
國立臺灣大學公共衛生學院公共衛生學系

學士論文

Department of Public Health

College of Public Health

National Taiwan University

Bachelor’s Thesis

以雙向孟德爾隨機化探究血小板與高血壓之因果關係

Elucidation of causal direction between Platelet count and
Hypertension: a bi­directional Mendelian Randomization

study

邱柏鈞

P0­Chun Chiu

指導教授: 盧子彬博士

Advisor: Tzu­Pin Lu Ph.D.

中華民國 110年 4月

April, 2021



國立臺灣大學學士學位論文

口試委員會審定書

以雙向孟德爾隨機化探究血小板與高血壓之因果

關係

Elucidation of causal direction between Platelet
count and Hypertension: a bi­directional Mendelian

Randomization study

本論文係邱柏鈞君（B06801012）在國立臺灣大學公共衛
生學系完成之學士學位論文，於民國 110年 4月 20日承下列
考試委員審查通過及口試及格，特此證明

口試委員：

（指導教授）

系 主 任 ：

i

Stamp



摘要

研究背景:

高血壓是許多重大慢性病的共同危險因子，也是目前世界衛生組織 (world health

organization,WHO)公布全球疾病負擔排名的首位。過去的研究顯示高血壓和血小

板的數量有顯著相關，然而這些研究存在著樣本數偏少且難以進行隨機分派實驗

去釐清彼此的因果關係，因此，本研究透過基因位點來剖析兩者之因果關係。

方法:

本研究資料來自台灣人體生物資料庫，包含 16,000位年齡位於 30歲到 70歲的參

與者。基因檢測使用的晶片為 Affymetrix Axiom TWB 1.0晶片，共包含有 646,735

個單核苷酸多型性位點數據，我們透過文獻篩選特定基因位點，並使用孟德爾隨

機化分析高血壓與血小板數量的因果關係。

結果:

以納入文獻選取出的 5 個基因為點作為工具變項，執行孟德爾隨機化後得

到血小板數量對於高血壓具有正向且顯著的相關性 (odds ratio: 1.149, 95% CI:

[­0.164,0.849], P=0.185)。

結論:

以台灣人體生物資料庫為研究資料並符合孟德爾隨機化的假設下，血小版數量對

於高血壓有顯著因果關係，而血小版數量與高血壓間不存在雙向因果關係，可做

為臨床上診斷高血壓的相關資訊。
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Abstract

Background:

Observational associations between platelet activation and risk factors for hypertension

are well established, but the exact nature of causality between them remains unclear.

Methods:

Clinical and genotype (single nucleotide polymorphisms (SNPs)) data from 15,996 healthy

Taiwanese individuals aged between 30 and 70 years from the Taiwan Biobank project

were included. We performed a bi­directional Mendelian randomization analysis using

inverse variance weighting to estimate the causality of platelet count in hypertension. We

used 65 platelet count­related SNPs and 6 hypertension­related SNPs as instrumental vari­

ables. Furthermore, to test for pleotropic effect of the instruments, sensitivity analyses was

performed using the MR­Egger and weighted median methods.

Results:

This study provided evidence in support of a positive causal effect of platelet count on the
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risk of hypertension (odds ratio : 1.149, 95%CI : [1.131, 1.578], P < 0.05), using

the weighted median method. Significant causality of platelet count on hypertension was

observed using the IVW method. However, no pleiotropy was observed for the instru­

ments in the analyses.

Conclusions:

In this Taiwanese population with Han­Chinese ancestry, a significant positive causal re­

lationship of platelet count on hypertension was revealed, whereas the causal effect of

hypertension on platelet count was found to be non­significant. Platelet count could be

used as a marker for the diagnosis of hypertension

Keywords: Mendelian randomization, bi­directional causal estimation, hypertension, platelet

count, Taiwan Biobank
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Chapter 1 INTRODUCTION

Hypertension is an important risk factor for major chronic diseases, such as cardio­

vascular disease, stroke, diabetes, and kidney disease. According to the Global Burden of

Disease study, leading detailed risk factors for attributable disability­adjusted life­years

(DALYs) were related to blood pressure. Hypertension is a multi­factorial disease[1] [2]

[3], and some of the previous studies confirmed that there is a correlation between hyper­

tension and platelet counts[4]. Also, patients who take antiplatelet drugs can decrease the

risk of cardiovascular disease, and patients taking antihypertensive drugs also decrease

the risk of cardiovascular disease. Thus, there may be some relationships of platelet count

on hypertension. However, if the risk factor has a noncausal association with an outcome,

then public health or pharmaceutical interventions targeted at the risk factor will realize no

material benefit. Consequently, finding out more potential risk factors of hypertension and

establishing the causal relationship is a very emergent public health improvement issue.

Mendelian randomization studies (MR) assess causal inference by using genetic al­

leles as unbiased proxies for circulating biomarkers. MR studies are based on the random

assortment of genetic alleles during meiosis that can confer advantages similar to a ran­

domized controlled trial by investigating the relationship between genetic alleles that are

exclusively associated with a biomarker of interest and disease risk[5]. Our study used

16,000 Taiwanese participants selected from the baseline data in the population­based

1



Taiwan Biobank database with well­designed health and lifestyle and genetic data. We

elucidate the causation and reverse causation of platelet count and hypertension with an

one­sample setting Mendelian randomization.
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Chapter 2 METHOD

2.1 Study population

Taiwan Biobank intends to conduct large­scale cohort studies and case­control stud­

ies on local diseases by combining genetic and medical information. The community­

based cohort study recruits volunteers between 30 and 70 years of age with no history

of cancer. The hospital­based cohort study recruits patients affected by the most common

chronic diseases in Taiwan, including cardiovascular disease, diabetes, chronic kidney dis­

ease, etc. There were 16,000 Taiwanese Han subjects randomly retrieved from the Taiwan

Biobank from 2008 to 2015 for conducting the genome­wide study, and these people were

taken in our study. Using Axiom­Taiwan Biobank Array Plate (TWB chip; Affymetrix

Inc, CA, USA), selected a total of 653,291 gene variant sites and recorded 646,735 single

nucleotide polymorphism sites (SNPs).

2.2 Quality control

As Figure 2.1 shows, we have first done the individual quality control and geno­

typing quality control. At individual quality control, no one was removed because sex

mismatch problem among the samples in our study. There was no removal of participants
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at a call rate > 0.97. Identity–by­descent was also conducted, and all of the samples

passed the cryptic relatedness with pi­hat > 0.1. Nevertheless, we removed four subjects

with missing data of platelet count. Thus, 15,996 subjects were included in our study.

At genotyping quality control, there were 646,735 SNPs observed in autosome for the

SNP­leveled quality control by using PLINK 1.90 beta. Removal of 14,794 variants was

carried out at a call rate > 0.97, and 22,437 variants were excluded at the criteria of geno­

typing missing rate > 0.05. Furthermore, there were 45,850 variants then removed by

Hardy­Weinberg tests with p­value < 0.05, and 175,323 variants were pruned by failing to

pass linkage­disequilibrium with correlation r < 0.8. There were 15,996 participants and

388,331 variants remaining for the study.

Figure 2.1: Quality control workflow

2.3 Definition of Hypertension and Platelet count

Since our data record from 2008 to 2015, we took the previous definition of Amer­

ican Heart Association (https://www.heart.org/ ) as a reference to define hypertension as
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a dichotomous outcome. Three criteria of inclusion were adopted by an average sitting

systolic blood pressure ≥ 140 mmHg, average sitting diastolic blood pressure ≥ 90 mmHg,

or self­reported to have hypertension in a questionnaire to decide the hypertensive partic­

ipants.As Figure 2.2 (a), 21.7% of the analyzed participants were hypertensive. Platelet

was selected as the type of platelet count at the baseline measurement in Taiwan Biobank

with per unit of 1000/µl. The normal range of platelet count is widely distributed from

150 to 500(1000/µl), and the number is susceptible to external change[6]. Figure 2.2 (b)

shows the density plot of platelet count stratified by hypertension with all possible con­

founders unadjusted. Before adjusted any confounders, participants with hypertension

have a lower mean platelet count than participants without hypertension.

Figure 2.2: Descriptive analysis of hypertension and platelet count

(a) Pie chart of hypertension (b) Density of platelet count

2.4 Association between Hypertension and Platelet count

It has been confirmed that there is a correlation between hypertension and platelet

counts in the previous study[4]. Here, we check if the association also exists in our dataset.

In reference to previous literature, we took all confounding factors listed below (sex, age,

fasting glucose, hematocrit, triglyceride, high­density lipoprotein, hemoglobin, red blood

cell, and white blood cell) in the model as covariates to adjust. We applied the logistic

regression model with all known confounders to get the effect size of platelet count on

hypertension from the model and did Wald test for the significance test. In the reverse di­

rection, we appliedmultiple linear regression with all the known confounders as covariates

and t­value to get the effect size of hypertension on platelet count.
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2.5 Mendelian randomization

In order to have a causal relationship between platelet count and hypertension, we ap­

plied Mendelian randomization[7] [8]. The causal relationship obtained by genetic vari­

ants involved to be as instrumental variables was based on three main assumptions of

Mendelian randomization[9]. First, the variant is predictive of the risk factor. Second, the

variant is independent of any confounding factors of the risk factor ­outcome association.

Third, the variant is conditionally independent of the outcome given the risk factor and

the confounding factors (Figure 2.2). The selected genetic variants can only affect the

outcome via the risk factor if they meet the above conditions [8] [10]. In our study, we ap­

plied the inverse variance method (IVW) to elucidate the causality between platelet count

and hypertension and conduct the MR­Egger method and the Weighted­median method

as a sensitivity analysis.

Figure 2.4: Mendelian randomization

2.5.1 The Framework of data and genetic association

If the association between J genetic variants Gj (j=1,2,…,J) and the outcome is de­

noted βY j and the association with the risk factor denoted βXj , then the correlation be­

tween the genetic variants and the outcome variable can be expressed as the direct effect
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of gene pleiotropy (αj) plus the indirect causal effect of genetic variants on the outcome

through risk factors: βY j = αj + θβXj (Figure 2.3).

Figure 2.5: The magnitude of the causality

2.5.2 IVW method

With a single valid genetic variant Gj , the causal effect of the risk factor on the

outcome can be expressed by [8]: (θ̂j) = β̂Y j

β̂Xj
, where β̂Y j indicated the coefficient from

univariate regression with the outcome. With multiple genetic variants, the estimates from

each genetic variant can be averaged using an inverse­variance weighted (IVW) estimate

[11]. This method assumes that the genetic variants are uncorrelated and the pleiotropic

effects are zero αj = 0. The regression model can be written as:

β̂Y j = θIV W β̂Xj + ϵij; ϵij ∼ N (0, θ2se(β̂Y j)
2)

,where θ̂IV W =
∑

j β̂Y j β̂Xjse(β̂Y j)
2∑

j β̂
2
Xjse(β̂Y j)2

[10] [12]

2.5.3 MR­Egger method

Compare with the IVW method, the MR­Egger method estimates the pleiotropic ef­

fects as part of the analysis. TheMR­Eggermethod should conform to the InSIDE assump­

tion (Instrument Strength Independent of Direct effect), which assume that the pleiotropic
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effects αj are independently distributed from the genetic association with the risk factor

[13]. The regression model can be written as:

β̂Y j = θ0E + θ1Eβ̂Xj + ϵEj; ϵEj ∼ N (0, σ2se(β̂Y j)
2)

, where θ0E is the intercept and θ1E is the slope [14].

2.5.4 Median­based method

The median­based methods have greater robustness to individual genetic variants

with strongly outlying causal estimates compared with the inverse­variance weighted and

MR­Egger methods. Calculate the median of the ratio instrumental variable estimates

evaluated using each genetic variant individually. The simple median method gives a

consistent estimate of the causal effect when at least 50% of the genetic variants are valid

instrumental variables. For the weighted median method, 50% of the weight comes from

valid instrumental variables. Also, it will not be affected by outliers and high leverage

genetic variants [15].
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Chapter 3 RESULTS

According to the definition of the American Heart Association, there were 3,480 hy­

pertensive patients taking account for 21.76% among all participants (Table 3.1). The per­

centage was a little lower than the previous reports in Taiwan[16] since Taiwan Biobank

only included healthy people, and hypertension was known to be the cause of serval dis­

eases. Platelet count with a mean of 237.7 (1000/μL) and standard deviation of 56.9 (1000/

μL) was revealed in the analyzed participants. We did the crude association test between

platelet count and hypertension in our dataset. Table 3.2 shows that platelet count was sig­

nificantly positively correlated to hypertension when adjusting sex, age, fasting glucose,

hematocrit, triglyceride, high­density lipoprotein, hemoglobin, red blood cell, and white

blood cell. With the reverse direction, Table 3.3 shown that hypertension was significantly

positively correlated to platelet count when adjusting the same confounders.

Table 3.1: Characteristic of study participants in Taiwan Biobank dataset

Characteristics Full sample(N=15996)

Age(years) 48.7 ± 11.35

Male(sex) 7,965(49.79%)

Hypertension 3,480(21.76%)

Platelet count 237.7 ± 56.92

Continued on next page
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Table 3.1 – continued from previous page

Characteristics Full sample(N=15996)

Fasting glucose 96.5 ± 21.02

Hematocrit 43.7 ± 4.55

Triglyceride 117.5 ± 92.15

High­density lipoprotein 53.1 ± 13.11

Hemoglobin 14.0 ± 1.58

Red blood cell 4.8 ± 0.52

White blood cell 6.1 ± 1.59

†All data are presented as mean ± SD or numbers(%)

Table 3.2: Logistic regression of Platelet count on Hypertension with all possible con­
founders adjusted

Beta Standard Error P­value

Platelet count 1.21e− 03 5.99− 05 p < 0.05

Sex(male=0) −5.13e− 02 8.50− 03 p < 0.001

Age 1.14e− 02 2.83− 04 p < 0.001

Fasting glucose 1.32− 03 1.52− 04 p < 0.001)

Hematocrit −6.13 1.42− 03 p < 0.001

Triglyceride 1.70− 04 3.71− 05 p < 0.001

High−density lipoprotein −1.96− 03 2.72− 04 p < 0.001

Hemoglobin 2.07− 02 4.26− 03 p < 0.001

Red blood cell 3.02− 02 7.47− 03 p < 0.001

White blood cell 1.86− 02 2.09− 03 p < 0.001
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Table 3.3: Linear regression of Hypertension on Platelet count with all possible con­
founders adjusted

Beta Standard Error P­value

Hypertension 2.11 1.04 p < 0.05

Sex(male=0) 14.02 1.12 p < 0.001

Age −1.02 0.04 p < 0.001

Fasting glucose 0.03 0.02 p = 0.14)

Hematocrit −1.67 1.88 p < 0.001

Triglyceride 0.03 0.01 p < 0.001

High­density lipoprotein −0.01 0.04 p = 0.80

Hemoglobin −5.09 0.56 p < 0.001

Red blood cell 5.70 0.99 p < 0.001

White blood cell 10.70 0.26 p < 0.001

3.1 The causal effect of Platelet count on Hypertension

Through the genome­wide association studies (GWAS) in recent 10 years with sam­

ple size larger than 10,000, as shown in Table A.1, we found 5 single nucleotide poly­

morphisms (SNPs), which were rs385893 in JAK2, rs11082304 in CABLES1, rs6425521

in DNM3, rs4895441 in HMIP, and rs7775698 in HBS1L, associated with platelet count

(Table 3.4). The variants were also significantly associated (p­value < 5e­6) in the Tai­

wan Biobank dataset. We then performed one­sample Mendelian randomization for the

causal inference for platelet on hypertension count by different methods. In Table 3.5,

we observed a significant positive casual effect with the simple median, weighted me­
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dian and IVW methods. However, there is no significant causal effect with the MR­egger

method. Also, the MR­Egger method＇s intercept was insignificant. The 5 SNPs related

to hypertension did not have a pleiotropic effect.

Table 3.4: Select SNPs correlated with Platelet count as p < 5e­06

SNP Gene CHR beta P­value

rs6425521 DNM3 1 4.42 p < 5e− 06

rs7775698 HBS1L 6 8.27 p < 5e− 06

rs4895441 HMIP 6 7.34 p < 5e− 06

rs385893 JAK2 9 −4.99 p < 5e− 06

rs11082304 CABLES1 18 3.2 p < 5e− 06

†Adjusted all possible confounders, and top 10 principle components from genetic analysis

Table 3.5: Causal estimates of Hypertension on Platelet count

Method Estimate Standard Error 95%CI P­value

Simple­median 0.139 0.012 [0.115, 0.162] p < 0.05

Weighted­median 0.134 0.009 [0.116, 0.152] p < 0.05

IVW 0.121 0.061 [0.001, 0.240] p < 0.05

MR­Eggger 0.048 0.208 [−0.358, 0.455] p = 0.816

(Intercept) 0.444 1.206 [−1.919, 2.807] p = 0.713
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3.2 The causal effect of Hypertension on Platelet count

In the reverse direction, through the genome­wide association studies (GWAS) in

recent 10 years with sample size larger than 10,000, as shown in Table A.2, we found

6 single nucleotide polymorphisms (SNPs), which were rs1458038 in FGF5, rs3796605

in FGF5, rs455938 in MAST4, rs10866754 in CTC­535M15.2, rs648435 in APHGAP42,

and rs2018159 in APHGAP42 significantly associated (p­value < 5e­6) with hypertension

in Taiwan Biobank dataset (Table 3.6), . We performed one­sample Mendelian random­

ization for the causal inference for hypertension on platelet count by different methods.

In Table 3.7, no significant causal effect of hypertension on platelet count was observed.

Since there is no significant effect of the MR­Egger method＇s intercept, the 6 SNPs re­

lated to hypertension did not have a pleiotropic effect. Both IVW and Weighted methods

indicate that the weighted causal effect is positive but not significant.

Table 3.6: Select SNPs correlated with Platelet count as p < 5e­06

SNP Gene CHR beta P­value

rs1458038 FGF5 4 1.197 p < 5e− 06

rs3796605 FGF5 4 0.8562 p < 5e− 06

rs455938 MAST4 5 1.15 p < 5e− 06

rs10866754 CTC­535M15.2 1.169 −4.99 p < 5e− 06

rs648435 APHGAP42 11 0.8616 p < 5e− 06

rs2018159 APHGAP42 11 0.8563 p < 5e− 06

†Adjusted all possible confounders, and top 10 principle components from genetic analysis
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Table 3.7: Causal estimates of Hypertension on Platelet count

Method Estimate Standard Error 95%CI P­value

Simple­median 0.446 0.315 [−1.171, 1.063] p = 0.156

Weighted­median 0.254 0.316 [−0.366, 0.874] p = 0.423

IVW 0.343 0.258 [−0.164, 0.849] p = 0.185

MR­Eggger −1.294 0.694 [−4.613, 2.025] p = 0.445

(Intercept) 1.703 1.714 [−1.710, 5.166] p = 0.328
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Chapter 4 DISCUSSION

4.1 Mendelian randomization assumptions

With Mendelian randomization assumptions, only the first assumption can be fully

empirically tested because second and third assumptions depend on all possible confounders

of risk factor­outcome association, both measured and unmeasured. While using the IVW

method, we need all genetic variants to satisfy the MR assumptions to elucidate a consis­

tent estimate of the causal effect[15]. Hence, we conduct the MR­Egger method and the

Weighted­median method as a sensitivity analysis. The MR­Egger method estimates the

true causal effect that is consistent even if all genetic are invalid due to violation of the

third assumption but under a weaker assumption is known as InSIDE (instrument strength

independent of direct effect) assumption[13]. However, MR­Egger regression estimates

are likely to be particularly imprecise if all genetic variants have similar magnitudes of

association with the risk factor. The weighted median method will provide a consistent

estimate if at least 50% of the weight comes from valid genetic variants and assume that

no single genetic variant contributes more than 50% of the weighted. Compare with the

MR­Egger method, the weighted median method approach allows the MR assumptions

to be violated in a more general way for the invalid genetic variants[15]. Consequently,

although we observed an insignificant estimate in the MR­Egger method, we believe that
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there is a causal effect of platelet count on hypertension.

4.2 Limitations

In our study, some potential limitations exist. First, we had only baseline platelet

count in the Taiwan Biobank. These limitations would arise less robustness due to the

individual variability and should be exchanged by the average of the measurements sev­

eral repeated times. Second, the definition of hypertension included self­reported to have

hypertension in the questionnaire. Recall bias was inevitable when the questionnaire was

used and thenmisclassified some of the hypertensive patients. Due to the misclassification

of the hypertensive patients, we may underestimated the magnitude of the effect. Third,

the data we used in the Taiwan Biobank dataset is a cross­sectional study. Due to the

data restriction, we could only observe one direction of the causal effect simultaneously,

although reverse causation exists. Last, as for the method, we need to adjust all possible

confounders to comply with the Mendelian randomization assumptions. However, there

were still existing some unknown confounding factors. The causality was not guaranteed

if there were unknown confounding factors in the relationship. The result could be im­

pacted by the limitations, which should be cautious of when making further applications.
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Chapter 5 CONCLUSION

In our study, we revealed the significant positive causal relationship of platelet count

on hypertension by Mendelian randomization. However, there is no significant causal

effect in the reverse direction. Platelet count can be taken as one of the risk factors of

hypertension, provide the evaluation reference for potential hypertension in clinical diag­

nosis, and can set the stricter threshold of hypertension to keep track of for those who have

higher platelet count to prevent hypertension. Furthermore, combined with the relation­

ships of other platelet indices on hypertension under larger and multiple data sources in

future studies, we can have more evidence on platelet and hypertension to develop more

therapeutic treatments on hypertension.
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Appendix A — Literature review

Table A.1: genome­wide association studies with genetic variants related to platelet count

paper ID overlapped gene publication date sample size sample ethics

GWAS in
Japan[17]

JAK2
CABLES1 2018­02­05 n=108,208 East Asian

The Allelic
Landscape of
Human Blood Cell[18]

CABLES1
DNM3 2016­11­17 n=166,066 European

GWAS of
platelet in
Hispanic or Latin
American[19]

JAK2
HMIP 2016­01­21 n=12,491

Hispanic
or Latin
American

Gwas in Korean[20] NA 2014­12­31 n=8,842 East Asian

GWAS of
platelet related[21] CABLES1 2013­09­12 n=13,582 European

New gene
function in
platelet formation[22]

CABLES1 2011­11­30 n=48,666 European

GWAS in
Japanese
biochemical traits [23]

CABLES1
HBS1L 2012­02­07 n=14,806 East Asian
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Table A.2: genome­wide association studies with genetic variants related to hypertension

paper ID overlapped gene publication date sample size sample ethics

GWAS study of
blood pressure
and hypertension [24]

ATP2B1
CASZ1
CYP17A1
SH2B3

2009­05­10 n=29,136 European

GWAS study in
Chinese identifies
nuvel loci for
blood pressure
and hypertenison [25]

ATP2B1
CASZ1
FGF5

CYP17A1

2014­09­23 n=11,816 Chinese
population

GWAS study
identifies
L3MBTL4 as a
Novel
Susceptibility
Gene for
Hypertension [26]

ATP2B1
CASZ1
FGF5
CYPA1

2016­08­02 n=16,870 Chunese
population

Trans­ancestry
meta­analysis
identify rare and
common variants
associated with
blood pressure
and
hypertension [27]

ATP2B1
CASZ1
FGF5

2016­10­01 n=165,276
n = 192,763

Europeans
South Asians
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