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Fig. 11. Chloride ion concentration prediction curves: (a) MARS, (b) MGGP.

characterize the chloride ion concentration in each specimen.
Experimental results point out that both MGGP and MARS can help
to establish modeling equation with desirable prediction accuracy;
moreover, the prediction equation of MARS shows better modeling
outcome than that of MGGP. Result comparison with other benchmark
methods including LM-ANN and LSSVR further demonstrates the
competitive performances of the two investigated approaches.
Accordingly, the prediction equations produced by MARS and MGGP
can be helpful to assist decision makers in the design phase of concrete
structure used in marine environment. The future extension of the
current study may include: (1) conducting more experimental tests with
cement mortar to enhance the applicability of current prediction model;
(2) investigating other advance machine learning approaches to pro-
duce more accurate modeling tools; (3) applying the MGGP as well as
MARS for solving other modeling problems in civil engineering.
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