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Abstract 

In this paper, we propose a new self-tuning con- 
trol for continuous-time linear time invariant MIMO 
systems. We first develop a self-tuning multi-input 
state feedback control, and then develop a self-tuning 
control for a general MIMO system with an input- 
output description. In the latter case, we show that 
once the system's dynamics of the MIMO system is 
properly parameterized into a nonminimal state space 
description, the self-tuning control problem can be 
transformed into that in the former case, and there- 
fore be solved similarly. The unique feature of our 
state space approach compared with the conventional 
polynomial equation approach is that the only a priori 
information on the system required is an upper bound 
of the system's observability indices. 

Section I Introduction 

In this paper, we propose a new continuous-time 
self-tuning controller for general continuous-time sys- 
tems. Our approach differs from previous approaches 
in two aspects: (1) Previous approaches rely on a pa- 
rameterization using polynomial equations. In our ap- 
proach, we use a state space parameterization, and 
start the design with the self-tuning state feedback 
control in which the system state is accessible for mea- 
surement. We then show that the proposed design 
procedure can be applied to the more general case in 
which the system is described in polynomial equations 
and only the system's outputs are accessible for mea- 
surement. This new approach enables us to design 
STC's for MIMO systems without substantial efforts 
compared with the SISO systems. (2) We need only 
the knowledge of an upper bound of the system's ob- 
servability indices for the STC design - a more re- 
laxed assumption on the system than previous results. 
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Section I1 Preliminaries 

The following lemmas will be used to establish the 
stability of the self-tuning controller presented in this 
paper. They are either well known in the adaptive 
control theory or can be easily derived from others; 
their proofs are relegated to the references. 
Lemma 1 [l] : Let w : R+ 4 R" be piecewise con- 
tinuous, @ = @ - @, where @ is an unknown constant 
vector, and e = @'W. If 

and 

- = -  dP 
d t  1 + ywTPw 

g P w w T P  , p(0) = P ( t S )  = ko . I  > 0, 

where y and g are positive constants, t ,  = 
{ t I Xmin(P(t))  5 kl < ko}. Then 

( i )  @ . E L ,  , 8 E L z n L m ,  

 emm ma-2 121 : Swapping lemma. Let 8, u : R+ --* 
R" and B be differentiable. Then 

(8'")f = P U f  - ( h f ) f ,  

where the subscript f denotes the filtering process: 

"f = - x > o .  
S + X W '  

In the following lemmas, H ( s )  is the rational trans- 
fer function of a strictly proper and asymptotically 
stable system. 
Lemma 3 [3] : Let y = H ( s ) u ,  then there exists a 
positive constant M such that 
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Iy(t)l 5 MIIutll,+exponentiaZ~y decaying term. 

Lemma 4 [3] : Let y = H ( s ) u ,  and u ( t )  E L1 or Lz. 
Then y( t )  + 0 as t + 00. 

Lemma 5 [3] : Let y = H ( s ) ( p u ) ,  where p ( t )  E LZ 
or L1 and u ( t )  E Lwe.  Then there exists a continuous 
function p( t )  such that p ( t )  - 0 as t - 00 and 

y ( t )  = ,8(t)llutllw + exponentially decaying term. 

Combining Lemmas 2 ,  3 and 5, we obtain the fol- 
lowing corollary. 

Corollary: Consider Lemma 2 again with ê  E LZ and 
v E Lme.  We have 

(eT+ = d T V f  + a( t ) l l v t / lm,  

where a(t)  -+ 0 as t -+ 00. 

Lemma 6 [4] : Let D ( s )  E RpxP[s], the set of p x p 
matrices with polynomial elements, and &D(s)  denote 
the maximum.po1ynomial degree in the i-th row of 
D ( s ) .  There exists a real p x p matrix r D  such that : 

D ( s )  = s D ( s ) r D  + T D ( s )  

where &TD(s)  < a ,D(s ) ,  and S D ( S )  is a diagnoal ma- 
trix with seiD(') as the i-th element on the diagnal. 
Lemma 7 [4] : Let P(s )  E Rmxm(s), the set of m x 
m matrices whose elements are rational functions of 
s. Let N L ( s )  and D L ( s )  E Rmxm[s] be such that 
P(s )  = D ( s ) - l N ( s ) .  If D ( s )  is row reduced, then 
P ( s )  is strictly proper iff & N L ( s )  < & D L ( S )  for all 

1 m.  i =  1, ... 

Section I11 Self Tuning LQR Control 

Consider a linear time invariant system 

E = ( A  + AA)z  + (B + AB)u,  (3.1) 

where x E R" denotes the state vector, U E R" the 
input vector, (A ,  B) the nominal system matrices, and 
(AA,AB)  the unknown system matrices. We assume 
that the system state x is directly accessible. The 
objective now is to estimate the unknown system ma- 
trices, and apply the certainty equivalence principle 
[5] to the design of a regulation controller. In this pa- 
per, we demonstrate the control design using the opti- 
mal state feedback controller; however, other types of 
linear controllers, static or dynamic, can also be em- 
ployed without affecting the results obtained below. 

Section 1II.A Parameters Identification 

To identify the uncertain parameters in the system, 
we reparameterize the system dynamics (3.1) as fol- 
lows: define 

f ( s ) = s + X ,  x > o  (3.2) 

and divide the Laplace transform of Eq.(3.1) by f(s), 
obtaining 

S Z ~  = A z ~  + Buj + A A z f  + A B u ~  + - (3.3) 
S + X '  

where we have set the initial conditions of zf and uf 
to be zeros with 

(3.4) 

Rearranging the inverse Laplace transform of Eq.(3- 
.3), and looking at the equation rowwisely, we find 

@Tuf = - - ~ z ! i  +z, - ~ , z f  - Biuf - z i ( 0 ) e - x t ,  (3.5) 

where OF = (AAi ,ABi) ,  UT = ( x f , u f ) ,  and i = 
1 , 2 , .  . . ,n .  Denote the parameter error ai = Oi - 6i3 
where 6T = (AA* ,  A&) is an estimate of Oi,  we 
define the identification error 

e ,  = aTvj 

= - -Xxf i+~ , -A i z f -B iuf  - ~ i ( O ) e - ' ~ - 6 i v f ,  (3.6) 

where we used Eq.(3.5) to obtain the second equal- 
ity. Based on Eq.(3.6), we apply the normalized L.S. 
algorithm in Lemma 1 to update 0, resulting in 

(i) ai E L ,  , bi E LZ nL,, (3.7) 

E L~ n L,. (3.8) 
QTvf 

1 + IIVftll, 
(ii) pi = 

f o r a l l i = 1 , 2  ,..., n. 

Section 1II.B Controller Design 

Having obtained an estimate of the unknown sys- 
tem parameters, we can construct different types 
of controllers based on the estimated system ( A  + 
AA, B + A B ) .  In particular, we choose the LQR con- 
troller in this paper. The control input is then given 
by 

= -Kx, K = R - I B T P  (3.9) 
where P is the positive definite solution of the Riccati 
equation : 

ATF+PA+Q-PBR-'BTF = 0, Q , R  > 0 (3.10) 

with A = A + AA,  B = B + AB,  and ( A ,  B )  stabi- 
lizable by Assumption (Al).  The closed-loop system 
dynamics then becomes 

i = [ A + A A - ( B + A B ) ~ ; ~ ~  
= [ A  + A A  - ( B  +  AB)^+ 

+ [ ( A A  - AA) - ( A B  - AB)&lilz 
= A K - x + a v  (3.11) 

where AK = A - B k ,  aT = (@I ,..., a,,), and 
vT = ( x T , u T ) .  Notice that Eq.(3.11) represents a 
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typical result for almost all types of self-tuning con- 
trol systems: the first term of the right-hand side r e p  
resents the desired system dynamics if the estimated 
parameters all converge to their true values; the sec- 
ond term represents a perturbation to the desired sys- 
tem due to  the identification error. 

Section 1II.C Stability of the Self Tuner 

In this subsection, we will show that as long as 
there exists a Lyapunov function for the exact non- 
adaptive controller, the asymptotic convergence of the 
state variables can be established for the self-tuning 
controller using the original Lyapunov function. 
Proof: Divide the Laplace transform of Eq.(3.11) 

by f(s), and take the inverse Laplace transform of the 
equation, we obtain 

if = (AKz)f + (oTv)j + z(O)e-" 

Since 21, w f  E L,, and &, A k  E LZ (see Eq.(3.7), we 
apply the Corollary in Section I1 to obtain 

Xf = A K Z f  + a Y l ( t ) l l Z f t l l w  + Q T V f  + aZ(t)llwftllw 
(3.12) 

where a l ( t )  and az(t) -+ 0 as t -+ m and the expo- 
nentially decaying term z(0)e-xt  has been absorbed 
into the last term. Using Eq.(3.8) and the fact that 
llvftllm 5 Nllzft l lw for some positive constant N ,  
Eq.(3.12) can be rewritten as 

= A K Z ~  +a3(t)llzft 1100 +Pi (t)(1+112jtllm) (3.13) 

where ad(t) -+ 0 as t -+ m and Pi ( t )  E Lz. 
Define V = ZTPZ~, where f' is the solution of the 

Riccati equation in Eq.(3.10). Note that this V ( z j )  
function is a valid Lyapunov function for the exact 
nonadaptive system 

X f  = A K Z f ,  

when all the system parameters are fixed. In our case 
of self-tuning controllers, P is time-varying. However, 
we will show that this V ( t , z f )  function can still be 
used to verify the convergence of the state variables. 
Taking the time derivative of V function along the tra- 
jectory i: Eq.(3.13), and noticing that the time deriva- 
tive of P is in L z ,  we obtain 

v = Z T P X f  + zTPz, + k T P Z f  

+a311zftllw) + Z T P Z f  

5 -0v + P 2 ( 9 4 i E i L +  P 3 ( ~ ) l l v t l l m  

= X T ( P A K  +AgP)zf + 2ZTp(Pl(1 + IIZft l lw) 

+ a 4  (t)llvt llw + P4(t)llvtllw, 

where 0 = inft~o(mi.XIQ+PBR-lB*~]), a4(t) -+ 0 
as t -+ 00, and ,&, / 3 3 , P 4  E Lz. Combining /33 and P 4  

into /35, and integrating the above inequality from 0 

to t gives: 

where I'l(t), I ' z ( t )  and I'3(t) approach zeros as t -+ 00 

by Lemma 4. The last inequality enables us to  con- 
clude that V(t) -+ 0 as t --* 00. This can be seen as fol- 
lows: assume that limt,,V(t) -+ 00; in other words, 
there exists an infinite sequence { t i ,  i = . . , m) 
such that 1 < V( t i )  = ~ ~ v t ( t i ) ~ ~ m  and limi-wV(ti) -+ 

W. Equation (3.14) then suggests that 

1 i r i ( t i )  + r z ( t i )  + r3(t i )  

Since the right-hand side of the last inequality ap- 
proaches zero as i -+ 00, a contradiction is obtained. 
We then conclude that V(t) is bounded; i.e., there 
exists aconstant M such that llVtllm 5 M for all t 2 0 .  
Again, inequality (3.14) suggests that 

~ ( t )  5 m(rl(t) + rz(t)) + A T r 3 ( t )  

Since ri's all approach zeros as t -+ 00, V ( t )  and zf 
also approach zeros as t -+ 00. 

It remains to show that the state variables z ( t )  a p  
proach zero asymptotically. To show this, we divide 
Eq.[3.9) by f(s), and notice that the time derivative 
of K belongs to L2, 

"f = -(k+ = - k Z f  + a 5 ( t ) l l Z f t l l w ,  (3.15) 

where we have used the Corollay again to  obtain the 
second equality, and a5(t )  -+ 0 as t -+ 00. Since 
zf approaches zero, so does ut .  From the definition 
of w T  = ( % f l u ! ) ,  wf also approaches zero. Finally, 
according to Eqs.(3.4) and (3.12), 

2 = if + XCf  

= A K Z f  + al(t)llCftllw + o T V f  + Qz(t)llvftl lw + XZf.  

We can now conclude that ~ ( t )  approaches zero 
asymptotically. 

Section IV Self-Tuner for MIMO Systems 
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Consider a strickly proper MIMO system 

[ D ( s )  + AD(s) ]y  = [ N ( s )  + AN(s) ]u  (4.1) 

D ( s ) , A D ( s ) , N ( s ) , A N ( s )  E Rmxm[s]  
where y is the system output, U the control input, D ( s )  
and N ( s )  are known a priori, and AD(s)  and AN(s )  
denote the uncertain parts of the system dynamics, 
and D(s) (+AD(s) )  and N ( s ) ( + A N ( s ) )  are coprime. 
By Lemma 6. we can write 

D(S) + AD(S) = S D + A D ( s ) r D + A D  + T D + A D ( s )  

where & T D + A D ( ~ )  < & ( D ( s )  + AD(s ) ) ,  and 
S D + A D ( S )  is a diagonal matrix with sBi(DtAD) as the 
i-th element on the diagonal. Without loss of gener- 
ality, we assume that D ( s )  + AD(s )  is row-reduced; 
r D + A D  is therefore nonsingular. Note that since 
( D ( s )  + AD(s ) ) - ' (N(s )  + AN(s)) is strictly proper, 
we have 0 5 & ( N  + A N )  < & ( D  + AD)  by Lemma 
7; hence, the observability index vi = ai(D + A D )  2 
1,Vi .  We assume that an upper bound of the observ- 
ability index of D(s)+A D ( s ) ,  ~ ( 2  v i ) ,  is known in 
advance. Instead of developing an identifier for uncer- 
tain parameters in AD(s )  and AN(s )  directly based 
on Eq.(4.1), we will obtain a nonminimal state-space 
realization of the systems, estimate unknown param- 
eters in this state-space realization, and then follow 
the approach developed in Section I11 to construct the 
self-tuning controller. 

The state variables of the proposed nonminimal re- 
alization are defined by 

Z = [ y i ,  . . . .  y m ,  ~ 1 1 , .  . . .  zlm, 121 , .  ... zzm] E R2"("-')+", 

where 21, and 22,  satisfy 

21, = A z ~ i  + P y i ,  kzi = Azz, + P u , ,  i = 1. .. m 
( 4 4  

h(s )  = s7-l + h , - ~ s " ' - ~  + . . .  + ho is any Hurwitz 
and the characteristic equation of A E R("")'("-') : 

polynomial. 
Let Q(s) be a polynomial matrix such that 

a i Q ( s )  = q-vi for i = 1 ... m, and detQ(s) be a monic 
Hurwitz polynomial; in other words, we restrict that 
re = I .  One such selection can be Q(s) = diag[(s + 
detQ(s) equals X i = ' ( q - v i )  = m e q - x v i  = m9-n.  
Multiply Q(s) on both sides of Eq.(4.1), 

Q(s) [ D ( s )  + AD(s ) ]y  = Q ( s ) [ N ( s )  + A N ( s ) ] u  

. . . .  (s + a):-Ynz]. We notice that the degree of 

[b(s) + A 6 ( s ) ] y  = [fi(s) + Afi (s ) ]u  (4.3) 

where b ( s )  = Q ( s ) D ( s )  and A b ( s ) ,  f i ( s ) ,  A f i ( s )  are 
similarly defined. The system in (4.3) is still strictly 
proper; hence, according to Lemma 7, for i = 1 .  . .  m, 
we have 

&(fi + A i )  < &(b + A d ) .  (4.4) 

Since re = I ,  we have 

Sfi+Afi = 3" * I  (4.5) 

rfi+afi = r D + A D  ( 4 4  
Pick H ( s )  = h(s)  . r D + A D ,  where h(s )  is the char- 
acteristic equation of A in Eq.(4.2). Since h(s )  is of 
degree q - 1, we have 

S H  = s"-' . I (4.7) 

r H  = r D + A D  (4.8) 
Divide Eq.(4.3) by H ( s ) ,  obtaining 

H - ' ( s ) [ ~ ( s ) +  A b ( s ) ] y  = H - ' ( s ) [ f i ( s ) +  A ~ ( s ) ] u  

Because of Eqs.(4.5)~(4.8), the left-hand side of 
Eq.(4.9) posesses only one nonproper term s . I ,  and 
all terms on the right-hand side of Eq.(4.9) are proper. 
Shifting all the proper terms to the right-hand side of 
the equation, Eq.(4.9) can be rewritten as, in terms of 
the time-domain signals, 

(4.9) 

Y = (eo + A O ~ ) ~ Y +  (el + aqTtl  +(IC + ~ k b  + (ez + zz 
+exponentially decaying term (4.10) 

where nominal matrices k E R""", 00 E R m x m ,  
81,82 E Rm("-m)xm are obtained from b ( s )  and 
fi(s), and uncertain matrices Ak E Rmxm-, A60 E 
Rmxm , A81, A& E R"("-"')'" f rom AD(s )  and 
A f i ( s ) .  

We further stack Eqs(4.2) and (4.10) to obtain 

z = FZ+GU 
= ( F  + AF)Z + (G + AG)u (4.11) 

y = H Z .  

where 

. . . . . . . . .  . . . . . .  . . .  
... p 0 0 . :. a 1 0  . . . . . .  

F = l  0 0 . . . . . .  0 0 0 . . . . . .  O l A  0 . . .  
0 . . . . . .  0 0 . . . . . .  

. .  . .  . . . . . .  . . . . . .  1 :  0 . . . . . .  0 0 . . . . . .  

A F  = , G =  

0 0 0  

. .  

k 
0 . . . . . .  0 
. . . .  . . . .  . .  
0 . . . . . .  0 
/3 0 " '  0 
0 p " '  0 

. . . .  
. . .  . . . .  

. . . . . .  0 B 

0 1  
A /  

A G T = ( A k  0 0 ) ,  H = ( I  0 0 )  

In developing the realization in Eq.(4.11), we have 
used Q(s) and H ( s )  whose choices require the knowl- 
edge of the system's observability indices and the con- 
stant matrix r D + A D ,  so that we can find the nominal 
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matrices (F, G). However, suppose that we have no in- 
formation at  all on the system’s parameters((F, G) = 
0), the application of the proposed control requires 
only the knowledge of an upper bound of the observ- 
ability indices for the determination of the dimension 
of the filtering process in Eq.(4.2). There would be no 
need to know O(s) and H ( s )  to apply the control, and 
Assumption (B2) is guaranteed. 

Notice that the system state 2 in Eq.(4.11) is read- 
ily accessible as indicated by Eq.(4.2). We can there- 
fore follow the approach in Section I11 to construct a 
self tuning controller for the system in Eq.(4.11). The 
design procedure and stability proof are exactly the 
duplicates of those in Section 111, and are omitted. 
Here, we merely use a simulation example to demon- 
strate the results. 

Example Consider a system 

2 S , ,  . , , . ‘ , ‘ ,  

2 .................................................. . . . .  Act!.. ............. 

~ 1.5 :: 
3 i  
E ,i 
B i  AG,, * . .  B 

5 
2 0.5 ~ 

APB. 

AY,# 
....... 

0 6  
.............................................................. 

............. 
4.5  ~ 

/ o  -1 0 0 \ / o  1 \  

lo 

Its transfer function matrix is described as 

2 4 6 n io 12 14 i 6  i n  20 

Suppose that the nominal system (F, G) = 0, we con- 
struct the self-tuning controller as developped in this 
Section with 9 = 3, h(s )  = sz + 4s + 3 in Eq.(4.2), 
f(s)  = s + 5 in Eq.(3.2), Q = diag(l0,10,5,.. . ,5) 
and R = 20 . Z in Eq.(3.10). We use the normal- 
ized L.S. algorithm for estimation of (AF,AG) with 
PL(O) = 10 .  I, g = 10, y = 1. All the state variables 
are successfully regulated to zero as shown in Figure 
1, and the deviations of four of the estimated param- 
eters from their initial guesses are shown in Figure 2. 
We note that in this example, altogether there are 20 
estimated parameters while we showed only four of 
them. 
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Figure 1 : Time history of state variables 
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