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Optimization of Temporal Filters for Constructing
Robust Features in Speech Recognition
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Abstract—Linear discriminant analysis (LDA) has long been
used to derive data-driven temporal filters in order to improve
the robustness of speech features used in speech recognition. In
this paper, we proposed the use of new optimization criteria of
principal component analysis (PCA) and the minimum classifica-
tion error (MCE) for constructing the temporal filters. Detailed
comparative performance analysis for the features obtained using
the three optimization criteria, LDA, PCA, and MCE, with various
types of noise and a wide range of SNR values is presented. It
was found that the new criteria lead to superior performance
over the original MFCC features, just as LDA-derived filters
can. In addition, the newly proposed MCE-derived filters can
often do better than the LDA-derived filters. Also, it is shown
that further performance improvements are achievable if any of
these LDA/PCA/MCE-derived filters are integrated with the con-
ventional approach of cepstral mean and variance normalization
(CMVN). The performance improvements obtained in recognition
experiments are further supported by analyses conducted using
two different distance measures.

Index Terms—Linear discriminant analysis (LDA), minimum
classification error (MCE), principal component analysis (PCA),
speech recognition, temporal filters.

I. INTRODUCTION

WHEN THERE IS A mismatch between the acoustic
conditions of training and application environments for

a speech recognition system, the performance of the system
very often is seriously degraded. Various sources give rise
to this mismatch, such as additive noise, channel distortion,
different speaker characteristics, different speaking modes, etc.
The robustness of speech recognition techniques with respect
to any of these different mismatched acoustic conditions thus
becomes very important, and a variety of techniques have
been developed to improve the system performance. For the
purpose of handling additive noise, these robustness techniques
can be roughly categorized into two classes. The first class is
model-based, and the second class is feature-based. In the first
class, compensation is performed on the pretrained recognition
model parameters, so that the modified recognition models
will be able to classify the mismatched testing speech features
collected in the application environment. This is why the
methods in this class are usually referred to as model-based.
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The typical examples of this class include the well-known
noise masking [1]–[3], speech and noise decomposition (SND)
[4], hypothesized Wiener filtering [5], [6], vector Taylor series
(VTS) [7], maximum likelihood linear regression (MLLR)
[8], model-based stochastic matching [9], [10], statistical
reestimation (STAR) [11], parallel model combination (PMC)
[12]–[14], and optimal subband likelihood weighting based on
the criteria of minimum classification error (MCE) and max-
imum mutual information (MMI) [15], etc. On the other hand,
within the feature-based approaches in the second class there
are two subgroups. The first subgroup of approaches tries to
modify the testing speech features obtained in the application
environment and make them match the acoustic conditions
better for pretrained recognition models. The well-known
spectral subtraction (SS) [16], fixed codeword-dependent cep-
stral normalization (FCDCN) [17], feature-based stochastic
matching [9], [10], multivariate Gaussian-based cepstral nor-
malization (RATZ) [11] and MMSE estimation of clean speech
by considering the phase relationship of speech and noise
[18] are typical examples of this subgroup. In the second
subgroup of feature-based approaches, on the other hand, a
special robust speech feature representation is developed to
reduce the sensitivity to the various acoustic conditions, and
this feature representation is used in both training and testing.
One direction in this subgroup is to perform the processing on
the “spatial domain” of the original feature vectors, that is, each
frame of speech feature vectors is individually processed. For
example, in constrained ML modeling one can better model
the speech features after it is linearly transformed (MLLT)
[19]. An algorithm of extended maximum likelihood linear
transform (EMLLT) [20] was further proposed to estimate an
affine feature space transformation and to linearly transform
the model parameters. The criterion of minimum classification
error (MCE) was developed to find the optimal linear trans-
formation of Mel-warped DFT features [21]. A discriminative
training approach was proposed to obtain the new auditory
filter-bank in the derivation of MFCC [22]. The algorithm of
stereo-based piecewise linear compensation for Environments
(SPLICE) was used to remove the bias in the speech features
caused by distortion in a frame-based version [23]. The other
direction in this subgroup is to perform the processing on the
“temporal domain” of the original feature vectors, that is, some
kind of filtering is applied on the time trajectories of speech
features in order to alleviate the harmful effects of distortion
and corruption. The typical examples include the cepstral mean
subtraction (CMS) [24], the cepstral mean and variance nor-
malization (CMVN) [25], [26], and relative spectral (RASTA)
[27] techniques. Such processing approaches have been widely
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proved to be able to effectively improve the performance of
recognition systems without changing the core training/recog-
nition processes, and this kind of approaches is the focus of
this paper.

The RASTA approach tries to filter out relatively slow
and fast changes in the trajectories of the critical logarithmic
short-time spectral components of speech [27], [28]. The
initial form of the RASTA filter was optimized in a small series
of recognition experiments with noisy telephone digits, and
there was no guarantee that these solutions were also optimal
for other recognition tasks and environments. It is, therefore,
desirable to obtain optimal sets of time filtering coefficients
for a specific recognition task and environment, which have
to be obtained in a data-driven manner according to some
optimization criterion. Linear discriminant analysis (LDA)
has been widely applied [28]–[30] in such approaches in the
optimization process to yield the time trajectory filters. In fact,
LDA has been widely used to reduce the dimensionality of
the feature vectors, in which the neighboring feature vectors
were first concatenated to form a large vector, and then
LDA was used as the criterion to linear transform the large
vector into a new vector of smaller dimension [31]. This is
equivalent to applying LDA in both the spatial and temporal
domains of the features. However, the scope of this paper
will be concentrated only in the temporal filtering of feature
vectors, in which we apply LDA and other optimization
criteria on the time trajectory of the features only to obtain
the corresponding temporal filters. Those approaches applied
on both the spatial and temporal domains well explored
before will not be further considered here in this paper.

Since LDA is a stochastic technique that optimizes the
discriminative capabilities among different classes, the training
speech features must be labeled as belonging to different
classes before the LDA process is performed. Such data-driven
LDA-derived temporal filters were reported to yield better
recognition performance than the conventional RASTA filters
[28].

In this paper, two other popularly used optimization criteria,
principal component analysis (PCA) [32] and the minimum
classification error (MCE) [33], are applied in the optimization
process to obtain temporal filters similar to those obtained using
LDA. In addition, comparative performance analysis among
these three different optimization criteria, i.e., LDA, PCA,
and MCE, in terms of the robustness of the features obtained,
is presented. It will be shown that these data-driven temporal
filters have frequency response shapes quite different from
those of either the CMS or the original RASTA filters. We will
also show that the characteristics of the frequency response
shapes of these filters may be the reason for the differences in
the robustness of the performance. Experimental results will
also show that all these newly proposed filters, the PCA-derived
filter and two MCE-derived temporal filters, can significantly
improve recognition performance as compared with the original
MFCC features, just as LDA-derived filters can. Furthermore,
it will be shown that the newly proposed MCE-derived filters
can often do better than the LDA-derived filters. Also, it
will be shown that further performance improvements are
achievable if any of these LDA/PCA/MCE-derived filters

Fig. 1. Representation of the time trajectories of feature parameters.

are integrated with the conventional approach of cepstral
mean and variance normalization (CMVN). The performance
improvements obtained in recognition experiments are further
supported by analyses performed using two different distance
measures.

The remainder of the paper is organized into 12 sections.
In Section II, the formulation used to derive the data-driven
temporal filters is presented, and in Sections III–VII, the dif-
ferent approaches to optimizing filters using LDA, PCA, and
MCE criteria are summarized. The experimental environment
is given in Section VIII. The frequency response shapes of the
obtained temporal filters for a given task and the choice of the
filter length are then presented and analyzed in Section IX. In
Sections X and XI, comparative performance analysis of the
different approaches, including some special considerations, as
well as the results obtained via the integration with cepstral
mean and variance normalization (CMVN) are discussed. Sec-
tion XII then compares and analyzes the achieved performance
using different distance measures. Finally, concluding remarks
are made in Section XIII.

II. TEMPORAL FILTER DESIGN FOR TRAJECTORIES

OF FEATURE PARAMETERS

An ordered sequence of -dimensional feature vectors
, where is the time index, is il-

lustrated in Fig. 1. Each vector is represented as a column
in the matrix shown in Fig. 1

(1)

where is the th component of the feature vector
at time . Therefore, the time trajectory for the th feature pa-
rameter is the th row in the matrix shown in Fig. 1

which is denoted here as a sequence
, where

(2)

noting that is the time index and is the feature index.
Now, when an FIR filter with length is applied to a time

trajectory as mentioned above, the output samples are
the convolution output of the time trajectory with the
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Fig. 2. Windowed segments z (n) to be used in the temporal filter design.

impulse response of the FIR filter, where is a vector
of components. This convolution process may be considered
as the weighted sum of the samples of in a windowed
segment of length , as the window is shifted along the time axis
or the index progresses, with the components in the impulse
response vector being the weights. As depicted in Fig. 2,
this windowed segment of with length , denoted as

here

(3)

is shifted along the time index . This is why the impulse re-
sponse for the temporal filters can be optimized based on
the statistics of these windowed segments .

III. TEMPORAL FILTER DESIGN BASED ON

LINEAR DISCRIMINATIVE ANALYSIS

Linear Discriminative Analysis (LDA) has been very widely
applied in pattern recognition. Its goal is to find the most
“discriminative” representation of the data. In this approach, a
function representing the discriminative nature among different
classes within the data is maximized by finding an optimal
linear transform to be applied to the data. This approach has
been widely used to derive the data-driven temporal filters
[28]–[30] and is briefly summarized here for illustration pur-
poses.

Each of the windowed segments for the th time trajec-
tory in the training set is first labeled as one of the classes or
speech models, where is the total number of classes or speech
models. This labeling process can be performed by means of the
time alignment with pretrained models. The mean and co-
variance matrix for the windowed segments for the

th time trajectory labeled as belonging to each class is then
calculated

(4)

(5)

where denotes those windowed segments labeled
as belonging to the th class, and is the total number of
such windowed segments labeled as belonging to the
th class. With these parameters, the between-class matrix

and within-class matrix for the th time trajectory can be
defined as

(6)

(7)

where .
Therefore, the desired filter impulse response for the th time

trajectory with the LDA criterion, , is

(8)

Based on LDA, the filter response is, in fact, the
eigenvector of the matrix corresponding to the
largest eigenvalue. This filter is optimal in the sense
that the discrimination among different classes within the data
is maximized as in (8). The LDA process described above is
carried out for each time trajectory ,
thus yielding a separate FIR filter for each time trajectory. On
the other hand, eigenvectors with smaller eigenvalues represent
alternative LDA filters that can be also used to derive alternative
temporal filters, as used previously as well [28]–[30].

IV. TEMPORAL FILTER DESIGN BASED ON

PRINCIPAL COMPONENT ANALYSIS

Principal component analysis (PCA) has been widely applied
in data analysis and dimensionality reduction in order to ob-
tain the most “expressive” representation of the data. For a zero-
mean random vector of dimension , the PCA approach tries
to find orthonormal vectors on which the pro-
jection of the random vector has the maximum variance. These

orthonormal vectors turn out to be the eigenvectors of the
covariance matrix for the random vector corresponding to the
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largest eigenvalues. In the problem discussed here, the win-
dowed segments in (3) for the th time trajectory are con-
sidered to be the samples of the random vector for the th
feature parameter; hence, the mean and the covariance ma-
trix of can be calculated as follows:

(9)

(10)

where the summation is, in fact, over all training data.
There is no need to label the training data according to
different classes. With PCA, the impulse response of the
desired temporal filter based on PCA, , is exactly
the eigenvector of the covariance matrix corresponding
to the largest eigenvalue. This filter maps the -dimensional
windowed segments , onto a
one-dimensional output space. This filter, , is optimal
in the sense that it maximizes the variance of the output
samples among all possible FIR filters with length . The
PCA process described above can be carried out for each time
trajectory , thus yielding a separate
FIR filter for each time trajectory [32].

V. TEMPORAL FILTER DESIGN BASED ON THE

MINIMUM CLASSIFICATION ERROR

In addition to PCA and LDA, the minimum classification
error (MCE) criterion can also be used to “optimize” the tem-
poral filter coefficients [33]. In this case, all the data in the
training set need to be labeled according to a total of different
classes or speech models just as in LDA. In the general formula-
tion of MCE analysis, a classification error function is de-
fined for a certain class , an observation feature that belongs
to this class , and a model set ,
where is the model representing class

(11)

where is usually related to the class-conditioned
likelihood , and is a function defining how
the class-conditioned likelihoods for the competing
models , are counted in the classifi-
cation error function. This classification error function is often
smoothed by a sigmoid function

(12)

where and define the slope and center of the sigmoid. As
a result, in MCE, a total loss function defined as the smoothed

classification error averaged over all the training data in all dif-
ferent classes is minimized

(13)

In the temporal filtering problem discussed here, for the th time
trajectory we seek to derive a temporal filter impulse response

that generates an optimal representation of the win-
dowed segments for the th time trajectory,

, which minimizes the above loss function
as defined in (13)

(14)

where are those windowed segments labeled
as belonging to the th class, are the filtered ver-
sions for them, is the total number of windowed seg-
ments labeled as belonging to the th class, and

is the set of models for
the th time trajectory and for all different classes . For
mathematical tractability, each class of the windowed segments

is modeled here using a multivariate Gaussian distri-
bution, , where the mean and covariance
matrix are just those defined previously in (4) and (5).
As a result, the temporal filter output samples for the th time
trajectory labeled as belonging to the th class, or the values of

for a filter impulse response , can be modeled as
a one-dimensional (single-variate) Gaussian distribution

(15)

which are those models in used in (14). Now, with dif-
ferent definitions of the function in (11) and (14), there
can be two different MCE-derived temporal filters, which will
be developed in the following two sections [33].

VI. FEATURE-BASED MCE TEMPORAL FILTERS

In this case, the classification error function in (11) is defined
as

(16)

This is one of the most popular classification error functions
used in MCE. We will show in the following that with the clas-
sification error function defined as (16), all the features
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in the training set are used together to obtain the temporal filter
coefficients. This is why the temporal filters obtained in this way
are called Feature-based MCE temporal filters in this paper.

Using (15) and (16), the loss function in (14) can be rewritten
as

(17)

Taking the derivative of (17) with respect to , we have

(18)

where we have (19) and (20), shown at the bottom of the page,
where

(21)

(22)

Starting with an initial guess of , and with the help of
(18)–(22), the gradient-descent algorithm can be used to obtain
a better estimate of the temporal filter for the th
iteration, , based on its estimate obtained from the th
iteration

(23)

where is the learning rate at the th iteration, and

(24)

Equation (24) is used here to normalize the norm of the vector
representing the temporal filter to unity in order to be consistent
with the eigenvectors used in LDA or PCA. This normalization
process will not change the value of the lost function defined
in (17), as proven in Appendix A. The gradient-descent proce-
dure terminates when there is no substantial difference between

and . From (18), we can see that all the windowed
segments of feature parameters in the training set are
used in the evaluation for the gradient of the loss function. This
is why the temporal filters obtained in this way are referred to
here as Feature-based MCE temporal filters [33]. Because the
quantity of windowed segments in the training set is
huge, very heavy computation is required. More precisely, since

multiplications are required to obtain the values of (21) (as-
suming and are calculated in
advance), multiplications required to obtain the
value of (22), where is the window length, multiplications to
obtain the values of (20), four multiplications to obtain the value
of (19), a total of multipli-
cations are therefore needed to obtain the value of (18) for one
iteration. The heavy computation comes from the large value of

. In our following experiments, given for

digit recognition, , and , there are to-
tally about multiplications for one iteration.

VII. MODEL-BASED MCE TEMPORAL FILTERS

An alternative form of the classification error function in (11)
for MCE is

(25)

(19)

(20)
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This is, in fact, only slightly different from (16) in terms of the
choice of the function in (11). Also, we will show in the
following that with the classification error function defined as in
(25), only the model parameters in (4) and (5) need to be used
to obtain the temporal filter coefficients. This is why the tem-
poral filters obtained in this way are called Model-based MCE
temporal filters in this paper. If this classification error function
does NOT have to be smoothed by the sigmoid function in
(12), then the modified loss function can be written as

(26)

where

(27)

Equation (27) is proved in Appendix B. It is analogous to the
Kullback-Leibler distance between two Gaussian probability

density functions. Taking the derivative of (26) with respect to
, we have (28), shown at the bottom of the page, where

(29)

Similar to the approach discussed in Section VI, starting with
an initial guess , (23) and (24) can be used with the help of
(28) and (29) to obtain the next updated version of itera-
tively. The updated version can then be normalized without
changing the value of as proved in Appendix A, and
the final temporal filter can be obtained when this itera-
tive process converges. Examining (28), it is found that in this
case, only the model parameters or statistical parameters, i.e.,

, are involved in the evaluation
of the gradient of the loss function. The temporal filters obtained
with this procedure are, therefore, referred to as model-based
MCE temporal filters in this paper [33]. For the computation
load, there are totally multiplica-
tions to obtain the value of (28) for one iteration. In our fol-
lowing experiments, with and as given above,
there are totally about multiplications for one iter-
ation. Compared with the Feature-based MCE temporal filters
discussed previously, the computation complexity of obtaining
model-based MCE temporal filters is much lower.

VIII. EXPERIMENTAL ENVIRONMENT

The speech database used for the experiments included 8000
Mandarin digit strings produced by 50 male and 50 female
speakers, taken from the database NUM-100 A provided by the
Association for Computational Linguistics and Chinese Lan-
guage Processing in Taipei, Taiwan, R.O.C. [34]. The speech
signals were recorded in a normal laboratory environment at an
8 kHz sampling rate and encoded with 16-bit linear PCM. The
8000 digit strings included 1000 each of two-, three-, four-,
five-, six-, and seven-digit strings, respectively, plus 2000 single
digit utterances. Among the 8000 Mandarin digital strings, 7520
with different lengths were used for training, while the other
480 with different lengths were used for testing. A 20-ms
Hamming window shifted with 10–ms steps and a preemphasis
factor of 0.95 were used to evaluate 13 mel-frequency cepstral
coefficients (MFCCs, c1–c12 plus log-energy). The LDA-,
PCA-, Feature-based MCE- and model-based MCE-derived
temporal filters were then obtained using these 13-dimensional
MFCC vectors of the 7520 training digital strings. On the other
hand, because the training data need to be labeled into classes
in advance for the LDA and MCE optimization processes, the

(28)
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TABLE I
RECOGNITION ACCURACY (PERCENT) AVERAGED OVER THREE SNR

CONDITIONS, 30, 20, AND 10 dB FOR DIFFERENT TYPES OF NOISE AND

LDA-DERIVED FILTERS WITH VARYING LENGTH L

7520 training digital strings were segmented into 11 classes
before training, i.e., the ten digits, 0–9, plus the silent portion.
For each time trajectory, the LDA- and MCE-derived filters
were then constructed using these 11 classes. For PCA-derived
filters, however, no such classification was needed in the opti-
mization process.

The LDA-, PCA-, and two MCE- derived FIR filters thus
obtained were first respectively applied on the time trajectories
of the MFCC (c1–c12 plus log-energy) feature vectors for the
7520-string training database. The resulting 13-dimensional
new features plus their delta and delta-delta features were
the components of the finally used 39-dimensional feature
vectors. With these new feature vectors, the HMMs for each
digit with five states and eight mixtures per state were trained.
Similarly, three conventional temporal filtering approaches,
CMS, RASTA, and CMVN, were also applied to the same
original MFCC feature vectors for the purpose of comparison,
i.e., the resulting features for these conventional approaches
along with their delta and delta-delta features were also used
to train their respective HMMs for recognition. On the other
hand, the 480 clean speech testing digit strings were manually
added with four types of noise at different levels to produce
noise corrupted speech data: white (broad-band and stationary),
babble (nonstationary), pink (narrow-band, low-pass and sta-
tionary) and machinegun (periodically stationary) noise, all
taken from the NOISEX 92 database [35]. These clean and
noise corrupted speech data were first converted into MFCCs,
and then individually processed by the above temporal filters
to form various sets of feature vectors for testing. This is the
general experimental environment for most of the tests reported
below. There were also some other different experimental
environments set up for some special purpose tests, as will be
mentioned later on when such tests are reported.

IX. INITIAL ANALYSIS OF THE OBTAINED TEMPORAL FILTERS

AND THE CHOICE OF THE FILTER LENGTH

When the various temporal filters as mentioned above were
obtained, it is natural that the better choices of the length
for the FIR filters to obtain the better recognition performance
turned out to be different for the different filters derived from
different criteria. This was first investigated here in a series of

TABLE II
RECOGNITION ACCURACY (PERCENT) AVERAGED OVER THREE SNR

CONDITIONS, 30, 20, AND 10 dB FOR DIFFERENT TYPES OF NOISE AND

PCA-DERIVED FILTERS WITH VARYING LENGTH L

TABLE III
RECOGNITION ACCURACY (PERCENT) AVERAGED OVER THREE SNR

CONDITIONS, 30, 20, AND 10 dB FOR DIFFERENT TYPES OF NOISE AND

FEATURE-BASED MCE-DERIVED FILTERS WITH VARYING LENGTH L

TABLE IV
RECOGNITION ACCURACY (PERCENT) AVERAGED OVER THREE SNR

CONDITIONS, 30, 20, AND 10 dB FOR DIFFERENT TYPES OF NOISE AND

MODEL-BASED MCE-DERIVED FILTERS WITH VARYING LENGTH L

preliminary tests. Tables I–IV respectively show the recognition
accuracies averaged over three SNR conditions, 30, 20, and 10
dB, for the four types of noise and the four different filters under
considerations, with varying filter length .

From Tables I–IV, we see that the better choices of the filter
length for LDA-, PCA-, Feature/Model-based MCE- derived
filters may be 11, 15, 101, and 101, respectively, if identified
by the highest recognition accuracies averaged over the three
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Fig. 3. Frequency response shapes (magnitude versus modulation frequency) of the (a) LDA-derived, (b) PCA-derived, (c) feature-based MCE-derived, and (d)
model-based MCE-derived temporal filters for the first MFCC coefficient c1 with different filter lengths L.

SNR conditions and all the four different types of noise. As
can also be found from Tables I–IV, the better choices of filter
length are more or less consistent across different types of noise
for each optimization criterion, although exception cases exist
for each situation. For example, for the model-based MCE filter
in Table IV, the length is actually better for white,
pink and machine-gun noise, although turned out
to be slightly better for babble noise. The frequency response
shapes over the modulation frequencies of the various temporal
filters alone for the first MFCC coefficient (c1) with different
filter lengths are also shown in Fig. 3(a)–(d). From Fig. 3 to-
gether with Tables I–IV, we may have some initial discussions
regarding the relationship between the recognition performance
and the filter length, as given below.

1) For the LDA-derived temporal filters in Fig. 3(a), the ones
with filter lengths or less are all low-pass, while
the others with and are band-pass.
We also notice in Table I that the one gives
the worst averaged performance. The reason for this per-
formance dip may be two-fold. On the one hand, for

the low-pass main-lobe is narrower than those
with shorter length, and thus it attenuates some useful
modulation frequency components. On the other hand,
the filter with does not possess the band-pass
characteristics as those with longer , and thus it cannot
attenuate the very low modulation frequency components
which is very likely to be harmful for speech recognition
in mismatched environments.
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Fig. 4. Frequency response shapes (magnitude versus modulation frequency) of the 13 LDA-derived temporal filters with the best filter length L = 11.

2) For the PCA-derived temporal filters in Fig. 3(b), they
are all low-pass with the main-lobe bandwidth monoton-
ically decreasing as the filter length increases. The recog-
nition performance in Table II thus decays drastically as
the filter length increases beyond 15, which implies that
some useful modulation frequency (around 1–7 Hz) com-
ponents are eliminated by the narrower main-lobe.

3) For the Feature/Model-based MCE-derived temporal fil-
ters, the recognition performance in Tables III and IV
improves as the filter length increases from 21 to 101.
From the frequency response shapes in Fig. 3(c), (d) we
find that, unlike LDA/PCA-derived filters, the MCE-de-
rived temporal filters have relatively wider main-lobe for
smaller , which may very possibly capture those higher
modulation frequency components which are not very
helpful for recognition. When the filter length increases
from 21 to 101, the main-lobe of the MCE-derived fil-
ters becomes narrower and narrower, and some of them
even show some degree of band-pass characteristics, and
as a result very low and very high modulation frequency
components are attenuated. This is a possible reason why
better recognition performance can be obtained with

.

Next, Figs. 4–7 show respectively the frequency response
shapes of the 13 LDA-, PCA-, and Feature/Model-based MCE-
derived FIR filters for the 13 MFCC coefficients for compar-
ison, all with the better choice of filter length obtained above.

From these figures, we can further observe several phenomena
as follows.

1) Most of the data-driven temporal filters, regardless of
whether they were derived using LDA, PCA, or MCE
optimization processes, did not completely eliminate the
very low modulation frequency components of the sig-
nals (with the last, LDA-derived filter for the log-energy
component in Fig. 4 being the only exception). In other
words, most of them are low-pass filters. But some of the
MCE-derived temporal filters show some slight degree of
band-pass characteristics. As was well known, the very
useful CMS is a high-pass filter, while the very helpful
RASTA [27] is a band-pass filter, which implies elimi-
nating the very low modulation frequency components of
the signals should be helpful. This will lead to the fact that
some further processing in addition to these four types of
temporal filters may be helpful, as will be discussed later
on.

2) The widths of the main-lobes for the filters derived
with different criteria are in general of the similar order,
even though they were derived with quite different filter
lengths. Apparently these main-lobe bandwidths imply
important modulation frequency components of speech
signals which are useful for recognition. But the differ-
ences in the main-lobe widths for filters derived with
different criteria are really not negligible. For LDA-de-
rived filters, the main-lobe widths are roughly between
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Fig. 5. Frequency response shapes (magnitude versus modulation frequency) of the 13 PCA-derived temporal filters with the best filter length L = 15.

7–11 Hz. For PCA-derived ones, they are roughly 7 Hz.
For the two MCE-derived ones, the cutoff frequencies
of the main-lobes are not very clear, whose range is
roughly between 6–20 Hz. Such differences may be the
reasons for the differences in recognition performance to
be further analyzed later on.

3) For the two sets of MCE-derived filters, the magnitudes
of the side-lobes were much lower compared with those
of the main-lobes. However, the magnitudes of side-lobes
were higher for LDA-derived filters, and somewhere in
between for PCA-derived filters. This may be the natural
results for the much longer length for the two sets of
MCE-derived filters.

X. COMPARATIVE PERFORMANCE ANALYSIS FOR EACH

INDIVIDUAL TEMPORAL FILTERING APPROACH

In this section, we compare and analyze the recognition ac-
curacy achieved by the different temporal filtering approaches
proposed here under different conditions. This includes four
parts. In the first part the temporal filters were derived from the
cepstral features of the clean training speech, and performed on
the time-trajectories of cepstral coefficients. This is the general
experimental environment as presented above in Section VIII.
The environments for the other three parts are slightly different,
in order to see if the recognition performance is consistent for
different experimental environments. In the second part the

data-driven temporal filters were derived from the log-spectral
features of the clean training speech, and performed on the
log-spectral time-trajectories. In the third part the temporal
filters were derived from the cepstral features of both clean and
noisy speech, and performed on the time-trajectories of cepstral
coefficients. In all the above three parts, the classification
units used in the LDA and the two versions of MCE processes
are the whole Mandarin digits (i.e., syllable units). Finally in
the fourth part, instead of using the whole Mandarin digits,
the more delicate units, INITIAL/FINAL units for Mandarin
syllables (similar to consonant-vowel phone units in other
languages) were used as the classification units to derive the
LDA- and Feature/Model-based MCE temporal filters to see
the corresponding performance. Also, similar to the first part,
in this fourth part the temporal filters were derived from the
cepstral features of clean training speech and performed on
cepstral time-trajectories.

A. Cepstral-Domain Temporal Processing With Clean
Training Data Using the Whole Digit as the Classification Unit

Figs. 8 and 9–12(a)–(c), respectively, show the digit recog-
nition results obtained using all the different temporal filtering
techniques mentioned here under different noisy conditions,
where Fig. 8 is for clean speech (or matched) environment
and Figs. 9–12 respectively for the four types of noise: white,
babble, pink, and machine-gun, each with (a) 30 (b) 20, and
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Fig. 6. Frequency response shapes (magnitude versus modulation frequency) of the 13 Feature-based MCE-derived temporal filters with the best filter length
L = 101.

(c) 10 dB of SNRs, and Table V then briefly summarizes
these results together with the relative error rate reduction
compared with the plain MFCC. In all these tests the better
choice of filter length of 11, 15, and 101 as obtained above
were used. In each figure for a given noisy condition, the
first bar labeled “MFCC” is for the “plain MFCC” features,
while the next four bars are for the four data-driven temporal
filtering techniques discussed here, derived using LDA, PCA,
and Feature/Model-based MCE (marked as F-MCE/M-MCE)
approaches, respectively. The last three bars on the right, on the
other hand, are for the three well-known conventional temporal
filtering techniques, i.e., CMS, RASTA, and CMVN. These
results are discussed in detail below.

First consider Fig. 8 for clean and matched condition, i.e.,
both the training and testing speech were clean. It can be
observed that the three of the temporal filters discussed here,
LDA and Feature/Model-based MCE, performed slightly better
(0.05%–0.21%) than the plain MFCC, while all the other four
temporal filtering approaches, including PCA and the three
conventional ones, performed slightly worse. However, the
differences between the performance of all these temporal
filtering techniques and that of the plain MFCC were not very
significant (within 1.2% in terms of the recognition accuracy),
so we may conclude that all these temporal filtering techniques
offer roughly the same order of accuracy as the plain MFCC
features do under the clean and matched condition. Note that
recognition accuracy under the clean and matched condition

implies the real discriminative capability of the features, regard-
less of the robustness requirements, and it is certainly highly
desired that this accuracy be high for any robust features. The
results here showed the distinct feature of the LDA and our
proposed MCE-derived filters: They are the temporal filters that
achieved slightly higher recognition accuracy under the clean
and matched condition than the plain MFCC. Considering the
nature of LDA and MCE criteria to make the parameters more
discriminative, this result is quite reasonable.

Next, look at Figs. 9–11 for the results with white, babble,
and pink noise environments. First consider the four data-driven
temporal filtering approaches discussed here. It can be found
that for the high SNR (30 dB) cases in Figs. 9(a), 10(a) and
11(a), model-based MCE and feature-based MCE performed
the best for the cases of white and babble noise, respectively,
as shown in Figs. 9(a) and 10(a), while LDA performed the
best for the case of pink noise as shown in Fig. 11(a), although
the performance differences for them from the plain MFCC are
in general not very significant, while PCA seemed to achieve
slightly lower accuracy. However, for the medium SNR (20 dB)
and low SNR (10 dB) cases shown in Figs. 9(b), (c), 10(b), (c),
and 11(b), (c), all the four data-driven temporal filters achieve
obviously significant improvements in recognition accuracy as
compared with the plain MFCC. In particular, the new PCA- and
the two versions of MCE-derived filters proposed in this paper
do offer very significant improvements. For example, in the case
of pink noise at 10 dB SNR in Fig. 11(c) PCA- and two MCE-de-
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Fig. 7. Frequency response shapes (magnitude versus modulation frequency) of the 13 model-based MCE-derived temporal filters with the best filter length
L = 101.

Fig. 8. Digit recognition accuracy (percent) for different temporal filtering
techniques under the clean speech environment.

rived filters give a recognition accuracy of 58.11%, 60.76%, and
63.52%, respectively, but plain MFCCs give only 35.10%. One
possible reason for such results may be drawn from the charac-
teristics of the frequency responses as shown in Figs. 4–7 as
discussed previously. The main-lobe for all the LDA-, PCA-
or MCE-derived filters discussed here may preserve better the
syllabic information in speech signals (with a modulation fre-
quency around the vicinity of roughly 4 Hz), and the lower
side-lobes for these filters may suppress high frequency noise
components more.

On the other hand, from Figs. 9, 10 and 11, it is also clear that
regardless of whether SNR was high or low, in almost all cases
all the conventional temporal filters, CMS, RASTA, and CMVN,
which are known to be effective in dealing with convolutional
noise, were also very effective here in dealing with additive noise.
In particular, very significant improvements were achieved in
almost all cases with medium SNR (20 dB) and low SNR (10
dB). The performance of CMVN was especially outstanding,
very often the best among all the conventional temporal filters,
especially under low SNR (10 dB) conditions as shown in
Figs. 9(c), 10(c), and 11(c). Considering all these results shown
in Figs. 8–11 and discussed so far, however, it is also clear that
the new PCA- and Feature/Model-based MCE-derived temporal
filtering techniques proposed in this paper achieved robustness
rather consistently under different noise levels regardless of
whether the noisy environment was all-pass stationary (white),
low-pass stationary (pink), or nonstationary (babble).

Now examine Fig. 12(a)–(c) for the machine-gun noise
(periodical stationary) environment, again we can see that
almost all the four data-driven temporal filters, LDA-, PCA-,
Feature/Model-based MCE-derived, were able to achieve im-
provements in recognition accuracy as compared with plain
MFCC, especially when SNR was low. However, different
from Figs. 9–11, the right sides of Fig. 12(a), (b), (c) show
that the conventional temporal filters, CMS, RASTA and

Authorized licensed use limited to: National Taiwan University. Downloaded on January 20, 2009 at 02:28 from IEEE Xplore.  Restrictions apply.



820 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 14, NO. 3, MAY 2006

Fig. 9. Digit recognition accuracy (percent) for different temporal filtering techniques under additive white noise at different SNR levels: (a) 30 dB, (b) 20 dB,
and (c) 10 dB.

Fig. 10. Digit recognition accuracy for different temporal filtering techniques under additive babble noise at different SNR levels: (a) 30 dB, (b) 20 dB, and (c)
10 dB.

Fig. 11. Digit recognition accuracy (percent) for different temporal filtering techniques under additive pink noise at different SNR levels: (a) 30 dB, (b) 20 dB,
and (c) 10 dB.

CMVN, offered worse performance than plain MFCC, with
RASTA at an SNR of 10 dB in Fig. 12(c) being the only
exception. This was the case in which the new data-driven
temporal filters did significantly better than the conventional
temporal filters, i.e., the case with added machine-gun noise.
This was probably because the machine-gun noise was peri-
odically stationary and thus included more noise components
in the medium and high modulation frequency regions. The
conventional temporal filters, CMS, RASTA, and CMVN,
which are in general high-pass or band-pass filters, thus
may not have been able to suppress the undesired noise
components at higher modulation frequencies as well as

the four data-driven filters did, as shown by the frequency
response shapes in Figs. 4–7.

Still another important observation is as follows. Examining
Figs. 8–12(a)–(c) and comparing the Model-based and Feature-
based MCE-derived filters proposed in this paper, it is found
that in some cases the former did better, and in other cases the
latter did better, but in most cases the differences between the
two were, in fact, relatively insignificant. For this reason, we
may conclude that the Model-based MCE-derived filter is more
attractive or preferred than the Feature-based one, because the
former can be derived much easier than the latter, as mentioned
in Sections VI and VII.
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Fig. 12. Digit recognition accuracy (percent) for different temporal filtering techniques under additive machine-gun noise at different SNR levels: (a) 30 dB, (b)
20 dB, and (c) 10 dB.

TABLE V
RECOGNITION ACCURACY (PERCENT) AVERAGED OVER THE DIFFERENT SNR
CONDITIONS, 30, 20, AND 10 dB FOR EACH TYPE OF NOISE, AND AVERAGED

OVER DIFFERENT TYPES OF NOISE, TOGETHER WITH THE RELATIVE ERROR

RATE REDUCTION WITH RESPECT TO THE PLAIN MFCC, FOR VARIOUS

TEMPORAL FILTERS EACH WITH THE BETTER CHOICE OF FILTER LENGTH,
PERFORMED ON THE CEPSTRAL DOMAIN

To sum up, observing the performance of the four data-driven
temporal filters as shown in Figs. 8–12, we find that the newly
proposed PCA- and Feature/Model-based MCE-derived filters
actually achieved similar improvements as LDA did. This very
possibly has to do with the similarities among the frequency
response shapes of the filters as shown in Figs. 4–7. The
LDA-derived filter and the three newly proposed ones shown in
Figs. 4–7, although derived based on different criteria, in fact
look similar, probably because they were derived from the same
set of data. All of them include lower modulation frequencies
(in particular the syllabic rate around the vicinity of 4 Hz) with
a wider main-lobe, and suppress more the higher modulation
frequencies with lower side-lobes.

Finally we look at the recognition accuracy summarized in
Table V, those averaged over all different SNRs and all different
types of noise (the second right column) as well as the relative
error rate reduction with respect to plain MFCC (the right most
column). The improvements obtained by these four data-driven
temporal filters are quite obvious. It should be observed that
the achieved improvements by the MCE-derived filters are the
highest while those by PCA-derived filters are slightly less. Note
that PCA is the only approach for which the training data were
not labeled into classes and the optimization process did not
try to separate the classes more. Lack of such class informa-
tion and class separation process may lead to slightly worse per-

TABLE VI
RECOGNITION ACCURACY (PERCENT) AVERAGED OVER THE DIFFERENT SNR
CONDITIONS, 30, 20, and 10 dB FOR THE FOUR TEMPORAL FILTERS, EACH ALL

WITH THE BETTER CHOICES OF THE FILTER LENGTH, PERFORMED ON THE

LOG-SPECTRAL DOMAIN, THEN AVERAGED OVER THE FOUR DIFFERENT

TYPES OF NOISE AND COMPARED WITH THE CORRESPONDING RESULTS

OBTAINED WITH CEPSTRAL DOMAIN FILTERING

formance. On the other hand, by examining the last three rows
of Table V we find that the two conventional temporal filtering
techniques, CMS and RASTA, can also improve the recogni-
tion performance of plain MFCC to some degree, but not as
much as the data-driven temporal filters discussed here. How-
ever, the conventional CMVN is very outstanding. It performs
very often as well as, and sometimes even better than, the four
data-driven temporal filtering techniques discussed here. This
leads to the concept of integrating the conventional CMVN and
the proposed data-driven temporal filters as discussed later on in
Section XI. It will be shown that such integration can actually
offer very attractive performance.

B. Log-Spectral-Domain Temporal Filtering With Clean
Training Data Using the Whole Digit as the Classification Unit

In this subsection, we wish to investigate if the four data-
driven approaches can be equally used in the log-spectral do-
main to derive the temporal filters. Here the filters were also
derived with the clean speech training data as in Section X-A.
The used feature parameters consisted of the logarithm of the 23
Mel-filter band outputs and the log-energy. As a result, for each
data-driven approach discussed here we obtained 24 temporal
filters. After performing the temporal filtering on each trajec-
tory of the log-spectral features in the training and testing sets,
each feature vector of 24 parameters was finally transformed to
13-dimensional cepstral coefficients (c1–c12 plus log energy)
plus their delta and delta-delta components for recognition ex-
periments. In this set of tests, we again varied the length of all
the data-driven temporal filters with ,
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Fig. 13. Frequency response shapes of the four data-driven temporal filters derived in log-spectral domain (only for the logarithm of the second Mel-filter band
outputs) with the better choices of the filter length L.

and in order to make sure we still had the better choices of
the filter length.

The better choices of the filter length (chosen in exactly the
same way as done before in Tables I–IV) and the corresponding
recognition accuracy averaged over three SNR conditions, 30,
20, and 10 dB for the four types of noise and the four different
data-driven temporal filtering approaches are summarized in
Table VI. The recognition accuracies averaged over the four
different types of noise are listed on the second right column of
the table. They are further compared with the results when the
temporal filtering was performed directly on the cepstral domain
with the corresponding filter length (not necessarily the best
choices of the filter length in those cases), copied from those data
in Tables I–IV and listed here in the right column of Table VI.
Fig. 13 shows the frequency response shapes for the four different
types of temporal filters for the logarithm of the second Mel-filter
band outputs. Some observations can be made by examining
Table VI and comparing Fig. 13 with Figs. 4–7. First, here the
better choice of filter length is for LDA filters (as
compared to before) and for PCA filters (slightly
different from before). Secondly, here the LDA- and
feature/model-based MCE- derived log-spectral temporal filters
obviously become band-pass and strongly attenuate the very
low modulation frequency components, while the PCA-derived
filter remains low-pass. Finally, the frequency response of the
LDA log-spectral temporal filters has higher side-lobes and
those of the Feature/Model-based MCE log-spectral temporal
filters have much narrower main-lobes, when compared with
those filters obtained in cepstral domain. However, from the
last two columns of Table VI one can see that such differences
in frequency response shapes did not bring significant changes
in recognition accuracy. The possible reason is that, although
the band-pass characteristics of LDA- and feature/model-based
MCE- derived log-spectral temporal filters may bring better
recognition performance, the higher side-lobes of LDA-derived
filters and the narrower main-lobes of MCE-derived ones are

unfavorable factors and thus very likely offset the above possible
performance improvements.

C. Cepstral Temporal Filtering With Mixed Clean and Noisy
Training Data Using the Whole Digit as the Classification Unit

In the previous subsections, only clean training data were
used for the temporal filter design. However, the temporal fil-
ters may also be derived from some form of noisy data in order
to reduce the mismatch with the testing environment. [28]–[30].
Therefore, here we performed an extra test in which the training
data for the temporal filter design consisted of mixed clean and
noisy speech data. For simplicity, we only tested a single case,
in which we added the white noise at 10 dB SNR to the orig-
inal clean speech training data and used them together with
their clean version as the training data. This is referred to as
the mixed clean and noisy training data. These training data
were used to derive the temporal filters to be applied in the cep-
stral domain, i.e., similar to the case in Section X-A. Tables VII
and VIII respectively list the recognition results of clean and
noise corrupted testing data with temporal filters derived from
the mixed clean and noisy training data discussed here (marked
“mixed” in the tables), as compared with the corresponding re-
sults for the temporal filters derived from clean training data
alone (marked “clean”) for filter length ranging from 5 to 151.
In Table VIII only the testing data with 10 dB added white noise
were tested for simplicity, so under the “mixed” columns it is a
quite matched condition.

First, looking at Table VII it is found that for all the four dif-
ferent filtering approaches, to add the noisy data into the training
set (i.e., the “mixed” column) does not bring very significant
performance drop for clean testing data in most cases, which im-
plies the mixed clean and noisy training still give the temporal
filters that preserve the useful temporal information in clean
speech. So the mixed clean and noisy training data can also pro-
duce reasonably good temporal filters. Next, from Table VIII
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TABLE VII
RECOGNITION ACCURACY (PERCENT) FOR THE CLEAN TESTING DATA WITH

DIFFERENT TEMPORAL FILTERING APPROACHES, WHERE “CLEAN” INDICATES

THE CASE OF USING CLEAN TRAINING DATA, AND “MIXED” USING

MIXED CLEAN AND NOISY TRAINING DATA

one can see that for LDA and feature/model-based MCE fil-
tering approaches, the mixed clean and noisy training always
significantly improves the recognition accuracy for the noisy
testing data, much higher than those with clean data training
(i.e., the “mixed” column as compared to the corresponding
“clean” column). So mixed training data with the right noisy
conditions always help, which is consistent with the common
sense because the situation here is reasonably matched, and thus
offers a way to obtain better results. However, for PCA this is
not the case. A possible reason is that the optimization crite-
rion of PCA did not try to increase the discriminative capabil-
ities among the classes. As a result the better matched training
data may not help. In fact, it was found that the impulse re-
sponse coefficients for the two PCA filters, one derived from
clean training data and the other from mixed clean and noisy
training data, are very similar. This is probably because the ad-
ditive white noise did not disturb too much the original distribu-
tions of the cepstral coefficients, and is probably why the cor-
responding performance for them is similar. Also note that here
in Table VIII the better choices of the filter length for each
case may not necessarily be the same as those obtained from
Tables I–IV. This is because only the white noise at 10 dB SNR
was tested here, while in Tables I–IV the filter length was ob-
tained with performance averaged over all types of noise with
all different SNRs.

D. Cepstral-Domain Temporal Filtering With Clean Training
Data Using the INITIAL/FINAL Models as the Classification
Unit

Here we would like to investigate the choice of acoustic units
with which we define our classes in deriving the LDA and two
versions of MCE temporal filters. In the experiments presented
in the preceding subsections, the total number of classes is 11,
and they are simply the ten Mandarin digits plus the silence.
Each Mandarin Chinese digit is pronounced as a mono syllable.
Here, we try to use the INITIAL/FINAL units for Mandarin syl-
lables in the classification instead. The Mandarin syllables are
conventionally decomposed into INITIAL/FINAL parts similar
to the consonant-vowel pair in other languages. The INITIAL
part is the initial consonant part, while the FINAL part is in
general the vowel or diphthong part but including an optional
medial and/or nasal ending. So INITIAL/FINAL are similar to,
though slightly different from, the phone units in other lan-
guages. Using them as the classification units for the ten digits,

TABLE VIII
RECOGNITION ACCURACY (PERCENT) FOR THE NOISY TESTING DATA WITH

ADDITIVE WHITE NOISE AT 10 dB SNR FOR THE FOUR TEMPORAL

FILTERING APPROACHES, WHERE “CLEAN” INDICATES THE CASE OF USING

CLEAN TRAINING DATA, AND “MIXED” USING MIXED CLEAN AND

NOISY TRAINING DATA

TABLE IX
RECOGNITION ACCURACY (PERCENT) AVERAGED OVER THE DIFFERENT SNR
CONDITIONS, 30, 20, and 10 dB AND THE FOUR DIFFERENT TYPES OF NOISE

FOR THE FOUR TEMPORAL FILTERS OBTAINED WITH INITIAL/FINAL UNITS,
ALL WITH THE BETTER CHOICES OF FILTER LENGTH, PERFORMED ON THE

CEPSTRAL DOMAIN, AND COMPARED WITH THE CORRESPONDING RESULTS

OBTAINED WITH THE WHOLE DIGIT UNITS

the total number of classes is 15, including 14 INITIAL/FINAL
units plus a silence portion. These classes were used in deriving
the LDA/MCE filters, also in the cepstral domain as in Sec-
tion X-A.

In the experiments, the length of the data-driven temporal
filters was again varied, and for each kind of temporal filters the
better choice of that gave the best recognition accuracy aver-
aged over three SNR conditions, 30, 20, and 10 dB for the four
types of noise was chosen. These better choices of filter length

and the corresponding averaged recognition accuracy for the
four different temporal filtering approaches are summarized in
Table IX. The recognition accuracies averaged over the four dif-
ferent types of noise are listed in the second right column of the
table. They are further compared with the results when the tem-
poral filters were obtained directly using the classes of ten whole
digits plus silence with the same filter length , copied from Ta-
bles I–IV and listed here in the right column of Table IX. Notice
that since there is no classification process in deriving the PCA
temporal filters, the data for PCA filters in Table IX are simply
copied from Table II.

Comparing the two rightmost columns of Table IX, we find
that changing the classification units from the whole digits to
the INITIAL/FINAL units brings an improvement of 3.46% in
averaged recognition accuracy for the LDA-derived temporal
filters, while this does not significantly influence the recognition
performance of two versions of MCE temporal filters. This may
probably be explained from the differences in the frequency
response shapes of the temporal filters obtained with different
classification units as shown in Fig. 14. For the LDA case in
Fig. 14(a), most of the filters using the INITIAL/FINAL units
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Fig. 14. Frequency response shapes of (a) LDA, (b) feature-based MCE, and (c) model-based MCE temporal filters in ceptral domain, all with the better choice
of the filter length L = 101 using the INITIAL/FINAL units (bold line) and whole digits (light line) as the classification units.

in the classification have obviously wider main-lobes than
those using the whole digits. With such a wider main-lobe,
more useful modulation frequency components are included
for recognition, and as a result the recognition accuracy is
improved. On the other hand, for the two versions of MCE
temporal filters in Fig. 14(b) and (c), we see relatively less
obvious change in the frequency response shapes, and thus
no significant change in recognition performance is observed.

In fact, the use of INITIAL/FINAL units instead of the
whole digits in the classification process does not bring very
significant performance change here. This is probably because
only 14 INITIAL/FINAL units are involved for the ten Mandarin
digits, and thus the difference between these two sets of classes

are not too much. In other words, the choice of classification
units seems not very critical for the digit recognition task
here.

XI. COMPARATIVE PERFORMANCE ANALYSIS

FOR THE INTEGRATION OF CEPSTRAL MEAN

AND VARIANCE NORMALIZATION WITH EACH

OF THE DATA-DRIVEN APPROACHES

From the above sections, it was found that most of the
data-driven temporal filtering approaches discussed here, the
LDA-, PCA-, and feature/model-based MCE-derived ones, are
low-pass filters or band-pass filters whose pass-band covers
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Fig. 15. Frequency response shapes of the combined filters representing the integration of the CMS together with the four data-driven temporal filters with the
better choices of length L (only for the first MFCC component c1) discussed here.

low modulation frequency components, and thus are very
helpful in enhancing the low modulation frequency parts of the
speech information in order to improve recognition accuracy.
However, it is also very likely that all these low-pass temporal
filters tend to retain the most slowly-varying components of
the logarithmic speech spectrum (roughly 1 Hz modulation
frequency or below), which may correspond to some possible
stationary additive noise or convolutional channel distortion,
and the speech features may somehow be corrupted in these
parts. On the other hand, all the conventional temporal filtering
approaches,whetherbeingCMS,RASTA,orCMVN,whichwere
found here to achieve very good performance improvements,
perform some filtering processes in these parts of speech
signals. This may be a most natural direction for further
improvements of the data-driven filters developed here. We
therefore propose that these very slowly-varying components
of the cepstral vectors left after applying the data-driven
temporal filters discussed here may be further eliminated or
reduced by means of an additional cascaded conventional
high-pass or band-pass filter. Fig. 15 shows the frequency
response shapes of a set of such integrated filters, i.e., the
cascade of the Cepstral Mean Subtraction (CMS) together with
the four data-driven temporal filters with the better choices
of the length (only those for the first MFCC coefficient
c1 are shown here). Compared with Figs. 4–7, one can see
that the DC components of the modulation spectrum have
been removed in Fig. 15, which is a desired shape of the
frequency response for the filters.

On the other hand, because we found previously that CMVN
(Cepstral Mean and Variance Normalization) performed the best
among the three conventional temporal filtering approaches in
Section X, in the experiments below we chose CMVN to be cas-
caded or integrated with one of the four data-driven temporal
filtering approaches discussed here, with a hope that the recog-
nition performance can be further improved. Note that CMVN
is not a linear time-invariant process, so the cascade of CMVN
and the temporal filters cannot be represented as a frequency re-
sponse. This is why in Fig. 15 only the cascade of CMS with
the temporal filters are presented. However, as will be shown
below, with the additional variance normalization as compared
to CMS, the cascade of CMVN and the temporal filters does
offer very attractive performance.

Since CMVN is not a linear time-invariant filtering approach,
when it is cascaded with a linear time-invariant filter (all the
data-driven temporal filters discussed here belong to this type),
different filtering results may be obtained when the order of the
cascade is reversed, i.e., either a data-driven temporal filter fol-
lowed by CMVN, or CMVN followed by a data-driven temporal
filter, may give different outputs. Note that when CMVN is fol-
lowed by a data-driven temporal filter, the data-driven temporal
filter should be derived using the CMVN-processed training
data, but we found that the frequency response shapes of the
new data-driven temporal filters thus derived were very similar
to those of the original ones shown previously in Figs. 4–7.

The experimental results are shown in Figs. 16–19 for the
four types of noise at different levels, respectively, just as be-
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Fig. 16. Digit recognition accuracy (percent) for different temporal filtering techniques integrated with CMVN under additive white noise at different SNR levels:
(a) 30 dB, (b) 20 dB, and (c) 10 dB.

Fig. 17. Digit recognition accuracy (percent) for different temporal filtering techniques integrated with CMVN under additive babble noise at different SNR
levels: (a) 30 dB, (b) 20 dB, and (c) 10 dB.

fore in Tables IX–XII, and X also summarizes these results
with the relative error rate reduction obtained as compared with
CMVN and plain MFCC, similar to Table V. In Figs. 16–19, the
order of the cascade is indicated by the marks on the bars. For
example, CMVN_PCA represents the case where the MFCC
features were first processed by CMVN and then by PCA-de-
rived temporal filters, while PCA_CMVN represents the op-
posite case. In fact, in all these figures the first four bars be-
long to the former case (CMVN performed the first), and the
next four bars belong to the latter (data-driven temporal filters
performed the first). In addition, in all these figures, for each
bar representing the recognition accuracy for a cascade case,
a very thin black bar with a dot on the top is attached on its
right, which represents the recognition accuracy for exactly the
same case of noise type and level but with the data-driven tem-
poral filter alone, i.e., those results in Figs. 9–12 without cas-
cading with CMVN. For example, on the right side of the bar
labeled PCA_CMVN, the very thin black bar indicates the ac-
curacy achieved by PCA-derived filters alone without CMVN.
Also, the last bar on the right sides of the figures indicates the
results obtained with CMVN alone, copied from Figs. 9–12. In
this way, it is easy to see in all the figures whether the integra-
tion produced better results than each of the individual compo-
nent filters in the cascade, i.e., whether the functions of the two
component filters were actually additive, and whether the cas-
cading or integration really makes sense.

Our first observation based on Figs. 16–19 is that in most
cases of low SNR (20 and 10 dB) the integration or cascading
of CMVN with almost any of the data-driven temporal filters
discussed here did improve the performance as compared to
either one of the individual component filters in the cascade.
For example, in the case of white noise at 10 dB as shown in
Fig. 16(c), CMVN_PCA (65.25%) and PCA_CMVN (64.38%)
both did significantly better than PCA alone (47.41%) or
CMVN alone (49.02%), and this situation was quite consistent
across most of the cases shown in Figs. 16–19(b), (c) for all dif-
ferent noise types and lower SNR values (except there are some
exceptional cases for the machine-gun noise in Fig. 19(b), (c),
which will be further discussed later on). In fact, even for higher
SNR [Figs. 16–19(a) of 30 dB], many cases can also be found
in which the cascade did offer significantly better performance
than the individual component filters. Therefore, integration
as proposed here does make sense, and the improvements
obtained by the data-driven temporal filters discussed here and
by CMVN were actually additive, probably for the reason men-
tioned above. On the other hand, we see that when integrated
with CMVN, the two newly proposed data-driven temporal
filtering approaches, feature/model-based MCE-derived ones,
performed as well as, and sometimes even better than, LDA in
almost every case. This is an additional verification of the nice
properties of the new data-driven temporal filters proposed here
in this paper.
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Fig. 18. Digit recognition accuracy (percent) for different temporal filtering techniques integrated with CMVN under additive pink noise at different SNR levels:
(a) 30 dB, (b) 20 dB, and (c) 10 dB.

Fig. 19. Digit recognition accuracy (percent) for different temporal filtering techniques integrated with CMVN under additive machine-gun noise at different
SNR levels: (a) 30 dB, (b) 20 dB, and (c) 10 dB.

Still another important observation is as follows. As men-
tioned previously, machine-gun noise was the environment in
which the recognition performance of CMVN filtering was
worse than that of MFCC as shown in Fig. 12. However,
examining Fig. 19 for the same noise environment, it is found
that this degradation caused by CMVN was almost successfully
compensated for by the various data-driven temporal filters
developed here. For example, from Figs. 12(c) and 19(c), it is
found that with machine-gun noise at 10 dB SNR, CMVN_PCA
(87.92%) was better than plain MFCC (79.23%), PCA alone
(86.94%), or CMVN alone (75.66%). Therefore, the poorer
performance of CMVN alone for this type of noise was very
significantly improved by the PCA-derived filters proposed
here. This was also true for the other two newly proposed
data-driven filters derived by MCE. This again indicates that
the data-driven temporal filters proposed here can be added to
CMVN filtering even for a periodically stationary noise envi-
ronment like machine-gun noise, under which the performance
of pure CMVN was unacceptable.

Another important observation based on Figs. 16–19 is as fol-
lows. Comparing the first four bars (i.e., CMVN used as the
first filter) with the next four bars (i.e., CMVN used as the
second filter), it is clear that whether CMVN was used as the first
filter or as the second did make a significant difference. Appar-
ently, the former case, i.e., where CMVN was used as the first

filter, gave better results in almost all situations compared to the
case where CMVN was used as the second filter. For example,
CMVN_PCA is almost always better than PCA_CMVN. The
reason for this is probably as follows. When the data-driven tem-
poral filter is applied first, then followed by CMVN, although
CMVN may help to reduce the effects of the additive low fre-
quency noise and the deteriorating channel effects that may have
been enhanced by the low-pass data-driven temporal filters, the
normalization process in CMVN may also reduce the variation
and discrimination within the features, which have been maxi-
mized by the data-driven temporal filters. But this is not the case
if CMVN is applied first, where the undesired low frequency
components are deleted by CMVN first, and the useful compo-
nents, such as the syllabic rate information around the vicinity
of the modulation frequency of 4 Hz, is then enhanced by the
following data-driven filters. To briefly sum up, it helps a lot
for robust speech recognition if the original speech features are
mean and variance normalized before the various temporal filter
design.

The results in Figs. 16–19 are also summarized in Table X,
in which the recognition accuracy averaged over the different
SNR conditions, 30, 20, and 10 dB, and further averaged over
different types of noise, together with the relative error rate re-
duction with respect to CMVN and plain MFCC are listed. The
achieved improvements are quite obvious.
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TABLE X
RECOGNITION ACCURACY (PERCENT) AVERAGED OVER THE DIFFERENT

SNR CONDITIONS, 30, 20, and 10 dB, AND AVERAGED OVER DIFFERENT

TYPES OF NOISE, TOGETHER WITH THE RELATIVE ERROR RATE REDUCTIONS

WITH RESPECT TO CMVN ALONE AND WITH RESPECT TO PLAIN MFCC
ALONE RESPECTIVELY, FOR VARIOUS TEMPORAL FILTERS EACH WITH BETTER

CHOICE OF FILTER LENGTH PERFORMED ON THE CEPSTRAL DOMAIN

XII. COMPARISON OF THE DISCRIMINATING CAPABILITIES AND

ROBUSTNESS OF FEATURES BASED ON DISTANCE MEASURES

Here, we will further compare the discriminating capabilities
and the robustness of the features obtained with the temporal
filtering techniques discussed here, based on some measures
other than recognition accuracy, i.e., some distance measures.
The first distance measure used here was the “class distance”
for the 13 MFCC feature parameters and their filtered versions.
For this distance measure, we simply assumed that each of the
13 plain MFCC parameters (c1–c12 plus the log-energy) for
the speech frames in each of the 11 classes of speech signals
(the digits, 0–9, plus the silence), under the clean condition,
could be modeled as a Gaussian distribution. Therefore,
we could calculate the average symmetric Kullback-Leibler
(KL2) distances between each pair of classes out of the
11 classes for each of the 13 plain MFCC parameters, as
well as those obtained with their filtered versions processed
by the data-driven filters discussed here (each with better
choice of length, also assumed Gaussian distributed). This
distance measure was obtained using the clean speech data
in the training set. It may be considered as a rough estimate
of the discriminating capabilities of these speech features.
Table XI shows such average KL2 distances among the
11 classes for each of the 13 MFCC parameters and their
filtered versions. For the purpose of comparison, the last
row of Table XI also lists the average recognition accuracy
for the different versions of features copied from Table V.
From Table XI, we can clearly see that when compared
with plain MFCC, almost all the four temporal filtering
techniques discussed here could significantly increase the
distances among different classes. In most cases, the newly
proposed PCA- and the two MCE-derived filters increased
the distances more than the LDA-derived filters did, and the
Model-based MCE increased the distances the most. Since
larger distances may imply better discriminating capabilities
among different classes as well as better robustness with
respect to additive noise, the results here are roughly consistent
with the recognition accuracy results obtained previously
and listed in the last row of Table XI.

TABLE XI
AVERAGED KL2 DISTANCES AMONG THE 11 CLASSES FOR EACH OF THE 13
FEATURE PARAMETERS PROCESSED BY THE FOUR DIFFERENT FILTERS, AS

COMPARED WITH THOSE FOR THE PLAIN MFCC REPRESENTATIONS

TABLE XII
AVERAGE NORMALIZED DISTANCES BETWEEN CLEAN AND CORRUPTED

SPEECH FEATURES (LEFT SUBCOLUMN) AND THE CORRESPONDING

RECOGNITION ACCURACY (RIGHT SUBCOLUMN) FOR THE FOUR TEMPORAL

FILTERS AS COMPARED WITH THE PLAIN MFCC RESULTS UNDER

VARIOUS NOISE TYPES AT 10 dB SNR

The second distance measure used here is the average nor-
malized distance between the corrupted features and the cor-
responding clean speech features

(30)

where and are the 13-dimensional MFCC
feature vectors (c1–c12 plus log-energy) or their filtered ver-
sions for clean speech and noise corrupted speech respectively.
The Euclidean distance was used to calculate the norm of a
13-dimensional vector, and the average is performed over the
480 testing utterances, each corrupted by the four different
types of noise discussed above, but all at an SNR of 10 dB
only. This measure was used here to estimate the robustness
of the speech features used for recognition with respect to
noise corruption. Apparently smaller distances imply that the
features were less corrupted by the additive noise. Table XII
lists the results obtained based on this distance measure for
the speech feature representations derived by the four different
data-driven filters as compared with the plain MFCC. Also,
the recognition accuracy for different approaches in each case
taken from Figs. 7–11 are also listed in Table XII for the
purpose of comparison. One can see from Table XII that all
the four data-driven temporal filtering approaches could re-
duce significantly the normalized distance in every case when
compared with the plain MFCC. Again these results are in
good agreement with the recognition performance as shown
in Table XII.
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XIII. CONCLUDING REMARKS

In this paper, we have proposed several new temporal filtering
approaches, including one using the criteria of principal compo-
nent analysis (PCA) and two using the minimum classification
error (MCE), i.e., feature-based and model-based approaches.
Significant improvements obtained in recognition accuracy as
compared with the plain MFCC have demonstrated the effec-
tiveness of the proposed approaches. Especially, it was shown
that the two versions of MCE-derived temporal filters almost
perform as well as, and sometimes better than the previously
proposed LDA-derived filters under various noise conditions.
In addition, experimental results show that further improvement
can be achieved when these newly proposed data-driven tem-
poral filtering approaches are integrated with some conventional
temporal filtering approaches, such as cepstral mean and vari-
ance normalization.

APPENDIX A
PROOF THAT THE NORMALIZATION IN (24) DOES NOT CHANGE

THE TOTAL LOSS FUNCTION IN (17) AND (26)

For a random variable with probability density function
, if , where is a constant, then it is easy to show

that the probability density function is

(A.1)

Using (A.1), we wish to show that the value of the loss function
in (17) and (26) remains the same when the vector

is scaled to as follows, where is a constant.
For (17)

Similarly, for (26)
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Thus, the normalization procedure in (24) does not change the
values of the loss functions defined in (17) and (26).

APPENDIX B
PROOF OF (27)

The following is the Proof of (27). Note that
and

are all scalars. (See the equation on page 22.)
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