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Abstract: Two types of asymptotic observer are 
constructed for constrained robot systems in this 
paper. Since a constrained robot, in general, 
involves a set of differential equations and a set of 
algebraic equations, both differential and algebraic 
variables should be estimated. This gives arise to 
difficulty in estimating the algebraic variables 
which are the contact forces. The difficulty is eased 
by introducing a nonlinear transformation. 
Although the transformation causes nonlinear 
coupling on the input, asymptotic observers can 
be constructed in terms of the transformed system 
by a special treatment. Since both the contact 
force and the motion of the robot can be directly 
estimated, the observers may be useful for the con- 
troller design of the constrained robot system. 

1 Introduction 

For many operations of the robot, the robot end effector 
is constrained by its environment. In that case, the direct 
control of the contact force between the robot end effec- 
tor and the constraint surface can greatly expand the task 
capacity. The mathematical model for the constrained 
robot, explicitly taking into account the contact force, 
has been given in References 3, 6 and 8. Several control 
schemes have also been developed to control directly the 
contact force and the robot motion based on this model 
[2, 7, lo]. However, all these control schemes implicitly 
assume that all state and algebraic variables are avail- 
able. Unfortunately, this is not always true. Usually, 
some states are very difficult to measure and some are 
too expensive to be assumed. Particularly, the contact 
force variables may be very expensive and inadequate to 
be measured. Thus, it is required that we design an obser- 
ver to estimate the contact force and the state variables 
for the constrained robot systems. 

Since a constrained robot system consists of differen- 
tial equations and a set of algebraic constraint equations, 
the contact force variables, which are the algebraic vari- 
ables, may be regarded as state variables without govern- 
ing differential equations. The overall system is referred 
to as a nonlinear singular system [6, 81. Hence, tradi- 
tional design procedures for nonlinear observers, such as 
the Lie-algebra observer [ 13, the extended linearisation 
observer [SI, Thau's observer [4] and the variable struc- 
ture system (VSS) observer [9] cannot be directly 
applied. 
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To overcome the above difficulty, the McClamroch 
and Wang method [7] is used to transform the con- 
strained system into reduced unconstrained subsystems. 
Then, the observer is designed in terms of the reduced 
subsystems. The selection of our observer structure is a 
combination of the Kuo observer [4] and the VSS obser- 
ver. We use the concept of the Kuo observer to determine 
the convergent property of the observer and use the idea 
of the VSS observer to cancel the effect caused by the 
nonlinear coupling in the control input. Since a linear 
output is desired for applying the VSS observer tech- 
nique, a linear output based on a transformed system will 
be constructed. 

In this paper, we present two types of asymptotic 
observer design for constrained robot systems. The con- 
strained system and its reduced form are discussed first. 
Then a linear output generator is constructed. Finally, 
the design procedures of the observers are presented and 
examples are discussed. 

2 

For a constrained robot, the motion of the robot end 
effector is constrained by its environment. The Lagrang- 
ian dynamics of the constrained robot systems, explicitly 
incorporating the effects of contact forces, can be model- 
led as [ 6 ]  

Constrained robots and problem formulation 

M(q)ii + F(q, 4) = U + JT(q)l  (1) 

where q E R" is the generalised displacement; M(q)  is an 
n x n inertial matrix function; F(q, q)  is an n-dimensional 
vector function, containing the Coriolis, the centrifugal 
and the gravitational terms; U E R" is the generalised 
control input; 4(q) is the m-dimensional constraint vector 
function; J ( q )  = [&$(q)/dq] is an m x n Jacobian matrix; 
and 1 E R" is the generalised contact force vector associ- 
ated with the constraints. 

The constraints, given in eqn. 2, are assumed to be 
holonomic and frictionless. Note that, if 4(q) is identically 
satisfied, then also J(q)q = 0. Hence, the motion of the 
robot end effector is constrained in the constraint mani- 
fold S c R2", defined by S = ((4, 4) :  $(q) = 0, J(q)q = O}. 

Suppose the output of the constrained robot system is 
given by 

(3) 

where y E RP is the output vector and C is a p x 2n con- 
stant matrix. Our objective is to construct an observer 
such that the displacement q and velocity q of the robot 
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and the contact force can be estimated. These estimated 
values can be used for controller design. 

Since the constrained system, given in eqns. 1 and 2, 
contains a set of algebraic equations, it is not suitable for 
observer design. McClamroch and Wang [ 7 ]  use a non- 
linear transformation to convert the constrained system 
into two reduced, unconstrained subsystems in which the 
constraints are satisfied automatically. Our observer 
design will be based on these reduced subsystems. The 
transformation method is briefly summarised in the fol- 
lowing: 

Suppose that there exists an open set V c R"-" and a 
function R : V .+ R", such that 

4 ( w ? 2 ) ,  42) = 0 for all q 2  E v (4) 

If rank J(q)  = m, then according to the implicit function 
theorem, eqn. 4 holds for some V = R"-". Consider the 
nonlinear transformation 

which is differentiable and has a differentiable inverse 
transformation Q :  R" + R", such that 

Let the nonsingular Jacobian matrix of the inverse trans- 
formation be 

( 7 )  

Then the constrained system, given in eqns. 1 and 2, can 
be transformed to reduced subsystems 

E 1 M ( x 2 ) E ; x 2  + E 1 F ( x 2 ,  i,) = E,TT(X,)U 

E ,  M(x2)E;X2 + E , F ( x , ,  i,) = E ,  T T ( x 2 ) u  

+ El T T ( X 2 ) J T ( X 2 ) 1  (8) 

( 9 )  

x1 = o  (10) 

where 

M(x2)  = TT(x2)MCQ(x2)1 77x2)  

F ( x 2 ,  i2) = T T ( X , )  

(1  1) 

x {FCQ(x2), 7Tx2P21 

+ MCQ(x2)l T ( x 2 P 2 )  (12) 

Note that the partition of the identity matrix I,, = [ET, 
E l ] ,  where E ,  is an m x n matrix and E ,  is an 
(n - m) x n matrix, is used to partition x as x T  = [x:, 
x l ]  = [ ( E , x ) ~ ,  ( E ,  x ) ~ ] .  The relation E ,  T T ( x 2 ) J T ( x 2 )  = 0 
is used in deriving eqn. 9. Furthermore, the constraint 
eqn. 2 is transformed to eqn. 10. Under this transform- 
ation, the output y becomes 

which is a nonlinear relation. For simplicity, the above 
equation is rewritten as 

Our problem turns out to design observers for the trans- 
formed system, eqns. 8-10 and 14. Since the differential 
eqn. 9 completely governs the reduced state vector x z ,  
and the output eqn. 14 is only in terms of xz ,  the sub- 
system, eqns. 9 and 14, can be treated as an ordinary 
unconstrained nonlinear system. The contact force 1 can 
be determined from eqn. 8. The observability of the con- 
strained system depends on the observability of the 
subsystem, eqns. 9 and 14. It can be easily verified that if 
the n x m matrix E l T T ( x 2 ) J T ( x , )  is nonsingular for all 
x 2  E R " - " ,  then the overall system in eqns. 8-10, and 14 
is observable if the subsystem of eqns. 9 and 14 is obser- 
vable. Throughout this paper, we assume that the system 
is always observable. 

As shown in eqn. 14, the output y is now nonlinear 
vector function of x z  . To use the VSS observer technique, 
a linear output is required. The generation of the linear 
output will be discussed in the next section. 

3 Linear output generator 

Consider the subsystem in eqns. 9 and 14. Since there is 
nonlinear coupling in control, the typical nonlinear 
observer design, such as the Lie-algebra observer [l] and 
the Kou observer [4], cannot be applied. The VSS obser- 
ver [ 9 ]  can handle the nonlinear coupling in control for 
the system with linear output. Thus, to use the idea of the 
VSS observer a linear output will be constructed from 
eqn. 14. 

Since C is a p x 2n matrix, if the singular value 
decomposition is applied, there exist two unitary matrices 
U and V such that 

(15) 
where C = [ D  IO] is a p x 2n matrix and D is a p x p 
diagonal matrix. Let 2n > p > in. We further partition 
matrices C and V into 

c = UTCV 

where D , ,  ER""", D, ,  E R ( p - m ) x ( p - - m ) ,  V,, E R""", v12 E 
7 v31 E R m  x 2 ( n  -m) v E R ( P - m ) x m ,  v2, E ~ ( p - m ) x W - m )  

R ( Z f l - P ) " m  9 ' I /  32  ': R ( 2 n - p ) x ~ ( n - m )  . Premultiplying both sides 
of eqn. 14 by U gives 

Dl 1 =I D22 

+ 

+ 
' D22 v2,[ 3 

212 
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Note that if rank (C) > m, then D,,Vl, is nonsingular. It 
is convenient to use the partition of the identity matrix 
I ,  = [ E T ,  E:], where E ,  is an m x p matrix and E,  is a 
(p - m) x p matrix, to simplify eqn. 16 as 

Since D,, V,, is nonsingular, { iT[aQ(x,) /ax,] '  i QT(xZ)}' 
can be solved from eqn. 18 as 

Substituting eqn. 20 into eqn. 19 gives 

y = c [3 
where 

Y = CE4 - D,, V,lV,-,'D;,'E,lUY 

= CD,, V,, - D,, ~ 2 1 V ~ , ' V 1 2 1  

(22) 

(23) 
The new output j is linear in state variables i, and x 2  . It 
will be used in our observer design. However, the obser- 
vability for the subsystem eqns. 9 and 21 must be 
rechecked. 

4 Observer design 

In this section, two types of asymptotic observers will be 
designed for the dynamic system eqns. 8, 9 and 21. The 
design concept of the first observer resembles the VSS 
observer, and the second one is a modification of the first 
one. 

To carry out the subsequent developments of the first 
observer, we make the following assumption: 

Assumption 1 : 

P-'  = [ ; ; I  
p ,  E ~ ( n - m ) x 2 ( n - m )  , P ,  E R ( " - m ) x 2 ( n - m ) ,  P is a 2(n - m) 
x 2(n - m) positive matrix, H is a positive number, and 
P ,  CTC = 0. 

Define 

x ,  = [ i 2 ] ,  8,  = [ and e = X ,  - 8, 
x2 X 2  

Then we select the observer structure as follows 

iz = i2 + G : C ( X ,  - 8,) + P , R ( X , ,  8,, U) (24) 
E 1 M ( 2 , ) E T i ,  = -E1F(2,, i,) + E,TT(R,)u 

+ E ,  T'(2,)JT(x,)2 

+ ElM(2,)ETG2 C ( X 2  - 8,) 
I E E  PROCEEDINGS-D,  Vol. 138, NO.  3, M A Y  1991 

- E l M ( k 2 ) E ; ( E 2  M(2, )E;) -  , E ,  T'(2,)U 

+ E , M ( 2 , ) E ~ P 1 R ( X , ,  8 , ,  U) (25) 

E ,  M(2 , )E; i2  = - E ,  F(%,,  i2) 

+ E ,  A?(?,)ETGq c ( X ,  - 8,) 
+ E ,  M ( 2 , ) E T P , R ( X 2 ,  8 , ,  U) (26) 

where 

[ 0 , otherwise 

and CY, G: and G: are constant matrices. The structure 
of the observer is shown in Fig. 1. 

U 

We have the following results 

Theorem I: Consider the system in eqns 8, 9 and 21. If 
the following conditions are satisfied 

(a) Assumption 1 holds 
\ ,  

(b) P V F ( x , ,  i,) - P 

is uniformly negative definite for all x , ,  i, E R " - "  and 
some E > 0, where 

1 - ( E ,  M ( x , ) E 3  - , E ,  F(x ,  , i,) [ i 2  
F ( x ,  , 2 2 )  = 

and 

(c)  E ,  T'(x2)JT(x,)  and E ,  TT(2,)J'(2,) are nonsingular 
for all x 2 ,  2, E Rn-", then the observer defined by eqns. 
24-27 is an asymptotic observer in the sense that 

Ilx(t) - 2(t)ll Q Ke-''('-'O) Vt 3 to (29) 

where r] = (2eeTe/eTPe) and K depends on x( to)  and ?(to). 
In addition, the estimated contact force I converges to A 
at the same rate as %it) to x(t) .  

Proof: eqns. 9 and 26 can be conveniently expressed in 
matrix form as 
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and 

Choose a Lyapunov function V as 

1 
V(e) = - eTPe 

2 

Then 

x U - eTP[  i:]R(X2, 2, , U) (33) 

When IICell # 0, the last two terms in the right hand side 
can be further simplified as follows 

eTPP CT h(x,)u - eTR(X,, 8,, U) 

Thus, eqn. 33 becomes 

V(e) d eT [ P b F ( x 2 ,  i,) - [ ;E]V[  ::])(ws) ds e 

where 

w, = s["] + (1 - s)[f2] and 0 < s < 1 
x2 X 2  

Since 

V F ( x , ,  i,) - [ ;E]v[ ;;] 
is uniformly negative definite for some E > 0, we have 

P(e) < -EIIeI12 (34) 
Then, 

V(e)  < V[e(~ , , ) ] e -" (~- 'o )  

And the result is followed. 
Next, we consider the estimated contact force vector A. 

If E ,  T T ( x 2 ) J T ( x 2 )  and E ,  TT(2&JT(2,) are nonsingular for 
all x 2  , 2, E Rn-", then I and A can be solved from eqns. 8 
and 25. From eqn. 8,1 is determined as 

Vt > to 

A = S l ( X 2 ,  i 2 )  + SAX, ,  &)U 

S l b , ,  i 2 )  = CElTT(X2)JT(X2)l-1(-El~(x, ,~T 

(35) 
where 

x [ E ,  A?(x,)E;]-'E, + E , } F ( x , ,  i,) 

S 2 ( ~ 2 ,  i 2 )  = [EiTT(~,)JT(~2)l-1(E1M(~2)ET 
x [ E ,  M(x,)ET] ' E ,  - E,} T T ( x 2 )  (36) 

Similarly, we have 

X = S,(R,, jZ,) + S 2 ( 1 , ,  2 , ) ~  + [ E ,  TT(?,)JT(?,)] - 

x [E,A?(%,)ET][G; - G : ] C ( X ,  - 8,) (37) 
Since 1, converges to x 2  , and i, converges to i, , as time 
approaches to infinity, functions S , ( 1 , ,  i,) and S,(?, , 2,) 
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will converge to S , ( x 2 ,  i,) and S,(x ,  , i,), respectively; 
moreover, C ( X ,  - X,) conv_erges to zero. Thus, the esti- 
mated contact force vector I converges to I at the same 
rate as 1, to x 2  . Note that the G: term is used to acceler- 
ate the convergence rate. 

The above observer design, the term R(X,, %,, U), 
may be discontinuous as Ce = 0. Hence, there may exist 
chattering phenomena in the steady state. To improve 
the observer performance, the observer is slightly modi- 
fied as follows. 

Take the following assumption: 

Assymption 2 

(ii) VR,(x , )  = Li(x,)C,  IILix2)II < Hi, i  = 1, ..., n 
where 

P-'  = [;:I 
p ,  E ~ ( n - m ) x 2 ( n - m )  , p ,  E ~ 0 - m )  x W - m )  , P is a 2(n - m) 
x 2(n - m) positive matrix, Hi is a positive number, and 
P ,  CTC = 0. 

Then, the observer structure is chosen as follows: 

[k2 x2 - - ' , I  x2 

.~ 
2, = i ,  + GYC 

E ,  M(?,)ET jz, = - E ,  F(?, ,  j z , )  

+ E ,  M(2,)ETGX c[ j C 2  - 
x2 - 

x2 - x2 
n 

x HiIIuiII + E 2  T T ( 2 2 ) ~  (40) 
i =  1 

where CY, G:, and Gg are constant matrices. The struc- 
ture of this improved observer is similar to Fig. 1. 

We have the following results. 

Theorem 2: Consider the system in eqns. 8, 9 and 21. If 
the following conditions are satisfied 

(i) Assumption 2 holds 

(ii) P V Q X , ,  i,) - P [ 3[ ;;I 
is uniformly negative definite for all x , ,  i ,  E Rn-" and 
some E > 0, where 

1 - (E,  A?(x,)ET)- ' E ,  F(x, ,  i2) 

I 2  
F ( x 2 ,  i,) = 

and 

(iii) E ,  T T ( x 2 ) J T ( x 2 )  and ElTT(?,)JT(jZ2) are non- 
singular for all x , ,  ?, ER"-", then the observer defined 
by eqns. 3 8 4 0  is an asymptotic observer in the sense 
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In addition, the estimated contact force 2 converges to 1. 

Proof: The proof is similar to Theorem 1.  Hence, it is 
omitted here. 

Remark: In the construction of the observer, the states 
of the transformed system rather than the states of the 
original system are estimated. This indicates that it is not 
necessary to estimate all states for the constrained 
system. The complete information of the original states 
can be obtained by the following transformation 

(43) 

and 

Another remarkable feature of the observer is that the 
contact force 1 can be directly estimated rather than 
obtained by expensive force sensors. 

5 Example 

In this section, an example is given to illustrate the above 
developments. Both asymptotic observers are constructed 
in terms of the same example. Their simulation results 
are also given for the purpose of justification. Suppose a 
constrained dynamic system is given by 

q 1  = U 1  (45) 

(100 - 4q:)42 + 4: + 1004, - 44, 4: = U, (46) 

4 4 2 1 ,  4 2 )  = 4: - q 2  (47) 

The constraint and output equations are 

where q l ,  q , ,  U, u2 E R and y E R2 '. 
By introducing the Lagrange multiplier and applying 

the McClamroch and Wang nonlinear transformation, 
eqns. 4548 can be transformed into 

2i: + 2x,x, = U 1  + 1 (49) 

x, = -0.01i; - x, + 0.02x2 U 1  + O.OlU, (50) 

x1 = o  (51) 

[' 01[:'1 
i 2  

y =  0 1 1  

By singular value decomposition, a linear output can be 
constructed from eqn. 52 as 

j = [O 2]y = 2x, + 21, (53) 
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From eqns. 24-27, the first observer structure is selected 
as follows: 

2 i2  + 22, jc, = U1 + x + 2R, G!(x, + i ,  - R, - k,) 
- 2i,(0.02f,u1 + O.OlU,) 

+ C L  OIRb, 9 i ,  2 f, 2 E2 9 4(2R,) (54) 

(55) 

(56) 

K, = -0.01i; - f, + 2G9(x2 + I, - 2, - i,) 

i, = k, + 2G7(x2 + i ,  - 2, - i,) 
+ C L  OIRb,  9 I, 9 2 2  3 K, 2 U) 

+ c - 1, lIR(x2, i , ,  2 2 ,  k,, U) 
where 

0 otherwise 
Select H = 1 and the observer gains as = - 1.5, G; = 
5.5, G! = 0.4, then according to Theorem 1, the observer 
defined by eqns. 54-57 is an asymptotic observer for the 
system defined by eqns. 49, 50 and 53. The simulation 
results are shown in Figs. 2 4 .  It is obvious that there are 

0 .51  

0 0.67 1.33 2.00 2.67 3.33 4.00 
time, s 

Fig. 2 

x2 (to) = 1.0 

Displacement error (x, - a,) ofobserver I 
i2 (to) = 0.5 

-0.1 2 

-0.50 
0 0.67 1.33 2.00 2.67 3.33 4.00 

time, s 

Fig. 3 

k2 (to) = 1.0 

some chattering phenomena as the estimated variables 
approach the true variables. 

From eqns. 3840, the second observer can be selected 
as follows : 

Velocity error (i, - k,) ofobserver I 
i2  (to) = 0.5 

232, + 2?,32, = U 1  + x 
+ 2R2 G!(x, + i, - f2 - E,) (58) 

21s 



0 0.67 1.33 2.00 2.67 3.33 L.00 
time, s 

Fig. 4 
1 (to) = 2.00 
i ( to)  = 4.94 

Contact force error (A - 2) of observer I 

-1.00 
0 0.5 1.0 1.5 2.0 2.5 3.0 

time, s 
Fig. 5 
P, ( to)  = 0.5 
x 2  ( t o )  = 1.0 

Displacement error (x, - ?,) ofobserver 2 

_J 

0 0.5 1.0 1.5 2.0 2.5 3.0 
t ime, s 

Fig. 6 

i2  ( to)  = 1.0 

Velocity error (k, - i,) ofobserver 2 
iZ ( to)  = 0.5 

. 1  A, = i z  + 2G3x2 + 1, - 22 - H,) 
Select H = 0.15 and the observer gains as Gy = -7, 
G: = 5.5 and GZ = 0.05, then according to Theorem 2, 
the observer defined by eqns. 54-56 is an asymptotic 
observer for the system defined by eqns. 49,50 and 53. 

The simulation results are shown in Figs. 5-7. From 
those* figures, we know that the estimated states i2, j c ,  
and A will converge to the system states x,, j c ,  and A, 
respectively. The result is better than the first observer’s. 

c 

-15.01 I I I I I I I ‘ I I 
0 0.67 1.33 2.00 2.67 3.33 L.00 

t ime, s 

Fig. 7 Contact force error (i - 1) of observer 2 
1 ( t o )  = 2.00 

6 Conclusion 

Two asymptotic observers are constructed for the con- 
strained robot system. It has been shown that the con- 
verging properties can be determined by the selection of 
the observer gain matrices GY, G: an G: .  The dificillty 
caused by the nonlinear coupling in the control has been 
overcome by introducing the VSS observer idea at the 
expense of the requirement of linear output. Although the 
estimates of the states are based on the transformed 
reduced subsystems, the estimates of the original states 
can be recovered by applying the inverse transformation. 
Since the contact force, which is usually not directly 
available in the constrained robot system, can be esti- 
mated directly, the observer may be very useful for the 
controller design of a constrained robot system. The con- 
troller may design on the basis of i,, i, or ij, 4 ;  however, 
the stabilisation problem of the overall system should be 
carefully investigated. This result will be reported in a 
forthcoming paper. 
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