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using short, random and partial sequences
from mixed samples of anonymous
individuals
Steven H. Wu1,2* and Allen G. Rodrigo2,3

Abstract

Background: Over the last decade, next generation sequencing (NGS) has become widely available, and is now the
sequencing technology of choice for most researchers. Nonetheless, NGS presents a challenge for the evolutionary
biologists who wish to estimate evolutionary genetic parameters from a mixed sample of unlabelled or untagged
individuals, especially when the reconstruction of full length haplotypes can be unreliable. We propose two novel
approaches, least squares estimation (LS) and Approximate Bayesian Computation Markov chain Monte Carlo
estimation (ABC-MCMC), to infer evolutionary genetic parameters from a collection of short-read sequences
obtained from a mixed sample of anonymous DNA using the frequencies of nucleotides at each site only without
reconstructing the full-length alignment nor the phylogeny.

Results: We used simulations to evaluate the performance of these algorithms, and our results demonstrate that LS
performs poorly because bootstrap 95 % Confidence Intervals (CIs) tend to under- or over-estimate the true values
of the parameters. In contrast, ABC-MCMC 95 % Highest Posterior Density (HPD) intervals recovered from ABC-
MCMC enclosed the true parameter values with a rate approximately equivalent to that obtained using BEAST, a
program that implements a Bayesian MCMC estimation of evolutionary parameters using full-length sequences.
Because there is a loss of information with the use of sitewise nucleotide frequencies alone, the ABC-MCMC 95 %
HPDs are larger than those obtained by BEAST.

Conclusion: We propose two novel algorithms to estimate evolutionary genetic parameters based on the
proportion of each nucleotide. The LS method cannot be recommended as a standalone method for evolutionary
parameter estimation. On the other hand, parameters recovered by ABC-MCMC are comparable to those obtained
using BEAST, but with larger 95 % HPDs. One major advantage of ABC-MCMC is that computational time scales
linearly with the number of short-read sequences, and is independent of the number of full-length sequences in
the original data. This allows us to perform the analysis on NGS datasets with large numbers of short read
fragments. The source code for ABC-MCMC is available at https://github.com/stevenhwu/SF-ABC.
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computation, Evolutionary genetics
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Background
Over the last decade, next generation sequencing
(NGS) has become widely available, and is now the
sequencing technology of choice for most researchers.
NGS produces sequences that are relatively short,
varying between 50 bp to 400 bp depending on the
specific platform [1–3]. Researchers use NGS in sev-
eral different ways. In this manuscript, we consider
the use of NGS in evolutionary studies, where short
read fragments are obtained from longer, amplified
target sequences in mixed samples of unlabeled or
untagged (= “anonymous”) individuals. These types of
samples are often collected from viral or bacterial
populations. The traditional sampling protocol for
evolutionary studies that rely on sequences from
many individuals has been to use Sanger sequencing
technology to obtain the sequence(s) of one (or more)
DNA fragment(s) from each individual in the sample
separately. This is typically followed by a multiple
sequence alignment and reconstruction of the phyl-
ogeny or genealogy, perhaps with the simultaneous
inference of relevant evolutionary parameters [4, 5].
With NGS, short read fragments are typically

shorter than the fragment of interest. When NGS is
applied to a mixed collection of DNA from several
individuals, the challenge for the evolutionary biolo-
gist is the absence of an alignment of full-length
sequences, each corresponding to an individual in the
sample [6]. And without an alignment of full-length
sequences, how does one estimate the evolutionary
parameters of interest?
One approach is to attempt to reconstruct the full

length haplotypes, and use an alignment of these re-
constructed haplotypes in standard evolutionary ana-
lyses [7–9]. There are several programs that attempt
to reconstruct the full-length haplotypes from short
read fragments obtained from mixed, unlabeled,
collections of individuals e.g., ShoRAH, ViSpA, Pre-
dictHaplo and Qure [10–13]. Analyses have shown
that with many data sets, reconstruction of haplotypes
can be unreliable, producing either too many haplo-
types and/or sequences that have relatively low iden-
tity to the original sequences [14–16]. Consequently,
a researcher who chooses to use these reconstructed
full-length haplotypes with any program that requires
full-length alignments, will be implicitly integrating
the errors of haplotype reconstruction into their esti-
mation of evolutionary parameters.
We propose two alternative approaches to infer

population genetic parameters from a collection of
short-read sequences obtained from a mixed sample
of anonymous DNA using the frequencies of nucleo-
tides at each site only. To our knowledge, there is
no existing method capable of estimating these

parameters without reconstructing the full length
sequence alignment nor the phylogeny. A similar
approach had been proposed by Johnson and Slatkin
previously [17], but their method focuses on samples
of very large numbers of individuals where each read
in an alignment of short-reads is assumed to come
from a separate genome. In contrast, the methods
we propose assumes either (1) that a relatively short
fragment of the genome is the target of NGS, and/or
(2) there are relatively few individual organisms in
the sample. In essence, these assumptions ensure
that each site for each individual is covered by mul-
tiple reads, so that the frequency of nucleotides at
each site can be estimated with reasonable accuracy.
In samples of viruses and bacteria, for instance, the
amplified region is small, say, a few kilobases long,
and the number of genomes in a single PCR reaction
is often unknown ranging from the tens to the
thousands. With microbial populations, typically vi-
ruses, there is also the opportunity to collect serial
samples from the same fast evolving species over a
period of time. For this reason, the methods we have
developed estimate the population genetic parame-
ters θ ∝ Nμ, the effective population size scaled by
mutation rate, and μ, the mutation rate per site per
unit time [18, 19].
We describe two algorithms to estimate these

parameters, Least Squares (LS) estimation [20] and
Approximate Bayesian Computation Markov chain
Monte Carlo (ABC-MCMC) estimation [21–23]. One
advantage of the ABC-MCMC approach over more
traditional MCMC approaches is that ABC-MCMC
does not require formulation or computation of a
likelihood; instead, the method relies on the use of
summary statistics derived from simulated data to
accept or reject a proposal in the Markov chain. The
details of these two algorithms are described in the
next section.
We used simulations to evaluate the performance of

these algorithms, and we compared these to the
results obtained with BEAST [8], a program that is
commonly used to simultaneously infer phylogenies
and evolutionary parameters using Bayesian MCMC
inference with full-length sequences. Our simulations
demonstrate that LS point estimates are unbiased, but
produce bootstrap intervals that typically over- or
underestimate true parameter values. In contrast,
ABC-MCMC is able to estimate evolutionary parame-
ters without reconstructing full-length haplotypes,
producing 95 % Highest Posterior Density (95 %
HPD) intervals that have equivalent coverage to those
obtained by MCMC with full-length alignments; how-
ever, there can be up to a 10-fold difference between
the lowest and highest bound of each 95 % HPD.
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Methods
As noted above, both algorithms apply to samples of
short-read sequences obtained from a collection of longer
target sequences from mixed and unlabeled individuals in
a population. The first method is based on least squares
(LS) estimation. As we show below, the second method
applies the LS results as a pre-processing step prior to be-
ginning the ABC-MCMC. Both methods estimate evolu-
tionary parameters using only the proportion of each
nucleotide at each site, and do not require reconstruction
of full length haplotypes nor the phylogeny/genealogy. If
serial samples are available, sequences from a later time-
point share common ancestors with those from the earlier
timepoint. We assume that samples collected from each
timepoint are sequenced separately with NGS technology.
As we noted earlier, we assume that each short read

sequenced by NGS will be shorter than the full length hap-
lotypes, and we will obtain many more short read frag-
ments than the original number of haplotypes. We also
assume that a reference or consensus sequence for the tar-
geted region is available, and we are able to align each short
read fragment to a unique location on the reference se-
quence. After the short reads are aligned to the reference,
we can count the frequency of each nucleotide at each site.
In practice, the frequency of each nucleotide will be influ-
enced by the sequencing error from NGS [1]. For the sim-
plicity of the algorithms, we assume that the short-reads
have been error-corrected prior to analysis.

Least squares (LS) estimation
For serial samples, we can estimate the intra-timepoint
(within a single sample) and inter-timepoint (between
samples from two different timepoints) average pairwise
sequence diversity. Both inter-timepoint diversity (Dinter)
and intra-timepoint diversity (Dintra) are calculated
using the proportion of each nucleotide at each site.
The intra-timepoint diversity (Dintra,s,t) for site s at time t
is calculated as:

Dintra;s;t ¼ 1−
X

j∈A;C;G;T

Fs;j;t
2 ð1Þ

where Fs,j,t is the proportion of nucleotide j at site s at
time t.
Similarly, the inter-timepoint diversity (Dinter,s,t1,t2)

between time t1 and t2 at site s is calculated as

Dinter;s;t1;t2 ¼ 1−
X

j∈A;C;G;T

Fs;j;t1Fs;j;t2 ð2Þ

Once the average pairwise diversity for each site is
calculated, the mean intra-timepoint diversity for any
specified timepoint is given by:

Dintra;t ¼ 1
n

Xn
s¼1

Dintra;s;t ð3Þ

and the mean inter-timepoint diversity between time
t1 and t2 is:

Dinter;t1;t2 ¼ 1
n

Xn
s¼1

Dinter;s;t1;t2 ð4Þ

where n is the number of sites. If the sequences are
obtained from T timepoints, there will be T × (T − 1)/2 esti-
mates of average diversity, of which T will be intra-
timepoint diversities.
The LS method uses both inter- and intra-timepoint

diversity to estimate effective population size and mu-
tation rate, based on the method described by [20].
Population genetics tells us that in any given sample
from a constant-sized population of a set of se-
quences of a neutrally evolving locus, average pairwise
sequence diversity (measured as the average propor-
tional distance between any two sequences in the
sample) is an estimate of θ, which is proportional to
the product of mutation rate and effective population
size, with the proportionality constant determined by
whether the population is haploid (proportionality
constant = 2, θ = 2Nμ) or diploid (proportionality con-
stant = 4, θ = 4Nμ).
To estimate the parameters of interest, let μ be the mu-

tation rate per unit of time, θ be the effective population
size scaled by μ, and Δt the time between two sampling
events. Note that both μ and Δt are scaled to the same
unit of time; typically this will be chronological time but,
rarely, time in generations may be available. Under a con-
stant population size, and a constant mutation rate, there
are only two parameters to be estimated, θ and μ. As
noted above, θ is estimated by Dintra and θ + μΔt is esti-
mated by Dinter. Once estimates of θ and μ are obtained,
we can estimate kN = θ/μ, where k is the unspecified pro-
portionality constant.
We can construct a least squares regression by let-

ting Y be a vector of all Dinter and Dintra, and X be
an indicator variable that identifies whether/how θ
and μ contribute to the expectation of Dinter or Dintra.
For the constant population, constant mutation rate
model, the indicator value for θ is always 1 and the indica-
tor of μ is just Δt. We are then able to fit Y =XΒ using
least-squares, where the Β is the LS estimator of param-
eter θ and μ. For example, if there are three timepoints
TA, TB, and TC, and the intervals between each adjacent
pair is 200 units of time apart, we can construct a set of
linear equations to express the relationship between these
parameters, as follows:
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Dintra−A

Dintra−B

Dintra−C

¼
¼
¼

θ
θ
θ

Dinter−AB

Dinter−BC

Dinter−AC

¼
¼
¼

θ þ 200μ
θ þ 200μ
θ þ 400μ

ð5Þ

The linear equations can be shown as Y =XB, where

Y’ ¼ Dintra−A; DIntra−B; Dintra−C ;Dinter−AB;Dinter−BC ;Dinter−AC½ �

X ¼

1
1
1

0
0
0

1
1
1

200
200
400

2
666664

3
777775

B’ ¼ θ μ½ �
ð6Þ

Using the least squares method to solve for B
= (X’X)−1X’Y, we obtain our estimation of θ and μ.
The model can be extended to multiple population sizes

and/or multiple mutation rates. If there are three time-
points TA, TB, and TC, then we can estimate the effective
population size for each timepoint using the intra distance
within each timepoint. Let θA, θB, and θC be the scaled
population sizes for timepoint TA, TB and TC. ΔAB is the
time difference between timepoint TA and TB, and ΔBC is
the time difference between timepoint TB and TC.

Dintra−A

Dintra−B

Dintra−C

¼
¼
¼

θA
θB
θC

Dinter−AB

Dinter−BC

Dinter−AC

¼
¼
¼

θA þ μΔAB

θB þ μΔBC

θA þ μΔAB þ μΔBC

ð7Þ

Therefore we update the matrix

X ¼

1 0 0
0 1 0
0 0 1

0
0
0

1 0 0
0 1 0
1 0 0

ΔAB

ΔBC

ΔAB þ ΔBC

2
666664

3
777775

B0 ¼ θA θB θC μ½ �

ð8Þ

Alternatively, for a constant population size and
multiple mutation rates, the model can be specific as:

Dintra−A

Dintra−B

Dintra−C

¼
¼
¼

θ
θ
θ

Dinter−AB

Dinter−BC

Dinter−AC

¼
¼
¼

θ þ μABΔAB

θ þ μBCΔBC

θ þ μABΔAB þ μBCΔBC

ð9Þ

Therefore we update the matrices X and B as

X ¼

1
1
1

0 0
0 0
0 0

1
1
1

ΔAB 0
0 ΔBC

ΔAB ΔBC

2
666664

3
777775

B0 ¼ θ μAB μBC½ �

ð10Þ

To obtain confidence intervals for our estimates, we
used a bootstrap procedure in which we generated
1000 pseudoreplicate datasets by resampling sites with
replacement along the alignment of short-read se-
quences. We did this separately for each timepoint in
our simulated datasets. For each pseudoreplicate we
recalculated the site frequencies, Fs,j,t,, and we were
able to estimate N and μ; 95 % Confidence Intervals
were obtained by taking values corresponding to
upper and lower 2.5 % percentiles of ordered boot-
strap estimates.

ABC-MCMC (Approximate Bayesian Computation -
Markov chain Monte Carlo)
Markov chain Monte Carlo Bayesian inference is a
computationally intensive technique for recovering
the posterior probability of parameters of interest,
while taking account of prior knowledge (including
the degree of uncertainty) about these parameters. If
P(D|ϕ) (often referred to as the likelihood of ϕ), is
the probability of obtaining the data given a set of
parameters, ϕ, and P(ϕ) is the prior information we
have about the joint distribution of these parameters,
then the posterior distribution, P(ϕ|D), is proportional
to the product of likelihood and prior, P(ϕ|D) ∝
P(D|ϕ)P(ϕ). Often it is very difficult to obtain the
posterior distribution function analytically. The ele-
gance of MCMC resides in its ability to derive the
relative posterior distribution by using a proposal dis-
tribution to randomly generate a Markov chain of po-
tential states (= values that the parameters of interest
can take), and sampling from this chain by accepting
or rejecting states in proportion to the posterior
density. MCMC works because although it is not easy
to calculate the distribution of P(ϕ|D), it is easy to
obtain P(ϕ*|D), for a specific value of ϕ*. Conse-
quently by repeatedly sampling ϕ* in the correct pro-
portions, the distribution of P(ϕ|D) is approximated.
Once a sample of sufficient size is obtained, it be-
comes possible to derive estimates for the parameters
of interest.
One common implementation of MCMC uses the

Metropolis-Hastings algorithm [24, 25], which can be
described by the following steps.
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Step 1: Begin with initial parameter values ϕi.
Step 2: Propose a new parameter value ϕ* using the

proposal distribution q(ϕ*|ϕi).
Step 3: Calculate the acceptance ratio, α, using the

following formula:

α ¼ min 1;
P ϕ�jDð Þq ϕijϕ�� �
P ϕijD� �

q ϕ�jϕi
� �

( )

Generate μ from U(0, 1) and accept ϕi + 1 = ϕ* if
µ < α.
Otherwise set ϕi + 1 = ϕi.

Step 4 Set i = i + 1 and repeat Step 1.

The algorithm is repeated until the Markov chain sam-
ples from the target distribution, typically the (joint)
posterior distribution of the parameter(s).
Approximate Bayesian Computation (ABC) is a

simulation-based algorithm for Bayesian inference
[21–23]. ABC does not require the calculation of the
likelihood P(D|ϕ); instead, it uses the agreement be-
tween summary statistics obtained from D, and those
obtained from simulations of data under different
values of ϕ to obtain the relative posterior probability
distribution P(ϕ|D). If the summary statistic, S, is
(nearly) sufficient then P(D|ϕ, S) ≅ P(D|S). ABC is
used precisely because it circumvents the need to cal-
culate a challenging or intractable likelihood. Here,
we describe our ABC-MCMC procedure as follows:

1. Calculate a set of p sufficient statistics, So = (S1
o,⋯, Sp

o),
on the observed dataset, Do.

2. If i = 1, draw the initial parameter value ϕi from
prior distribution P(ϕ). If i > 1, then propose the new
parameter value ϕ* from q(ϕ* | ϕi), where q(. | ϕi) is
the proposal distribution with mean equal to ϕi.

3. Simulate the dataset (D*) using the model
parameter values ϕ* and calculate the sufficient
statistics S* = (S1

* ,⋯, Sp
* ) based on D*. If the

distance between the sufficient statistics on the
simulated dataset and the observed statistics,
d(S*, So), is greater than a threshold ε, then reject
the proposed parameter values and set ϕi + 1 = ϕi. If
the difference is less than ε, then set ϕi + 1 = ϕ* with
probability α, calculated by the modified
Metropolis-Hasting ratio:

α ¼ min 1;
q ϕijϕ�� �

P ϕ�ð Þ
q ϕ�jϕi
� �

P ϕi
� �

( )

The distance, d(S*, So), is calculated as:

4. Set i = i + 1 and go back to step 2 for a large number
of iterations.

Although ABC requires that sufficient statistics (or
nearly sufficient statistics) are used, it is non-trivial
obtaining appropriate sufficient statistics. For this rea-
son, Fearnhead et al. [26] proposed a semi-automatic
method to generate “nearly” sufficient statistics for ABC
by using a linear combination of commonly-used sum-
mary statistics. The linear combination is obtained by
regressing the summary statistics against known values
of ϕ from simulated training datasets. The regression
equation serves as the new summary statistic. The out-
line of their algorithm is as follows:

1. Define a training region in parameter space that is
representative of the parameter values one expects
to obtain in relatively high densities in the posterior
distribution.

2. Draw parameter value ϕT from this training region
and simulate a dataset, DT, based on ϕT. Calculate p
summary statistics, ST = (S1

T,⋯, Sp
T), on DT. There

are no hard-and-fast rules about which summary
statistics to use, but for our data, there are obvious
candidates, including average pairwise intra- and
inter-sample diversity, number of variable sites etc.
(see below for a list of summary statistics used).

3. Repeat Step 2 for k iterations, where k≫ n.
Therefore, there are k values of ϕT drawn from the
training region, and for each ϕT there are a set of n
summary statistics.

4. For each parameter, ϕT∈ ϕT, regress the values of
ϕT against the set of summary statistics, ST, obtained
from all simulations. As noted, the LS regression
equations that are obtained are a linear combination
of summary statistics in S, and serves as a single-
valued sufficient statistic for each ϕ∈ ϕ, and used
as S* in the ABC-MCMC algorithm above.

Implementation of the full algorithm
For each dataset, we calculate the proportion of each nu-
cleotide at each site of the alignment of short-read se-
quences to a reference sequence. Our LS estimation
procedure is applied to obtain point estimates of the pa-
rameters of interest. These point estimates are used as
guidelines to help us define the training region for
Fearnhead et al.’s algorithm. We set the training region
as a uniform distribution with mean equal to the LS esti-
mate with upper and lower bounds set to 5 fold above
and below the mean, i.e. from (0.2× to 5×).
Linear combinations of the following summary statis-

tics are used as sufficient statistics in the regression. All
summary statistics are calculated using the proportion of
each nucleotide at each site.

d S�; ;Soð Þ ¼
Xp
j¼1

S�
j−So

jð Þ2
So

j
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1. Mean sequence distances, measured within each
timepoint and between each pair of timepoints using
Equations 3 and 4.

2. Variances for the sequence distances between each
site within each timepoint and between each pair of
timepoints.

Varintra;t ¼
Xn

s¼1
Dintra;s;t−
�
Dintra;t

� �2
n

ð11Þ

Varinter;t1;t2 ¼
Xn

s¼1
Dinter;s;t1;t2−
�
Dinter;t1;t2

� �2
n

ð12Þ

3. A chi-squared distance is calculated with the following
steps:
a. Setup 20 frequency categories at 0.05 intervals

ranging from 0 to 1.
b. For each time point, assign each site to a

frequency category that encompasses the
proportion of the most frequent nucleotide for
that site, and repeat this for all sites.

c. Finally, calculate the proportion of sites in each
category to obtain a relative frequency spectrum
FSt . We also create a reference frequency
spectrum FSR, in which all categories have the
same proportion, i.e. 0.05 each. Calculate the chi-
square distance between the reference frequency
spectrum and the frequency spectrum for each
time point using the following formula,

X20
category cð Þ¼1

FSt;c− FSR;c
� �2

FSR;c
ð13Þ

4. Divide the pattern of the proportion of each
nucleotide between any two timepoints into four
different categories, and record the number of sites
in each category:
a. Category 1: Sites are identical across both

timepoints.
b. Category 2: Sites in which one nucleotide is fixed

in one timepoint, and the same nucleotide is in
the majority in the other timepoint.

c. Category 3: There are mutations in both
timepoints but the same nucleotide is most
frequent in both timepoints (in other words, the
nucleotide with the highest frequency in one
timepoint is also the nucleotide with the highest
frequency in the second timepoint).

d. Category 4: All others sites.

By applying the Fearnhead et al. algorithm, we obtain
linear equations as sufficient statistics for N and μ, these
are used in the ABC-MCMC above.

Two priors are specified for ABC-MCMC: the prior dis-
tribution for N, the effective population size, is p Nð Þ ¼ 1

N ,
and, the prior for mutation rate, μ, is a uniform distribution
between [0,1]. The full algorithm is summarized in Fig. 1.
We have found that allowing N and μ to vary inde-

pendently along the MCMC chain results in inefficient
mixing, with higher autorcorrelation between samples of
a given interval. For this reason, we used block updating,
where both N and μ are updated at each generation of
the chain [27, 28].

Simulation analysis
Two sets of simulation analyses were performed. The first
set tested the performance of the LS method with a range
of evolutionary parameters. One hundred datasets were
simulated by Bayesian Serial SimCoal [29]. The effective
population size was fixed at 3000 and mutation rate fixed
at 10−5 mutations per site per generation. By exploring dif-
ferent combinations of other parameters, we were able to
estimate the performance of this algorithm. The number
of sequences per timepoint were set to 5, 10, 20 and 40.

Fig. 1 Flow chart of the full ABC-MCMC algorithm
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We used 3, 5 and 10 timepoints in our simulations, with
100, 200, 400 and 600 generations between each time
point. Tables 1, 2 and 3 show the combination of parame-
ters used in the simulations. For each combination, 100
datasets were simulated.
The second set of simulations compared the per-

formance between our ABC-MCMC implementation
and the Bayesian MCMC approach implemented in
the software Bayesian Evolutionary Analysis Sampling
Trees (BEAST) [8].
Based on the results of the first simulation analysis,

one hundred datasets were simulated using Bayesian
Serial SimCoal [29]. We choose the following parame-
ters for this simulation, there were three timepoints
with inter-timepoint intervals set at 400 generations,
the number of sequences per timepoint was fixed at
40, the mutation rate was fixed at 10−5 mutations per
site per generation, and the effective population size
was fixed at 3000.
For our LS and ABC-MCMC methods, only the

relative frequency of nucleotides per site was available
as data. For BEAST analyses, the simulated full-length
sequence alignment was used. BEAST ran for 10 mil-
lion iterations, and ABC-MCMC ran for 1 million it-
erations with 100,000 thousand iterations in the pre-
processing stage. For both BEAST and ABC-MCMC,
three independent chains were run for each dataset to
check for convergence. Samples were recorded every
1000 iterations in order to reduce the autocorrelation
and the first 10 % of the samples were discarded as
burn-in. The trace plots were checked manually for
convergence and the 95 % Highest Posterior Density
region (HPD) for each parameter was calculated using
Tracer [30].

Results
Simulation result 1: least square estimation
A series of simulations with different parameter set-
tings were tested. Table 1 reports the means of LS

estimates of population size and mutation rate ob-
tained over 100 simulations. The results demonstrate
that LS estimation requires sufficient numbers of
sequences to obtain reasonable estimates of the pro-
portion of each nucleotide for each site. When the
number of full-length sequences is low (n < 10),
change in one nucleotide at a site has a major effect
on the nucleotide frequencies at that site; therefore, it
is difficult for the LS algorithm is to estimate the true
parameters. In contrast, as the number of sequences in
the sample increases, estimation improves markedly.
In Tables 2 and 3, the number of generations between

two consecutive timepoints has only a minimal effect on

Table 1 LS results with different number of sequences

No. of
timepoints

No. of
sequences
per
timepoints

No. of
generations

Mean mutation
rate (95 %
confidence
interval)

Mean
effective
population
size (95 %
confidence
interval)

5 5 200 2.45E-05
(2.16E-05, 2.75E-05)

1245
(1084, 1406)

5 10 200 2.09E-05
(1.76E-05, 2.41E-05)

1852
(1537, 2168)

5 20 200 1.41E-05
(1.19E-05, 1.62E-05)

3483
(2146, 4820)

5 40 200 1.13E-05
(9.83E-06, 1.27E-05)

3311
(2781, 3841)

Table 2 LS results with different number of generations
between timepoints

No. of
timepoints

No. of
sequences
per
timepoint

No. of
generations

Mean mutation
rate (95 %
confidence
interval)

Mean
effective
population
size (95 %
confidence
interval)

5 40 100 1.59E-05
(1.37E-05, 1.8E-05)

2388
(1919, 2858)

5 40 200 1.13E-05
9.83E-06, 1.27E-05)

3311
(2781, 3841)

5 40 400 1.11E-05
(9.6E-06, 1.26E-05)

2897
(2573, 3221)

5 40 600 9.57E-06
(8.4E-06, 1.07E-05)

3429
(3016, 3842)

Table 3 LS results with different number of timepoints

No. of
timepoints

No. of
sequences
per
timepoint

No. of
generations

Mean mutation
rate (95 %
confidence
interval)

Mean
effective
population
size (95 %
confidence
interval)

3 40 100 2.47E-05
(1.97E-05, 2.96E-05)

2286
(1647, 2924)

3 40 200 1.43E-05
(1.21E-05, 1.65E-05)

3276
(2601, 3950)

3 40 400 1.11E-05
(9.52E-06, 1.28E-05)

3472
(2981, 3962)

5 40 100 1.59E-05
(1.37E-05, 1.8E-05)

2388
(1919, 2858)

5 40 200 1.13E-05
(9.83E-06, 1.27E-05)

3311
(2781, 3841)

5 40 400 1.11E-05
(9.6E-06, 1.26E-05)

2897
(2573, 3221)

10 40 100 1.67E-05
(1.38E-05, 1.96E-05)

2591
(2224, 2958)

10 40 200 1.12E-05
(9.88E-06, 1.25E-05)

2949
(2560, 3338)

10 40 400 9.04E-06
(8.32E-06, 9.77E-06)

3344
(2947, 3741)
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the estimation efficiency, hence all simulations with inter-
timepoint intervals longer than 200 generations have simi-
lar performances. The number of timepoints does not
have a major effect either.
The relative efficiency of LS against the other two

methods (ABC-MCMC and full-length Bayesian
MCMC with BEAST) can be compared with the sec-
ond set of simulations, where data were generated
with 3 timepoints, with 40 sequences per timepoint
and with intra-timepoint intervals of 400 generations.
In these simulations, comparison of bootstrap 95 %
Confidence Intervals of population size (Fig. 2) and
mutation rate (Fig. 3) estimates, however, revealed an
unflattering picture of LS estimation performance.
Only a few LS 95 % Confidence Intervals enclose the
true parameter values. Although the LS estimates are
unbiased (i.e., their average over all simulations equals
the true value), any given estimate performs poorly.

Simulation results 2: BEAST and ABC-MCMC estimation
BEAST was used to analyze 100 datasets with a
constant-sized coalescent model with the parameters
described above, to obtain estimates of both popula-
tion size and mutation rate. Each analysis ran for 10
million iterations initially, and samples were stored
every 1000 iterations. After manually inspecting the
trace plots for convergence, some dataset were re-
analysed with 100 million iterations. The 95 % HPD
for mutation rate contains the true value 93 times
and effective population size 89 times.

ABC-MCMC analyses were performed on the same
100 datasets with 1 million iterations and samples
were stored every 1000 iterations. In addition, another
100,000 iterations of preprocessing simulations were
used to estimate the sufficient statistics. An example
of the regression equations used as sufficient statistics
is in.
Some datasets failed to converge for ABC-MCMC

and were reanalyzed with 10 million iterations. Two
out of 100 datasets failed to converge even with 10
million iterations, and these are excluded from the
analyses. Figure 4 is an example of the trace plot for
both mutation rate and effective population size. The
plot indicates that the MCMC chain mixes well. Fig-
ure 5 gives an example of the posterior density of the
effective population size recovered, plotted against the
prior distribution. Given the difference between the
prior and posterior density, it is apparent that there
is sufficient signal in the data to shift the posterior
distribution of effective population size away from the
prior distribution.
The 95 % HPD for mutation rate included the true value

87 times out of 98 analyses, and the 95 % HPD for popula-
tion size included the true value 91 times out of 98 ana-
lyses. The results of both BEAST and ABC-MCMC are
summarized in Table 4. Based on the number of 95 %
HPDs that include the true values, both BEAST and ABC-
MCMC perform similarly. However, the actual 95 % HPD
intervals from ABC-MCMC are wider than the 95 % HPD
from BEAST (see Figs. 2 and 3): on average the 95 %

Fig. 2 Plot of 95 % Confidence Intervals and 95 % Highest Posterior Densities of population size recovered using the LS bootstrap, ABC-MCMC
and BEAST. The green lines are the 95 % CIs of LS bootstraps, the red lines are the 95 % HPDs of ABC-MCMC, and the blue lines are the 95 %
HPDs obtained using BEAST. The true value of population size is shown as a solid black line. Note that the vertical axis is measured on a log scale
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HPDs for effectively population size are 8-fold wider and
those for mutation rate are 5-fold wider.

Discussion and conclusions
In this paper, we propose two new algorithms to esti-
mate evolutionary genetic parameters by using only the

frequency of nucleotides at each site as input. The least-
squares method provides a fast way to estimate effective
population size and mutation rate, but our results indi-
cate that LS estimates (and their bootstrap confidence
intervals) tend to under- or over-estimate the true pa-
rameters. Consequently, we cannot recommend our LS

Fig. 3 Plot of 95 % Confidence Intervals and 95 % Highest Posterior Densities of mutation rate recovered using the LS bootstrap, ABC-MCMC and
BEAST. The green lines are the 95 % CIs of LS bootstraps, the red lines are the 95 % HPDs of ABC-MCMC, and the blue lines are the 95 % HPDs
obtained using BEAST. The true value of mutation rate is shown as a solid black line

Fig. 4 Trace plot from ABC-MCMC for both effective population size and mutation rate after removing the first 10 % of the generations as
burn-in. This demonstrates that the MCMC chain mixes well
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algorithm as a standalone method for obtaining esti-
mates of evolutionary parameters. Our LS method,
nonetheless, provides a useful baseline for the training
region which we need to use to derive nearly sufficient
statistics for our ABC-MCMC procedure.
Parameter values recovered by ABC-MCMC are com-

parable to those obtained using BEAST, albeit with
much wider 95 % HPDs. The performance of ABC-
MCMC, relative to that of BEAST is unsurprising, be-
cause BEAST has access to the full-length alignment of
all sequences in the sample. When the full-length align-
ment is summarized by the proportion of nucleotides at
each site, there is inevitably a loss of information. Add-
itionally, our methods do not reconstruct phylogenies of
the sequences, further reducing estimation efficiency.
Despite these significant constraints, it is interesting that
the sitewise nucleotide frequencies are able to provide

enough information to obtain meaningful estimates of
the parameters of interest.
The methods we have developed assume that the ref-

erence sequence is available and short reads can be
aligned to the reference accurately. Obviously the per-
formance of this approach is dependent on the quality of
the reference sequence and how well these short reads
are aligned to it. As noted above, in our simulations we
have obtained site nucleotide frequencies from the full-
length sequences; we expect that with real NGS data,
the accuracy with which we estimate the sitewise fre-
quencies of each nucleotide will depend on sequencing
error. Preprocessing the raw reads for quality, read-
length, and identity to the reference sequence is likely to
remove a significant amount of this error. In this case, it
is unlikely that any remaining errors will distort the site
frequencies enough to have a noticeable effect on the
estimates. Also, all insertions and deletions (indels) have

Fig. 5 The prior and posterior distributions for the effective population size from ABC-MCMC

Table 4 Summarized the number of times that 95 % HPD includes the true value for both ABC-MCMC and BEAST

Algorithm ABC-MCMC BEAST

No. of Converged Dataset 98 100

No. of 95 % HPD for μ includes the true value (1e-5) 87 93

No. of 95 % HPD for N includes the true value (3000) 91 89

Mean Mutation Rate (Lower quartile, upper quartile) 8.367e-06 (5.892e-06, 1.443e-05) 9.730e-06 (9.104e-06, 1.040e-05)

Mean Effective Population Size (Lower quartile, upper quartile) 2457.4 (1503.0, 3637.9) 2851.688 (2623.965, 3134.936)
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been ignored in all simulations and summary statistics.
However, our implementation of the ABC-MCMC
model allows indels at each site as a fifth “nucleotide” or
state. We have not yet applied this to our analysis.
One major advantage of using only the site frequencies

is that it can be applied to an arbitrary number of se-
quences in the original sample. In our simulations, we
did not simulate short-read sequences; instead, we used
the full-length sequences to derive the nucleotide fre-
quencies at each site. Nonetheless, the amount of time
required to estimate the proportion of each nucleotide
for each site will scale linearly to the number of short-
read sequences only, regardless of the number of full-
length sequences from which these were derived, and it
is likely to be a very fast calculation. In contrast,
methods that rely on building phylogenies from full-
length alignments must contend with the superexponen-
tial growth in the number of possible trees as the num-
ber of sequences increases. For a realistic NGS dataset,
the number of reconstructed full-length haplotypes can
be large. Consequently, our methods can be used on
NGS datasets with large numbers of short read frag-
ments, obtained from a large number of full-length
sequences.
In this paper, we have only developed methods to esti-

mate effective population size and mutation rate. Popula-
tion geneticists are also interested in other evolutionary
parameters, including migration rates and recombination
rates. We believe that ABC-MCMC, like other Bayesian
MCMC methods, provides a flexible framework to con-
struct more complex evolutionary models. But the use of
sitewise nucleotide frequencies alone means that we lack
the finer-grained information afforded by a genealogy or
phylogeny of full-length sequences; consequently, we are
not certain how much complexity can be added to the
models before the sitewise nucleotide frequencies we use
in our methods lose all signal. This is certainly an area that
we intend to explore. The source code for ABC-MCMC is
available at https://github.com/stevenhwu/SF-ABC.
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