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ABSTRACT

Geometrical analysis of protein tertiary substructures
has been an effective approach employed to pre-
dict protein binding sites. This article presents the
Protemot web server that carries out prediction
of protein binding sites based on the structural
templates automatically extracted from the crystal
structures of protein-ligand complexes in the PDB
(Protein Data Bank). The automatic extraction
mechanism is essential for creating and maintaining
a comprehensive template library that timely acco-
mmodates to the new release of PDB as the number
of entries continues to grow rapidly. The design
of Protemot is also distinctive by the mechanism
employed to expedite the analysis process that
matches the tertiary substructures on the contour
of the query protein with the templates in the library.
This expediting mechanism is essential for pro-
viding reasonable response time to the user as the
number of entries in the template library continues
to grow rapidly due to rapid growth of the number
of entries in PDB. This article also reports the experi-
ments conducted to evaluate the prediction power
delivered by the Protemot web server. Experimental
results show that Protemot can deliver a superior
prediction power than a web server based on a
manually curated template library with insufficient
quantity of entries. Availability: http://protemot.
csie.ntu.edu.tw/stepi.cgi http://bioinfo.mc.ntu.edu.
tw/protemot/step1.cgi.

INTRODUCTION

Function prediction of new proteins is a critical issue in sys-
tems biology research (1). One of the most widely adopted
approaches is based on sequence similarity of homologous
proteins (2). However, in many cases, proteins with similar
functions are not homologues. Therefore, search for a tertiary
substructure that geometrically matches the 3D pattern of the
binding site of a well-studied protein provides a complement-
ary approach for prediction of protein functions (3—6). In this
regard, as the structural genomics project worldwide contin-
ues to work hard to determine the tertiary structures of many
new proteins, automatic extraction of structural templates
becomes an essential mechanism for effectively accommod-
ating to the new release of protein structure databases such
as PDB (Protein Data Bank) (7) that contains a large number
of crystal structures of protein—ligand complexes.

This article describes the design of the Protemot web
server, which is equipped with an automatic mechanism to
extract structural templates of protein binding sites from the
latest release of PDB. With the version of PDB released on
November 14, 2005, the automatic extraction mechanism
identified a total of 2362 distinctive templates of protein
binding sites. The design of Protemot is also distinctive by
the mechanism employed to expedite the analysis process
that matches the tertiary substructures on the contour of the
query protein with the templates in the library. This expedit-
ing mechanism is essential for providing reasonable response
time to the user as the number of entries in the template
library continues to grow rapidly due to rapid growth of the
number of entries in the PDB.

This article also reports the experiment conducted to
evaluate the prediction power delivered by the Protemot
web server. The evaluation has been conducted with a
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comparison against the prediction power delivered by the
web server based on the well-known Catalytic Site Atlas
(CSA) (3), whose maintenance requires manual intervention.
Though manually curated template libraries are generally
well annotated, the application of such libraries may cause
some unexpected problems. For example, as demonstrated
by the experimental results reported in this article, a manually
curated template library may contain insufficient quantity
of entries for carrying out proper comparison and making
accurate prediction. Therefore, development of automatic
and accurate mechanisms for maintaining the template librar-
ies can greatly facilitate binding sites annotation of proteins
with unknown functions.

METHODS

In this section, we will first describe how to automatically
extract structural templates of protein binding sites from the
PDB. Second, we will elaborate the structural alignment pro-
cedure incorporated in Protemot for predicting the binding
sites of the query protein.

Each of those templates automatically extracted from the
PDB consists of a number of contact residues. A residue in
the crystal structure of a protein—ligand complex of PDB is
said to be one of the contact residues, if it contains one
or more heavy atoms that are <4.5 A away from the heavy
atoms of the ligand. In the template extraction process,
three filters were employed to guarantee quality of the tem-
plates extracted. First, PDBsum (8) is queried to identify all
ligand names within each PDB file. Subsequently, ‘pseudo-
ligands’, e.g. counter ions, metal ions or molecules used for
setting up proper crystallization conditions, will be filtered
out according to the list detailed in Supplementary Table S.3.
The second filter will recognize COMPND, SEQRES,
MODEL, ATOM, TER, HETATM, ENDMDL and END
cards to extract ligands in PDB files. This filter will discard
those ligands that appear in a PDB file many times with iden-
tical name but without a chain ID. It is anticipated that these
parsing limitations will exclude some real ligands at this
stage. Finally, templates with less than three amino acids
are filtered out by the third filter. It is noted that in our tem-
plates the metal ions are reserved. Most of the metal ions
have significant biological functions and therefore could be
used to extend the mechanism of template matching.

In the final stage of the template extraction process, the
CD-HIT clustering algorithm (9) is invoked to remove
redundant templates. A template is said to be redundant if
there exists another protein structure in the PDB that meets
the following criteria:

(1) the sequence alignment (10) of the protein from which the
template is extracted and the second protein has >60%
of identity;

(i) with the sequence alignment, the second protein contains
exactly the same template at the same locations as the
protein from which the template is extracted;

(iii) the sequence of the second protein is longer than the
protein from which the template is extracted.

With the automatic extraction mechanism described
above, 2362 distinctive templates have been extracted from
the version of PDB released on November 14, 2005.

Figure 1 depicts the workflow of the analysis procedure
incorporated in Protemot to match the tertiary substructures
on the contour of the query protein with the templates in
the library. The design of the analysis procedure in Protemot
has been derived from the design that we employed in the
Proteminer web server (6,11). The major difference is the
incorporation of the refinement process and the screening
process marked with an asterisk in Figure 1. The incorpora-
tion of the refinement process has been aimed at expediting
the entire analysis procedure, which is essential for providing
reasonable response time to the user as the number of entries
in the template library continues to grow rapidly due to the
rapid growth of the number of entries in the PDB. As will
be elaborated in the later part of this article, with the refine-
ment process incorporated, we can adopt a strict criterion in
the filtering process depicted in Figure 1 and therefore speed
up the entire analysis procedure by a factor >10 without
trading off accuracy.

The structural alignment procedure shown in Figure 1
works by first invoking a novel filtering process to extract
those residues in the proximity of a cavity of the query pro-
tein. The filtering process is based on the kernel density
estimation algorithm that we have proposed recently (6,11)
and its detailed implementation can be found in the Supple-
mentary Data. The filtering process effectively reduces the
number of coordinate systems that the geometric hashing
algorithm (12), which is the core of the entire analysis pro-
cedure, needs to examine; i.e. with the filtering process, the
geometric hashing algorithm narrows down its search domain

PDB file of the
query protein

The filtering
process

Template
library

Geometric hashing based
on the outputs of the filter-
ing process

A

The refinement
process *

The  screening
process *

Figure 1. Workflow of the analysis procedure incorporated in Protemot.
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of the coordinate systems associated with the query protein to
those defined by the residues that pass the filtering process.

With the output of the filtering process, the geometric
hashing algorithm (12) is then invoked to match the tertiary
substructures on the contour of the query protein with the
templates in the library. In our implementation, the structural
alignment is conducted at the residue level with each residue
represented by its alpha carbon in the vector space. In addi-
tion, the common practice for carrying out protein structural
alignment with the geometric hashing algorithm is employed
(11,13-15). With this practice, the coordinate systems
examined by the geometric hashing algorithm are limited to
those defined by the two backbone bonds connected to the
alpha carbon of each residue. Accordingly, the time complex-
ity of the geometric hashing algorithm for aligning the
query protein with a template is O(n n,(n;+n,)), where n;
is the number of residues in the template and n, is the
number of the residues in the query protein that pass the
filtering process.

As mentioned earlier, one of the major improvement in the
design of Protemot over the design of Proteminer (6) is the
inclusion of the refinement process marked with an asterisk
in Figure 1. The refinement process, which is based on the
algorithm proposed in Ref. (16), carries out an optimization
operation to fine-tune the alignment frames output by the geo-
metric hashing algorithm. Figure 2 shows the pseudo-code
of the refinement process. In the loop of the refinement pro-
cess, the optimization algorithm presented in Ref. (16) is
invoked to efficiently solve the general problem defined in
the following.

Given a number of paired vectors in the 3D vector space
1, v1), (v2, v2),...,(vy, v4/), find an optimal translation
matrix M, and an optimal rotation matrix M,, so that
3 S |lvi — vi||*is minimized, where ¥; is the vector
obtained by applying M, and M, to vector v;.

In our implementation, the refinement process is applied to
only the alternative coarse-grain alignment frames that are
most highly ranked in the output of the geometric hashing
algorithm. Three measures are employed to rank the alternat-
ive alignment frame. The first measure is the number of resi-
dues in the template that are successfully aligned with the
residues in the query protein. In this paper, one residue in
the query protein is said to be successfully aligned with one
residue in the template, if the distance between this pair
residues in the alignment frame of the coordinate system is
<3 A. Furthermore, this pair of residues must have similar

1. Given an initial alignment A which contains h

aligned alpha carbon pairs (vy, v{'), (v2, v2'), ..., (Vs
vll')'

2. Compute the motion matrices M, and M, according
to A.

3. Apply M, and M, on all alpha carbons of the query
protein.

4. Re-align the template and the query protein under
the new coordinate system and obtain a new align-
ment.

5. Go back to step 2 until the alignment converges.

Figure 2. Pseudo-code of the refinement process.
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physicochemical properties. The criterion employed to
check the similarity of physicochemical properties is that
this pair of residues must correspond to an entry in the
PAM 250 matrix (17) that is >2. If two possible alignment
frames yield the same score with the first measure, then the
second measure is employed to rank these two alignment
frames. The second measure computes the lumped sum of
the PAM 250 scores corresponding to the pairs of aligned
residues. If two possible alignment frames yield the same
score with both the first and the second measures, then the
third measure is employed. The third measure computes the
root mean square deviation (r.m.s.d.) of the pairs of aligned
residues. In our implementation, the refinement process is
applied to only the 100 highest ranked possible alignment
frames output by the geometric hashing algorithm.

At the output of the refinement process, three criteria are
further imposed to screen the alignment frames. Those align-
ment frames that cannot pass all three criteria are deleted.
The first criterion is that >50% of the residues in the query
protein are successfully aligned with the residues in the tem-
plate. The second criterion is that the r.m.s.d. of the pairs of
aligned residues must not exceed 1.5 A. The third criterion
concerns which direction the opening of the binding site
points to. In our implementation, we first define g, as follows:

~ /Xmax — Xmin Ymax — Ymin Zmax — Zmin
g() - 2 ’ 2 1) 2 )

where x.x and X, respectively, denote the maximum and
minimum values of the x-coordinates of the residues in the
query protein that are successfully aligned with the residues
in the template. Similar definition applies tO Yiax> Ymins Zmax
and z,,;,. Then, let g; denote the geometric center of all the
alpha carbons that are within 10 A from go. In our imple-
mentation, we defined vector g — go as the direction
which the opening of the binding site points to. According
to this definition, both the template and the substructure of
the query protein that is aligned with the template are associ-
ated with a vector. The third criterion requires that the cosine
value of the angle between these two vectors must be >0.87.

PRACTICAL ISSUES

This section addresses a few issues concerning the practical
use of Protemot. The first issue concerns how fast the tem-
plate library can be updated upon the new release of PDB.
In the first phase of the automatic extraction mechanism,
the entire PDB is scanned once to identify all the templates,
including non-redundant as well as redundant templates, from
the crystal structures of protein-ligand complexes in the
PDB. Accordingly, the time complexity of this phase of
operation in terms of the number of entries in the PDB is
O(n). Then, the CD-HIT clustering algorithm is invoked to
remove redundant templates and the time complexity of the
clustering algorithm is O(gn) (9), where ¢ is the number of
non-redundant templates identified by the clustering
algorithm. Therefore, the overall time complexity of the auto-
matic extraction mechanism is O(gn). In practice, upon the
release of a new version of PDB, we can re-generate a new
template library in 15 min on a Pentium-4 based personal
computer with a 2.6 GHz processor and 1 GB main memory.
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Since generation of the template library from scratch does
not take long, in our current implementation, we simply
re-generate the entire template library upon the new release
of PDB. However, in case it is desirable that the template lib-
rary is incrementally updated, one can easily implement this
feature by modifying the criteria employed to detect redund-
ant templates. This incremental approach is of interest to the
users who want to exploit the automatic extraction mechan-
ism to enrich a template library that has been built based
on a manually crafted approach such as CSA. In this regard,
it is of interest to learn whether the automatic extraction
mechanism can generate templates that are highly similar to
the templates in a manually curated template library. As
shown in Table 1, for the majority of the templates in the
CSA library, we can find templates in the Protemot library
that have a high degree of structural similarity.

The next issue addressed in this section is the speedup
achieved with the refinement process marked by an asterisk
in Figure 1. The refinement process carries out an optimiza-
tion operation to fine-tune the alignment frame output by the
geometric hashing algorithm. Experimental results show that,
with the refinement process, we can adopt a stricter criterion
in the filtering process to reduce the number of residues on
the contour of the query protein that can pass. The exact
parameter settings employed in Protemot to realize the
stricter criterion are provided in the Supplementary Data.
As mentioned earlier, the time complexity of the geometric
hashing algorithm that matches the substructure of the
query protein with a template is O(n n,(n,;+n,)), where n;
is the number of residues in the template and 7, is the number
of the residues in the query protein that pass the filtering
process. Therefore, by reducing the number of residues on
the contour of the query protein that can pass the filtering pro-
cess, we can expedite the structural alignment process sub-
stantially. Table 2 reports the effects achieved in five cases.

Table 1. A statistics of structural similarity between the templates in the
Protemot library and those in the CSA library

Number of templates in the CSA
library for which a match in the following
categories is found in the Protemot library

Highly probable 73
Probable 17
Possible 15
Unlikely 42
Total number of 147

templates in
the CSA library

Table 2. Speed up achieved with the refinement process

PDB ID Execution time Execution time Speed up
of the query  (in seconds) without (in seconds) with

protein the refinement process  the refinement process

1BCK 4520 441 10.25
1A46 9312 733 12.70
1AAW 14000 1064 13.16
1TRN 14788 1138 12.99
2HGS 18240 1330 13.71

In each case, a query protein was submitted to the Protemot
web server and the execution times observed with/without the
refinement process were recorded. Basically, speedups of >10
times are generally observed.

INPUT AND OUPUT

Figure 3 shows the user interface of the Protemot web server.
The user only needs to either upload the tertiary structure of
the query protein in the PDB format or enter a PDB ID. There
is another optional field, in which the user can specify the
portion of the protein structure that is of particular interest.
If the user does not fill this field, then Protemot will search
the entire contour of the protein tertiary structure for possible
match.

The structures of the query protein and the identified tem-
plate will be superimposed and stored in a PDB file. As
shown in Figure 4, this PDB output can be rendered with

Query Specification

You can specify the query protein either by providing the PDB ID or
by uploading a file in the PDB format.

If "substructure of interest™ is left blank, then the entire protein will be
examined.

Protein

Specify protein by: M PDB ID | Il Upload | I/ Copy & Paste
PDB ID:

Substructure of |
HiteTests = R AR SRR R e

eld is optional but can increase the performance of
edescripion is like
1-9:A, *LEU.

Figure 4. An example output of the Protemot web server, in which yellow balls
are the residues in the query protein (1BCK) that matches the template; pink
balls are the residues of the template.
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Jmol (available at http://www.jmol.org/), which is embedded
in this server. Users can also download the PDB file for their
preferred visualization tools.

EVALUATION

This section reports the experiment conducted to evaluate the
prediction power of Protemot. It has been observed in the
experiment that, owing to the enriched collection of tem-
plates, Protemot can deliver a superior prediction power
than a web server based on a manually curated template lib-
rary, which normally contains much fewer entries.

The evaluation has been conducted with a comparison
against the prediction power delivered by the web server
based on the well-known CSA maintained with manual inter-
vention (3). The CSA-based web server is located at http://
www.ebi.ac.uk/thornton-srv/databases/cgi-bin/CSS/
makeEbiHtml.cgi?file=form.html. Because the CSA-based
web server was designed for prediction of the active sites
of enzymes, the experiment has been designed accordingly.

In the experiment, the template library of Protemot con-
tains a total of non-redundant 1051 entries automatically
extracted from a total of 12783 enzyme crystal structures
in PDB. The template library covers 78% of those third-
level, sub-subclass level, EC (Enzyme Classification) num-
bers present in PDB and 55% of those fourth-level, the
most detailed level, EC codes present in PDB. On the other
hand, the web version of CSA contains only 147 templates
that were extracted with manual intervention. The testing
dataset used in the experiment contains a total of 1000 non-
redundant, randomly selected enzyme structures distributed
over 587 fourth-level EC codes. Care has been taken to guar-
antee that the testing dataset does not contain any of those
enzyme structures from which the templates were extracted.

In the experiment, if the query enzyme contains no sub-
structures that can pass the matching criteria elaborated in
the previous section when compared with all the templates
in Protemot, then no prediction is given. On the other hand,
if the query enzyme contains a substructure that can pass
the matching criteria when compared with one particular tem-
plate, the query enzyme is predicted to be associated with the
same EC number as the enzyme from which the template was
extracted. In case the query enzyme contains a substructure
that can pass the matching criteria when compared with
two or more templates, then the multiple predictions will be
ranked based on the scoring function employed to rank the
alternative alignment frames output by the geometric hashing
algorithm.

Tables 3 and 4 show how Protemot performs in compar-
ison with the CSA-based web server. In these two tables, a
prediction is said to be correct only when the predicted EC
number that is highest ranked matches the answer, which is
a relatively strict criterion. Meanwhile, there are cases in
which the web server failed to make a prediction due to
lack of a similar template in the library. In the following dis-
cussion, the actions made by the web server in those cases are
not considered as correct ones, since each of the 1000 testing
enzymes is associated with an EC number. Table 3 reports
the experimental results when the fourth-level EC codes are
used as the answers. On the other hand, Table 4 reports the
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Table 3. Comparison of how Protemot and the CSA-based web server perform
based on the fourth-level EC codes

CSA CSA Protemot Overlap
(highly (highly between
probable + probable + Protemot
probable + probable) and CSA
possible) (highly
probable +
probable)
Number of testing enzymes 1000 1000 1000
The template library 81 75 408 44

contains a template

that is extracted from

a protein—ligand complex
structure with the same
fourth-level EC code as
the query enzyme and
the web server makes

a correct prediction.

The template library contains 61 8 310 0
a template that is extracted
from a protein—ligand
complex structure with the
same fourth-level EC code
as the query enzyme but
the web server makes an
incorrect prediction.

The template library contains 4 63 14 1
a template that is extracted
from a protein—ligand
complex structure with the
same fourth-level EC code
as the query enzyme but
the web server makes no
prediction.

The template library does 65 777 14 13
not contain a template that
is extracted from a
protein—ligand complex
structure with the same
fourth-level EC code as
the query enzyme and the
web server makes no
prediction.

The template library does 789 77 254 28
not contain a template
that is extracted from
a protein-ligand complex
structure with the same
fourth-level EC code as
the query enzyme but the
web server makes a
prediction, which is
certainly incorrect.

experimental results when the third-level EC codes are used
as the answers. There are two columns in these two tables
that report the experimental results with the CSA-based
web server. The statistics listed in the column under CSA
(highly probable + probable + possible) was obtained by
treating the predictions that the CSA-based web server classi-
fies as ‘unlikely’ as ‘no match’. In other words, with this cri-
terion, we refuse to trust a prediction made by the CSA-based
web server, if the prediction is classified as ‘unlikely’. On the
other hand, the statistics listed in the column under CSA
(highly probable + probable) was obtained by treating the
predictions that the CSA-based web server classifies as
‘unlikely’ or ‘possible’ as ‘no match’.
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Table 4. Comparison of how Protemot and the CSA-based web server perform
based on the third-level EC codes

CSA CSA Protemot Overlap
(highly (highly between
probable + probable + Protemot
probable + probable) and CSA
possible) (highly
probable +
probable)
Number of testing enzymes 1000 1000 1000
The template library 143 118 514 80

contains a template that
is extracted from a
protein-ligand complex
structure with the same
third-level EC code as
the query enzyme and
the web server makes a
correct prediction.

The template library 531 28 447 11
contains a template that
is extracted from a
protein-ligand complex
structure with the same
third-level EC code as
the query enzyme but
the web server makes
an incorrect prediction.

The template library 47 575 26 14
contains a template that
is extracted from a
protein-ligand complex
structure with the same
third-level EC code as
the query enzyme but
the web server makes
no prediction.

The template library does 22 265 2 2
not contain a template
that is extracted from a
protein-ligand complex
structure with the same
third-level EC code as
the query enzyme and
the web server makes
no prediction.

The template library does 257 14 11 1
not contain a template
that is extracted from a
protein-ligand complex
structure with the same
third-level EC code as
the query enzyme but
the web server makes
a prediction, which is
certainly incorrect.

In the following discussion, we will employ two indexes to
measure the overall prediction power of the web server. The
first index simply measures the number of correct predictions
made by the web server. As shown in Tables 3 and 4, the
CSA-based web server can only correctly predict the binding
sites of <15% of the total of 1000 testing enzymes, regardless
of which criterion is adopted to examine the results. On the
other hand, Protemot is able to correctly predict the binding
sites of over 40% or 50% of the testing enzymes, depending
on which level of the EC codes is used as the answers. Pro-
temot has been able to make more correct predictions because

its template library contains a lot more entries extracted from
the enzyme structures in PDB than the web version of CSA,
1051 versus 147, owing to the automatic extraction mechan-
ism.

The second index employed to measure the prediction
power of the web server reflects the confidence level that
the user can have on the predictions made by the web server.
This index bears a similar notion of the positive predictive
value (18) or precision (19) and is defined as follows:

correct_predictions

confidence = — - — .
correct_predlctmns + 1ncorrect_predlct10ns

As shown in Table 3, for the total of 1000 testing enzymes,
Protemot made 408 correct predictions, 310 + 254 = 564
incorrect predictions. Therefore, the confidence level
delivered by Protemot was 408/(408 + 564) = 41.98%. On
the other hand, in the column under CSA (highly probable +
probable), there are 75 correct predictions, 8 + 77 = 85
incorrect predictions. Accordingly, the confidence level
delivered by the CSA-based web server was 46.88%. By the
same definition, the confidence level corresponding to the
column under CSA (highly probable + probable + possible)
was only 8.70%. If we employ the harmonic mean of the
two indexes to measure the overall prediction power of the
web server, which is a normal procedure adopted in informa-
tion retrieval research (20), the overall index value for Prote-
mot will be 41.38%. On the other hand, the overall index
values corresponding to CSA (highly probable + probable)
and CSA (highly probable + probable + possible) will be
12.93 and 8.39%, respectively. If we used the third-level
EC codes as answers, then according to the numbers in
Table 4, the overall index value for Protemot will be
52.13%. On the other hand, the overall index values corres-
ponding to CSA (highly probable + probable + possible)
and CSA (highly probable + probable + possible) will be
20.34 and 14.81%, respectively.

The experimental results reveal that the quantity of tem-
plates is crucial for enhancing the prediction power of the
structure-based binding sites predictor such as Protemot. It
is likely that binding sites predictor based on a manually
curated library can achieve superior prediction power to
Protemot, if the template library contains sufficient quantity
of templates. However, as the number of entries in PDB
continues to grow exponentially, automatic mechanism is
essential for timely accommodating to new PDB releases
and facilitating the functional annotation of proteins with
unknown functions.

CONCLUSION

In this paper, a web server designed for prediction of protein-
binding sites with an automatically extracted template library
is presented. As shown in the experimental results, owing to
the automatic extraction mechanism, the template library of
Protemot contains substantially more entries than the CSA.
The direct implication is that the quantity of the templates
is crucial for making the web server more powerful in pre-
dicting the binding sites of proteins with unknown functions.

Though Protemot has been able to provide a highly
desirable service, there still exists a large room for future
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improvement with respect to its prediction accuracy. In this
regard, our hypothesis is that prediction accuracy can be
improved if the templates contain not only the geometric fea-
tures of the protein binding sites but also the physicochemical
features. Accordingly, continuous investigation will be made
to perfect the design of Protemot in the future.

SUPPLEMENTARY DATA
Supplementary data are available at NAR Online.
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