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Reliability-Based Design Optimization of a River Bridge
Considering Uncertainty in Scours

Kuo-Wei Liao'; Wei-Lun Chen?; and Bang-Ho Wu?®

Abstract: Safety assessments of river bridges have attracted a great deal of attention from researchers. Regardless of whether a bridge is
being constructed or retrofitted, an integrated analysis of many factors, such as hydraulic conditions, geological conditions, and structural
strength, is necessary. A three-dimensional finite-element model is used here to perform structural analysis. The uncertainty in important
parameters (such as water level, water flow rate, scouring depth, and the N value of the standard penetration test) was considered via a
reliability analysis. A parameterized bridge model was established to perform the iterative calculations required for the optimization
and reliability analysis, in which the preprocessing, solution, and postprocessing were all performed automatically to facilitate a reliability-
based optimization. To reduce the number of calculations, a surrogate model was adopted, in which the reliability analysis uses the first-order
second-moment method and the optimization uses the particle swarm optimization method. A numerical example (the Dongshi Bridge) is
given to demonstrate the methodologies proposed in the study. DOI: 10.1061/(ASCE)CF.1943-5509.0001118. © 2017 American Society of
Civil Engineers.

Author keywords: Particle swarm optimization; Optimum; Successful probability; Bridge foundation; First-order second-moment.

Introduction

River bridges play an essential role in Taiwan’s transportation
network. Taiwan’s geographic characteristics of elongation in the
northern and southern directions with mountains rising in the central
regions cause the rivers in the east and west to flow at high speeds
such that riverbeds are eroded and the foundations of bridges are
likely to be scoured. In recent years, multiple bridge disasters have
occurred. For example, Typhoon Bilis caused the Kaoping Bridge
to collapse without warning in 2000 (Liao et al. 2016); Typhoon
Sinlaku caused damage to four bridges, the Hofeng Bridge, the
Jiasian Bridge, the Nioumian Bridge, and the Wuhuliao Bridge, in
2008 due to flood impacts; and Typhoon Morakot caused more than
60 bridges throughout Taiwan, including the Shuangyuan Bridge
(NCDR 2010), to be damaged by floods in 2009. Prior to these
bridge damage events, riverbed erosion commonly pre-existed in
these areas; therefore, the occurrence of scouring has a significant
impact on the overall safety of bridges and has gained great attention
from researchers (Ni et al. 2012; Ko et al. 2014; Lin et al. 2015).
Wardhana and Hadipriono (2003) investigated 500 bridge structure
failures in the United States between 1989 and 2000. They found
that bridge failures could be attributed most frequently to hydraulic
causes. For example, flooding and scouring were the leading causes
of bridge failures (48.31% of the total). Note that there were close to
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20 failure causes investigated; besides flood, scour, and collision
(11.73% of the total), none of the other causes had a failure percent-
age greater than 10%. That is, flooding and scouring were the most
dominant factors. Despite the lack of official statistical data con-
cerning the causes of bridge failures in Taiwan, it is commonly rec-
ognized that the situation in Taiwan is likely to have the same trends
as that in the United States. Therefore, the aim of this study is
to evaluate bridge safety against floods. In addition, conventional
bridge safety assessments primarily focus on analyses, whereas de-
sign often attracts relatively less attention. However, if various un-
certain factors can be taken into consideration during the design
stage to propose an optimized design, it could be possible to re-
duce safety concerns over a bridge’s service life. Therefore, devel-
oping an efficient and practical reliability-based design optimization
(RBDO) algorithm for a river bridge is an additional focus of this
study.

Uncertainties in a bridge’s analysis/design are often inevitable.
It is common to use a deterministic analysis with a safety factor to
take these uncertainties into consideration. The safety factor ap-
proach, however, cannot identify which design parameters are more
critical because all the uncertainties are represented by a single fac-
tor throughout the design. Conversely, RBDO incorporates a prob-
abilistic analysis with an optimization technique to find the best
design within a feasible domain. The major drawback of RBDO
is its computational cost, which is often high compared to that
of deterministic analyses. The heavy computation cost is primarily
due to the reliability analysis performed inside the optimization
loop. To lessen this computational burden, several RBDO algo-
rithms have been proposed (Aoues and Chateauneuf 2010; Li et al.
2010; Liao and Lu 2012; Liang et al. 2007; Kaymaz and Marti
2007; Shan and Wang 2008; Motta and Afonso 2016); the current
study used the least-square support vector machine (LS-SVM)
(Suykens et al. 2002) method to build a surrogate model represent-
ing the relationship between the influencing factors and the reli-
ability index (), in which the [ value was computed using the
first-order second-moment (FOSM) method. The particle swarm
optimization (PSO) algorithm was used as an optimizer to find the
appropriate bridge dimensions. Several common indices were used
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Fig. 1. Flowchart of RBDO algorithm used in this study

to ensure the accuracy of the surrogate model built by the LS-SVM
method. In addition, a parameterized ABAQUS model was estab-
lished to facilitate the process of reliability analysis and the opti-
mization calculations. Fig. 1 displays the calculation flowchart
of the proposed RBDO algorithm. As shown in Fig. 1, to take ad-
vantage of existing software (i.e., ABAQUS), a computational
framework for recursive analyses, which is a necessary process in
reliability analysis and optimization, was established using the
scripting language Python. The framework integrates the commer-
cial finite-element software, reliability analysis, optimization, and
the surrogate model to carry out a structural reliability-based design
optimization. As shown in Fig. 1, two interim optimums are re-
quired to obtain the final optimal solution: pBest and gBest. The
pBest optimum refers to the particle position with the minimum
objective value in its own population and gBest refers to the particle
position with the minimum objective value in the entire population.
Details of the proposed algorithm are described subsequently, fol-
lowed by a bridge example.

Table 1. Parameterized Variables in Finite-Element Model

Establishing the Parameterized ABAQUS Model

The target structure of this study is a river bridge with a single-pier
piled foundation. Six types of pile arrangements are considered:
3x3,4%x2,4x3,4x4,5x4,and 5 x 5. The original arrange-
ment (i.e., 3 x 3) was selected as the baseline design, which is often
the lower bound among the considered arrangements. On the other
hand, the arrangement of 5 x 5 is the upper bound design. There are
many possible designs between the lower and upper bounds, in-
cluding pile arrangements such as N x M or M x N (N = number
of piles in river direction, M = number of piles in road direction).

To save computational cost, only four additional arrangements,

which are often found in practice, were selected for analysis. The

parameterized variables in the finite-element model are shown in

Table 1. In Table 1, the variables can generally be divided further

into two types of geometric-related and material-related variables,

which include a total of 22 parameterized variables.
The finite-element model used in this study is based on the fol-
lowing assumptions:

1. The boundary of the soil model is fixed.

2. Steel bars are simulated using beam elements and are arranged
at the surface of the pier; that is, the strength of the concrete
cover is ignored. Such settings facilitate meshing the pier and
connecting the pier cap and pile cap without significantly influ-
encing the structural analysis.

Element Type

A three-dimensional, eight-node element (C3D8) was used for
the bridge and column and a three-dimensional, 10-node element
(C3D10) was used for the pier cap and pile cap, as shown in Fig. 2.
The pier cap (or pile cap) was connected to the circular pier such
that its geometric relationship was more complicated: If C3D8 is
used in the cap area, the automatic meshing may be subject to
analysis precision problems and overly long analysis times.
Consequently, C3D10 was used instead of C3D8 to increase the
likelihood of success with the automatic model construction.

Soil Column Settings of Numerical Analysis Model

The parameters of the soil column refer to the dimensions of the
column, the number of soil layers, and the material properties of
each layer. The following describes the setting methods:

1. The horizontal dimensions of the soil. This dimension is often
expressed using kD (Fu 2012), where D is the distance between
the outermost piles (Fig. 3) and k is a multiplier larger than 1.
Primary factors used to determine the value of k include the
computing cost and the desired precision. Under the assumption
of having similar displacement with Chang’s formula, via trial
and error, the value of k determined for this study was 10. Be-
cause this study only considers the horizontal forces induced by
floods and ignores the settlement effect caused by vertical loads,
unlike in the case of the horizontal dimension, the effect of the
vertical dimension of the soil was not investigated. A length

Parameter type

Parameter name

Geometric-related

Pier diameter, pier depth, pile cap depth, pile cap width, pile cap length, pile diameter, pile depth, pile group arrangement, total

depth of soil, scour depth, water level, water velocity, number of soil layers, thickness of each individual soil layer, diameter of

steel bar
Material-related
each individual soil layer

Elastic modulus and Poisson ratio of concrete, elastic modulus and Poisson ratio of steel, elastic modulus and Poisson ratio of
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Fig. 2. Meshing diagram of three-dimensional model

:
]

kD

Fig. 3. Concept diagram for three-dimensional soil diagram

greater than the pile embedded length was used for the vertical
soil length in the model.

2. The number of soil layers. Drilling reports provided in the de-
sign drawing were used to determine the soil properties and the
number of soil layers. Based on the survey, the maximum num-
ber of soil layers that can be accommodated within the parame-
terized ABAQUS model is six.

3. The Poisson’s ratios of the soils used here are listed in Table 2.

4. The stability of a bridge was selected as the deterministic ana-
lysis in the current study, in which five limit states were con-
sidered. Such a procedure is often used as a preliminary safety
evaluation in Taiwan and is often considered a relatively con-
servative analysis. Thus, the material response often remains

Table 2. Poisson’s Ratios of Soil Layers

Soil type Poisson’s ratio
Clay 0.35
Sand 0.3
Gravel 0.25
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in the elastic stage. For this reason, the linear model is used for
concrete and the perfect bilinear model is used for steel and soil.
The yield stress and passive stress are the transition points for
steel and soil, respectively. Mesh size depends on several fac-
tors, such as accuracy, cost, and automatic meshing. In consid-
eration of the aformentioned factors, the mesh size was arranged
in a range from 100 to 200 cm.

Process Flow Using Python to Establish Automatic
Design

In this study, the Python script provided by ABAQUS was used to

modify the parameters to achieve automatic model construction.

The following briefly describes the steps of model construction:

1. For the process, divide the three-dimensional model into two
major parts: the bridge body and the soil column.

2. Select the type of foundation pile.

3. Use three-dimensional coordinates to perform the model con-
struction, and replace these coordinates with variables.

4. Once the bridge body shape is completely constructed, use a
planar method to determine the locations where forces are ap-
plied by the water pressure.

5. The soil column construction process is similar to that of the
bridge body; use the planar method to determine the number of
soil layers and the thicknesses required.

6. Use the beam element to simulate the steel bars in the pier.

7. Assemble the bridge body, steel bar, and soil column.

8. Set up the external forces and boundary conditions.

8. Set up the element type for each portion.

9. Use the seed part method to complete the meshing.

0. Merge the bridge body, steel bar, and soil column based on
the grid.

11. Perform a finite-element analysis.

12. Repeat the previous steps to complete the constructions for all

six types of foundation pile types.

Soil Column Verification of Numerical Analysis Model

Because the soil properties exert critical influences on the analytical
results, the soil model used here was verified as follows. Because
the design specifications in Taiwan allow engineers to use the Y-L
Chang lateral pile analysis method to compute the response of the
soil, this method was used for verification in this study. Chang and
Chou (1989) categorized the pile foundations into six types de-
pending on their boundary conditions. Based on each category, the
pile shear stress, the pile axial stress, and the horizontal displace-
ment on the pile head can be calculated. For example, if the pile cap
is categorized as a fixed end, the pile head displacement can be
computed as follows:

% M
displ. = 0.01 [ = ts 4+ 1
P <2EI)\3 * 2EI)\2> m

where V, = applied shear force on top of pile (tf); A = \/kD/EI
(m~"); k = horizontal subgrade reaction coefficient (tf/m?); D =
pile diameter (m); E = elastic modulus (tf/m?); I = pile cross-
sectional moment of inertia (m*); and M, = applied bending mo-
ment on pile head. To comply with the analytic mode of such an
analysis method, an additional single-pile model was constructed,
with identical boundary condition settings to the ones previously
described. Table 3 shows the parameters used in the analysis, in
which the horizontal dimensions of the soil include four dimen-
sions for the simulations (Table 4). The verification results are
shown in Table 4 and Fig. 4. From the table and figure, it can
be seen that the most preferable soil size is 10D with a margin
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Table 3. Parameter Settings of Single-Pile Analysis Model

Soil parameter Setting value Units
Outermost foundation pile distance (D) 0.1 m

Concrete compression strength (fc) 21 MPa
Pile buried depth 2 m

Soil type Sand N/A
Soil penetration N value 20 N/A
Poisson’s ratio of the soil 0.3 N/A
Horizontal subgrade reaction coefficient 4.8x 1073 N/m?
Soil elastic modulus 14.4 MPa
Horizontal force of pile top 1.5 x 100 N

Table 4. Comparison of Pile Top Displacements of Soil Layers with
Different Diameters

Soil diameter Theoretical value Simulated value

multiples (k) (Chang) (ABAQUYS) Error (%)
5 1.018 0.935 8.13
10 1.018 1.076 5.72
20 1.018 1.132 11.22
40 1.018 1.292 26.94

U, Ut
+9.973e-04
+1.751e-0S5
-9.623e-04

-1.076e-02

Fig. 4. Single-pile simulation analysis result—displacement (using the
dimension of 10D as an example)

of error of approximately 5.72%. Therefore, in this study, 10D was
selected as the horizontal dimension for the soil model.

Random Variables and Reliability Analysis

For the time-independent reliability analysis, the failure probability
of a given design can be written as Eq. (2)

Pf=/ 'b'/fx(x)dx (2)

where fx() = probability distribution function (PDF) in X, which
is the vector of the basic variables in n-space. The failure domain
D is defined by one or more constraint functions, G;(X) <0,
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i=1,2,...,m. The integral in Eq. (2) is generally very compli-
cated to calculate. Approximate methods to estimate the failure
probability have been proposed, including first-order reliability
method (FORM) analysis and Monte Carlo simulations (MCSs).
The FORM technique computes the failure probability via an opti-
mization procedure. The objective is to minimize the distance be-
tween the origin and the most probable point (MPP) in the reduced
space, with the constraint that the MPP must be on the limit state
function. The obtained distance is called the reliability index (3),
and the failure probability can be easily calculated from (3. In MCS,
a simulation approach, the basic variables are generated based on
their PDFs and the limit state function is repeatedly evaluated using
the generated variables. If the failure probability is very small, a
large sample size is often required for the MCS approach.

This study considers five limit state functions corresponding to
the performances of pile shear stress, pile axial stress, bridge serv-
iceability (the horizontal displacement on the pile head), soil bear-
ing, and soil pulling force. The FOSM method was selected for
the reliability analysis. Because the deterministic analysis (i.e., the
ABAQUS analysis) used here induces an implicit limit state func-
tion, a first-order Taylor series was used to approximate the limit
state function in which the mean values of the random variables
are the expansion points. The constructed Taylor series [e.g., g(X)]
was used to acquire both p, and o, [the mean value and standard
deviation indicated in Egs. (3) and (4)], which are necessary param-
eters to calculate the FOSM-based reliability index, as described in
Eq. (5)

o == by (aT) G)
i=1 !

Axln) =N e

p="o 5)

where X’ = random variable in standard space; and fix; = mean
value for each random variable. The resulting 3 can be converted
into the corresponding reliability (p), as shown in Eq. (6)

p=®(3) (6)

where ® = cumulative probability density function of the standard
normal distribution. As shown, a greater distance () will lead to a
higher reliability (p) and vice versa.

A total of three random variables were considered during
the reliability analysis: water level, stream velocity, and scouring
depth. Detailed information concerning these random variables
is described subsequently.

Stream Velocity and Water Level

Currently, the mean values of stream velocity and water levels cor-
responding to the 100-year returning period are used for bridge
design in Taiwan (Liao et al. 2015). This helps engineers simplify
the design procedure. However, reliability analysis needs more
information, such as variation in stream velocity and the corre-
sponding PDF. This study therefore utilizes the Hydrologic Engi-
neering Center’s River Analysis System (HEC-RAS) with relevant
hydrological data (such as upstream flow volume and Manning’s
coefficient), mainly collected from the Geographical Information
Center of the Water Resources Agency of the Ministry of Economic
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Table 5. Statistics of Random Variables Considered in This Study

Random variable Average value Standard deviation

Scouring depth 7.62 m 5.57
Water level 491 m 1.56
Water flow rate 6.50 m/s 1.77
Manning coefficient 0.02-0.045 —
Elastic modulus for N = 100 30,900 MPa 8,157.8

Affairs (MOEA) as well as the reports of regulation planning for
various river basins, to establish a probabilistic-based hydraulic
model. That is, the stream velocity and water level are obtained via
Monte Carlo simulation. Once the execution number reaches the
predefined target value (i.e., 30), the coefficient of variation (COV)
and PDF for stream velocity and water level can be readily com-
puted. The statistics are summarized in Table 5. Note that the
Manning coefficient in the HEC-RAS model is a random variable
and its values vary depending on bridge location. The HEC-RAS
model allows the user to perform one-dimensional steady flow cal-
culations, one-dimensional and two-dimensional unsteady flow
calculations, sediment transport/mobile bed computations, and
water temperature/water quality modeling (ACE/HEC 1997).

Calculating Local Scouring Depths

Together with other parameters, such as pier width and riverbed
properties, calculated water level and stream velocity are used to
compute the local scouring depth for each bridge using the em-
pirical formulae suggested by Liao et al. (2015). The information
needed for the scouring depth in the reliability analysis is mean
value, standard deviation, and PDF. The average of the results for
each empirical equation is the mean value of the scouring depth.
The standard deviation for the scouring depth is one-sixth the dif-
ference between the minimum and maximum values obtained from
each empirical equation. The PDF is determined via the chi-square
test using the results of the empirical formulae. Note that the stream
velocity, water level, and local scouring depth used in this study
were either directly or indirectly acquired from the hydraulic analy-
sis. These three variables are therefore highly correlated (with a
correlation coefficient of 0.9 or above). Table 5 shows the calcu-
lation results of the random variables for the selected bridges.
The scouring depth exhibited a relatively high variance (with a
COV of 0.73).

Reliability Analysis Using Response Surface

Computationally, FOSM is a relatively efficient method compared to
other types of reliability analyses; however, because finite-element
analysis is used in this study, it is extremely time-consuming.
As aresult, in addition to the use of FOSM, response surface meth-
odology (RSM) was used to increase the computational efficiency
of the reliability analysis method. The purpose of RSM s to establish
a relationship between the design variables and the target equations
to replace the original complicated relationship. Therefore, the
response surface typically simplifies the characteristics of the
original model and reduces analysis time. The response surface
can be used to perform optimization, reliability analysis, or other
analyses. The simplest method is to construct the response surface
based on the polynomial method. If the design variables are

Select a pile type

v

Collect bridge dimension
and bridge design data

v

Obtain a specific bridge size
from LHS

v

Acquire values of random variables

v

Perform finite element analysis

v

Gain analysis results
(soil bearing, pile axial and shear stress,
and pile head displacement etc.)

l

\ 4

Calculate f for 5 limit states

Sample size = 20

Build RSM using LS-SVM

End

Fig. 5. Flowchart using response surface to perform reliability analysis

y:f(Xl,Xz,

n n
y=Bo+ D BiXi+ Y BiXi o e
i=1 j=1

Xu) e
(7)

where f refers to the original model; 3; () refers to the polynomial
coefficient; and ¢ refers to the error and can typically be estimated
using the least-squares method. The polynomial response surface
clearly defines the mathematical equation and allows observations
of the changes and local optimal points of the surface. However, in a
situation in which the relationship between the design variables and
the target output is more complicated, the polynomial response gen-
erally cannot satisfy the desired precision requirement. As a result,
the LS-SVM method is used to establish the response curve. The
flowchart of this method is displayed in Fig. 5. The design variables
of the proposed RSM include the pier stud diameter, pier stud depth,
pile cap depth, foundation pile diameter, foundation pile depth, and
number of foundation piles. The output parameters include the reli-
ability index (/3) for the pile shear stress, pile axial stress, horizontal
displacement on the pile head, soil bearing, and soil pulling force.

A standard SVM (Cortes and Vapnik 1995), as described in

X1, X5, ..., X,, then the response surface (y) can be expressed as Eq. (8), solves a nonlinear classification problem by means of
follows: convex quadratic programs (QPs)
© ASCE 04017118-5 J. Perform. Constr. Facil.
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Subject to (8)
£20,i=1,2,....N

where w = normal vector to the hyperplane; ¢ = real positive
constant; &, = slack variable, for which if & > 1, the kth in-
equality becomes violated compared to the inequality from the
linearly separable case; y, = class (e.g., failure or safe class);
[wTK(x;) + b] = classifier; N = number of data points; and K =
kernel function. In the current study, the Gaussian radial basis func-
tion (RBF) kernel is used, as shown in Eq. (9)

K(X,X;) = e-ollx=xill)? (9)

where X = input vector; o = kernel function parameter; and X; =
support vectors.

The LS-SVM method (Suykens et al. 2002), instead of solving
the QP problem, solves a set of linear equations by modifying the
standard SVM, as described in Eq. (10)

)+

IIllIl WW

NN
W‘I\)

s.t. yr(w - K(x by=1—e¢, k=1,....n (10)
where v = constant number; and e = error variable. Compared to the
standard SVM, there are two modifications leading to solving a
set of linear equations. First, instead of inequality constraints, the
LS-SVM uses equality constraints. Second, the error variable is a
squared loss function. In this research, during the evaluation of the
RSM precision, three types of indices, R?, mean absolute percent-
age error (MAPE), and root mean squared error (RMSE), are used.

Reliability-Based Optimization

A general formulation of a RBDO model is described by Eq. (11),
where f = design objective; D = design variable vector; P = random
design variable vector representing uncertainty in design variables;
X = random design parameter vector; Prob. = probability;
G; = ith constraint function; «; = reliability requirement for ith
constraint; and m = number of constraints

Min:f(D, P, X)
s.t:Prob{G;(D,P,X) <0} <¢;, i=12,....,m (11)

As shown in Eq. (11), a typical RBDO has a nested double-loop
approach, in which the outer loop conducts the optimization and the
inner loop considers the probabilistic analysis.

The reliability analysis used here was introduced in the section
“Reliability Analysis Using Response Surface.” For the optimi-
zation, this study uses PSO to find the optimal design. The PSO
technique was proposed by Eberhart and Kennedy (Eberhart and
Kennedy 1995; Kennedy and Eberhart 1995). An algorithm oper-
ating on the basis of a large population of solutions, PSO is cur-
rently popular because it is simple and easy to adopt. To execute a
PSO, a group of random numbers is used to initialize the entire
population. A population is a set of individual particles. The usual
size of a population is between 20 and 30. Particle movements are
influenced by the optimal experience of an individual particle and
that of the population. Weighted values are used to determine the
degree of influence between the two. Random elements are also

© ASCE
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considered when determining the directions of the particle move-
ments, giving particles a chance to leave local trends and preventing
them from being trapped within local optimums. Many variations
have been proposed for PSOs. The following briefly describes
the PSO used in this study. A new particle, which represents a set
of weights in the current study, was generated using Eq. (12), as
follows:

X(t4+ 1) =0,(t 4+ 1)+ X,(2) (12)

where X;(¢ + 1) denotes the position of the ith particle in the next
iteration; X;(¢) denotes the position of the ith particle in the current
iteration; and v;(7 + 1) denotes the velocity of the ith particle in the
current iteration. The position of a particle represents the values
of that particle. The velocity of the ith particle is determined by
Eq. (13)

T)i(t + 1) =wX Zi(t) + rlcl[}pBesr ﬁl( )] + r202[ XgBest — }l(t)}

(13)

where w = inertia factor; v;(#) = velocity at previous iteration;
r; (i =1, 2) = random numbers between O and 1; and ¢; and
¢, = cognition and social factors, respectively. The term X,p,,,
is the particle position with the minimum objective value in the
ith population and ?ches, is the particle position with the minimum
objective value in the entire population. Detailed information con-
cerning the PSO parameter settings can be found in Table 10. Note
that each particle represents a set of design variables. In other
words, a particle is a vector with a length of six, as indicated in
the section “Parameter Settings of Response Surface.” As men-
tioned previously, PSO continuously updates the location of each
particle, and sometimes particles may move too fast, therefore fall-
ing into an infeasible domain. Typically, there are three ways to
handle such phenomena: (1) fix the particles falling outside the fea-
sible domain onto the search boundary; (2) maintain the inertia of
the particles and enter them into the feasible domain from the op-
posite boundary—if such a particle is currently located outside the
maximum value, it would then appear at the boundary of the mini-
mum value; and (3) after subtracting the portion absorbed by the
boundary from the particle energy, use the remaining energy to
bounce the particle back into the feasible domain based on the
law of reflection. In this study, the second method was used to solve
the problem of the boundary value. The first method may reduce
the chance of finding the global optimum. If the local optimum
happens to be on the boundary, it would cause the particles to ap-
proach the boundary value, which would slow the convergence of
the global optimum search. In addition, because constraints are
functions of design variables, the feasible domain is continuously
revised during optimization. That is, constraints at each step are
different and are constructed using the design variables specified
at each step.

Numerical Example and Discussion

The Dongshi Bridge, located in the midstream of the Dajia
River, was used to verify the proposed optimization algorithm.
The Dongshi Bridge is an important river bridge connecting the
Dongshi District and the Shihgang District. Its entire length is
573 m with 22 spans; each span measures approximately 26 m. The
concrete strength is 28 and 21 MPa for the bridge pier and pile,
respectively. For diameters less than or equal to 16 mm, SD280
steel bars are used, whereas SD420W bars are used for diameters
greater than 16 mm. The analysis process is based on the following
two assumptions:
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Fig. 6. Relative location map of Dongshi Bridge and drilled holes for obtained drilling data

1. The Dongshi Bridge uses double-column piers as its foundation;
however, single-column piers are used as a basis for the simula-
tions in this study. Such an assumption is based on the consid-
eration that the limit state function does not include the failure
of piers, and the external forces in this study primarily result
from floods. If the influence of the angle of attack of the water
flow is ignored and the space between two piers is small, the
water-projected area of the hydrodynamic pressure of a double-
column type pier and a single-column type pier are similar.

2. Because the drilling report of the Dongshi Bridge was unavail-
able, the actual soil layer conditions could not be precisely
known. Consequently, other documents were used to understand
the geological conditions in the midstream area of the Dajia
River (Ho-Hsien Engineering and Technology Consultants 2011).
From Fig. 6, it can be seen that, in addition to the Dongshi
Bridge, there are five other bridges in the midstream area of the
Dajia River: the Hofeng Bridge, the Chongquing Bridge, the
Tienfu Bridge, the Changyuan Bridge, and the Shijian Bridge.
The drilling reports for these five bridges are shown in Table 6
and indicate that the N values of the standard penetration test
(SPT-N) at the midstream of the Dajia River are all nearly equiv-
alent to 100, which means that the soil layer consists of gravel or
bedrock (e.g., shale and sandstone). In addition, it is known that
the stratum of the Taichung Basin consists primarily of sand-
stone, shale, or gravel and sandy shale dating from the Miocene
to the third century Pleiocene with parts dating from the fourth
century Eo-Pleistocene. According to these data, the stratum of
the Dongshi Bridge primarily consists of gravel or sandy shale;
therefore, the average values of the drilling data for these five

Table 6. SPT-N Values for Midstream Area of Dajia River

Bridge name

Drilling Hofeng Chongquing Tienfu Changyuan Shijian Dongshi
depth Bridge Bridge Bridge Bridge Bridge Bridge

bridges were used as the geological data for the Dongshi Bridge,
as shown in Table 6.

Parameter Settings of Response Surface

In this study, Latin hypercube sampling (LHS) was used to generate
samples to construct the response surface of the surrogate model.
Each type of foundation pile dimension had 20 entries, and there
were a total of 120 sample entries for the six dimensions. The range
of each parameter was between 0.5 and 1.5 times the current di-
mension of the Dongshi Bridge. The settings of the LHS input
parameters are shown in Table 7.

Random Variables, Material Properties, Optimization
Parameters, and RBDO Formulation

The random variables considered in this study are shown in Table 5.
As mentioned, the SPT-N values for the midstream section of the
Dajia River are relatively stable; however, according to Pan (2007),
the elastic moduli of gravel, shale, and sandstone, as shown in
Table 8, vary significantly from each other; therefore, the elastic
modulus is considered to be a random variable to reflect the com-
plex geological characteristics in this area. Note that because the N

Table 7. Range of LHS Input Parameter Values

Lower Upper Original
Design variable bound bound dimensions
Pier diameter (m) 1.30 3.90 2.60
Pier depth (m) 4.00 12.00 8.00
Pile cap thickness (m) 1.25 3.75 2.50
Pile diameter (m) 0.75 2.25 1.50
Pile depth (m) 10.00 30.00 20.00
Number of piles 3x3~5x5 3x3

1.3 100 30 46 11 22 40* Table 8. Possible Elastic Modulus Values for N = 100

4212 188 188 188 } 88 188 188 Soil type and statistics Elastic modulus for N = 100 (MPa)
5.8 100 100 100 100 100 100 Gravel 19,000

7.3 100 100 100 100 100 100 Sandstone 32,000-41,000

8.8 100 100 100 100 100 100 Shale 28,000-34,500

10.3 100 100 100 100 100 100 Average value 30,900

“Rounded off from 41.8. Standard deviation 8,157.8
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Table 9. Material Properties Used in This Study

Material type Elastic modulus (MPa) Poisson’s ratio

Concrete (3,000 psi) 21,737 0.15
Steel bar (SD280) 230,000 0.27

Table 10. PSO Parameter Settings

Parameter Setting value

Velocity weight (w) 0.9 decreases to 0.2

Particle weight (cl, c2) 2

Particles 100

Optimization termination Iteration = 1,000 or convergence
for 333 successive iterations®

Area optimization handling Hunger mechanism

mechanism

Handling mechanism for particles

moving toward the boundary

Penetration mechanism

“Convergence means the variation between two consecutive solutions is
less than 1%.

value varied significantly in the literature, both lower and upper
bounds of sandstone and shale were used in the calculation of aver-
age value. The material properties of the Dongshi Bridge are shown
in Table 9. The parameter settings for the PSO are shown in
Table 10. The RBDO formulation is expressed by Eq. (14)

Min:f(D)  s.t:Prob{G;(D.X)<0} <oy, i=12. ....m

(14)

where f refers to total volume of the bridge; D refers to design
variable, which includes pier diameter, pier height, pile cap thick-
ness, pile diameter, pile depth, and foundation pile type; X refers to
random variables, which include scouring depth, water level, water
flow rate, Manning coefficient, and elastic modulus of the soil; and
« refers to reliability requirement, which is set to 0.00315.

Analysis Results

Fig. 7 shows the finite-element ABAQUS model of the RBDO re-
sult, and Fig. 8 shows the displacement distribution of the optimal
design.

Based on the results of RBDO as shown in Table 11, the
following key points can be stated:

1. The optimization obtained from RBDO is similar to the dimen-
sions of the original design, and the appearance of the bridge
body shows no significant differences; for example, it maintains
the fundamental form of 3 x 3. In addition, the foundation depth
is similar to that of the original design. Relatively speaking, only
the dimensions of the piers show a significant difference
(Table 11). The primary reason for this is that the original bridge
structure has recently been modified for reinforcement, and its
failure probability already approaches the target value assumed
in this study; consequently, the RBDO result and the dimensions
of the original bridge have not changed significantly. Note that

Fig. 7. Finite-element model of optimal design via RBDO

U, u1
+2.103e-03
-3.708e-02
-7.626e-02
-1.154e-01
-1.546e-01
-1.938e-01
-2.330e-01
-2.722e-01
-3.114e-01
-3.505e-01
-3.897e-01
-4,289e-01
-4.681e-01
-5.122e-01

Sl
S
——

Fig. 8. Displacement distribution graph of optimized bridge (units:
centimeters)

Table 11. Results of RBDO

Bridge components and statistics Dongshi Bridge RBDO result

the RBDO suggests decreasing the diameter of the pier and in- Pier diameter (m) 2.60 1.50
creasing the depth, which indicates that the design of the origi- Pier height (m) 8.00 10.00
nal bridge pier was overly conservative in terms of the water Pile cap thickness (m) 2.50 2.05
flow rate and the water level at the location of the bridge. There- Pile diameter (m) 1.50 1.35
fore, reducing the bridge pier dimensions is suggested to reduce Pile depth (m) 20.00 21.15
the volume. Note that this study only examined the ability of the Pile type \ 3x3 ) 3x3 §
bridge to resist floods; impacts caused by earthquakes have not Total volume (m-) . 3.49 x 10 435 x 10
been taken into consideration. Percentage of volume reduction 0.2077 0.2077
© ASCE 04017118-8 J. Perform. Constr. Facil.
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sG Table 13. Accuracy Evaluation of RSM Models
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mode bearing stress stress force displacement
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algorithm, Fig. 9 shows the convergence history of the PSO.

The optimization was performed on a computer equipped with

Core i7, CPU@3.4 GHz, and 10GB RAM. The convergence

was fast and stable, capable of approaching a constant value

within 100 iterations in approximately 600 s.

3. The failure mode of the bridge system is primarily controlled by
the pile head displacement (Table 12), and the failure probability
of the optimized bridge is slightly higher than that of the original
designed bridge. The reliability index of the original bridge is
approximately 3.1, which is greater than the target reliability
(6 = 3.0). Therefore, during the optimization, there is room to
adjust the volume, and the optimized total volume is approxi-
mately four-fifths of the original bridge for a failure rate within
the tolerance range.

4. Regarding the accuracy verification of RSM, Table 13 shows
that among the five limit states, the RSMs of the soil bearing
and the pile head displacement show relatively better accuracy,
whereas the other three RSMs can still be improved. However,
because the last three limit state functions do not contribute to
the system’s reliability, they have no significant influence on the
optimization result. Consequently, the following only provides
further investigation into the soil bearing and the pile head
displacement.

Fig. 10 shows a relationship diagram for the foundation pile
diameter and the depth and soil bearing reliability index, which in-
cludes various basic designs (e.g., 3 x 3 and 4 x 4), and the rela-
tionships are not clear. Figs. 11 and 12 describe the impacts of
diameter and depth, respectively, on the soil bearing reliability in-
dex. Based on Fig. 11, pile diameter has no obvious impact on the
soil bearing reliability index. However, based on Fig. 12, pile depth
and soil bearing capacity show an approximately linear relationship

Table 12. Failure Probability (P,) for Each Failure Mode

Fig. 10. Relationship among pile diameter, depth, and soil bearing
reliability index
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Foundation pile diameter (cm)
2
ROk
i D>
(@]
EPOEE
&Ck
>
*x

X Pile type 5x4
(o] Pi}e type 5x5
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W
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T

[=)

Soil reliability index

Fig. 11. Relationship between pile diameter and soil bearing reliability
index

such that the greater the depth, the higher the reliability index,
which is a logical trend. Fig. 13 only includes the basic type,
3 x 3, and the impact of pile depth on the soil bearing reliability
index is clear. It is difficult to reach a conclusion regarding a rela-
tionship between pile diameter and the soil bearing reliability in-
dex. As for the relationships between pile diameter, depth, and pile
head displacement reliability index, as shown in Figs. 14—17, it can
be seen that, as opposed to soil bearing, pile top displacement is

Pile axial Pile shear Soil pulling Pile head
Failure mode Soil bearing stress stress force displacement
Py of the existing Dongshi Bridge (FOSM) ~0 ~0 ~0 ~0 9.6 x 107
P of the optimized Dongshi Bridge (RSM) 5x 107 ~0 ~0 ~0 1.1x1073
P of the optimized Dongshi Bridge (FOSM) 8.5x 1076 ~0 ~0 ~0 9.0 x 107*
© ASCE 04017118-9 J. Perform. Constr. Facil.
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Fig. 12. Relationship between pile depth and soil bearing reliability
index
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Fig. 13. Relationship among pile diameter, depth, and soil bearing
reliability index (using basic 3 x 3 type as example)
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Fig. 14. Relationship among pile diameter, depth, and pile head dis-
placement reliability index

primarily affected by pile diameter (Fig. 15). According to Table 13,
two of the primary limit state functions have relatively higher
accuracy. In addition, the trends predicted by the surrogate model
are consistent with the analytical equations. Even though there are
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Fig. 15. Relationship between pile diameter and pile head displace-
ment reliability index
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Fig. 16. Relationship between pile depth and pile head displacement
reliability index
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Fig. 17. Relationship among pile diameter, depth, and pile head dis-
placement reliability index (using basic 3 x 3 type as example)

still some errors in the result, all the trends of the surrogate model
were conservative. Therefore, the use of the surrogate model to per-
form reliability-based optimization on river bridges is considered
feasible.
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Conclusions

The safety of river bridges is an important issue in Taiwan. Because
many uncertainties are involved in the evaluation process, this
study proposes a reliability optimization design algorithm to ensure
bridge safety not only in the analysis phase but also in the design
phase. The proposed algorithm uses LHS to allocate the sample
points. For each sample, FOSM is used to calculate the reliability
index. Based on the results of FOSM, LS-SVM is used to construct
the response surface. According to the constructed response sur-
face, PSO is used to perform the reliability-based optimization.

In addition, to increase the accuracy of the deterministic model,

three-dimensional finite-element software is used to perform struc-

tural analysis and the Python programming language is used to
build an automatic computation structure, in which the uncertainty
of the random variables is constructed via a hydraulic analysis.

Only the flood resistance ability of the bridge was considered here.

The influence of earthquakes was not considered. According to the

results of the analysis, several conclusions can be drawn.

1. Under the premise of satisfying the safety requirements, there is
still room for improvement in the current design against floods;
for example, the optimal values of the pier dimension, pile cap,
and pile diameter are all smaller than the original design values,
and the pile depth should be increased.

2. With the automatic computation structure constructed by
Python, the computation efficiency of the reliability analysis
and optimization design can be effectively increased.

3. The 120 samples generated by LHS were used by LS-SVM to
construct five failure modes for the surrogate model. The result
indicates that the predictions of the nonprimary controlled fail-
ure mode are relatively poor, whereas the predictions of the pri-
mary controlled failure modes are relatively strong.

4. The predicted trends of the proposed finite-element analysis are
consistent with the conventional engineering determinations, in-
dicating that the proposed calculation details of the numerical
model are suitable.

5. During the optimization process, six types of piles were consid-
ered, all of which were geometrically symmetrical. An actual
engineering design may be different due to onsite field factors,
and the six types currently considered may be insufficient in
practice.
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