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Abstract

Background: Selection of influential genes with microarray data often faces the difficulties of a large number of

genes and a relatively small group of subjects. In addition to the curse of dimensionality, many gene selection

methods weight the contribution from each individual subject equally. This equal-contribution assumption

cannot account for the possible dependence among subjects who associate similarly to the disease, and may

restrict the selection of influential genes.

Results: A novel approach to gene selection is proposed based on kernel similarities and kernel weights. We do

not assume uniformity for subject contribution. Weights are calculated via regularized least squares support

vector regression (RLS-SVR) of class levels on kernel similarities and are used to weight subject contribution.

The cumulative sum of weighted expression levels are next ranked to select responsible genes. These procedures

also work for multiclass classification. We demonstrate this algorithm on acute leukemia, colon cancer, small,

round blue cell tumors of childhood, breast cancer, and lung cancer studies, using kernel Fisher discriminant

analysis and support vector machines as classifiers. Other procedures are compared as well.

Conclusions: This approach is easy to implement and fast in computation for both binary and multiclass

problems. The gene set provided by the RLS-SVR weight-based approach contains a less number of genes, and

achieves a higher accuracy than other procedures.
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Background

The development of microarray technique allows us to observe simultaneously a great number of messenger

RNAs (mRNA). These microarray data can be used to cluster patients, or to determine which genes are

correlated with the disease. Recently, Golub et al. [1] and Brown et al. [2] considered the classification of

known disease status (called class prediction or supervised learning) using microarray data. These gene

expression values are recorded from a large number of genes, where only a small subset is associated with

the disease class labels. In the community of machine learning, many procedures, termed as gene selection,

variable selection, or feature selection, have been developed to identify or to select a subset of genes with

distinctive features. However, both the proportion of “relevant” genes and the number of tissues (subjects)

are usually small, as compared to the number of genes, and thus lead to difficulties in finding a stable

solution. The dimension reduction for gene selection as well as for finding influential genes is essential.

Several selection procedures utilized correlations between genes and class labels, where the correlation

measure can be the Pearson correlation [3], signal-to-noise ratio [1], t-statistic [4], ratio of between-group

sum of squares to within-group sum of squares [5], information-based criteria [6], information of intra-class

variations and inter-class variations [7], or others (see the review paper by Saeys et al. [8]). These

procedures are univariate in the sense that the correlation between genes and disease is examined for each

individual gene. Although they are easy to perform, these methods consider one gene at a time and ignore

the gene-gene interaction. Alternative methods are multivariate approaches, such as Markov blanket

filter [9–11] and a fast correlation based filter solution [12]. These multivariate correlation methods,

however, can be computationally heavy, as compared with the univariate procedures.

Different from the correlation-based approaches, other researchers assess the significance of features based

on the classification accuracy, a measure of performance in classifying the testing set. Most approaches

adopt support vector machines (SVMs). For instance, the sparsity of 1-norm SVM is used as an exclusion

index of features [13,14]. Guyon et al. [15] introduced a backward selection method that removes at each

step the gene with the smallest square weight of SVM coefficient, called recursive feature elimination

(RFE). In contrast, Lee et al. [16] proposed a forward selection method, called incremental forward feature
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selection (IFFS). It grows from a small subset and defines a positive gap parameter indicating whether to

include a new feature or not. Some genetic-algorithm-based searching approaches have been proposed as

well [17, 18].

Other feature selection methods utilized regression technique and/or focused on the extension to multiclass

problems. Lee et al. [19] selected the influential genes via a hierarchical probit regression model. They

estimated, via Markov chain Monte Carlo (MCMC) method, the probability that the j-th gene is influential

and the probability that the i-th sample is a cancer tissue at a fixed gene. Sha et al. [20] have extended

this approach to multiclass responses. However, no empirical result was presented. Yeung et al. [21]

adopted a Bayesian model average (BMA) approach for the case of binary classes. They also discussed the

extension to multiclass labels using a specially designed matrix. Similar to Lee et al. [19], Zhou et al. [22]

extended the probit model into a multinomial model to select the strongest genes for multiclass problems.

In this article, we also focus on cases with multiclass responses. We select genes based on their

“importance” determined by a weighted average of expression levels. If tissue samples share similar

expression levels, they will be weighted similarly when calculating the importance measure for each gene. If

the levels vary, then the weights will not be the same. In other words, the expressions are weighted

differently. These weights are kernel weights derived from the regularized least squares support vector

regression (RLS-SVR, [23]). The advantages of RLS-SVR algorithm include less computational problems

caused by attributes dependence, and efficient estimates of regression coefficients indicating association

between similarity measure and class response. We employ these estimates to formulate subject weights,

and then proceed to selection and classification. The advantages of our approach are the flexibility in

including a non-uniform weighting scheme, the ability of performing multiclass classification, and the fast

and easy implementation. In the following, we introduce the proposed gene selection algorithm, discuss

briefly the RLS-SVR, and outline classification rules based on the selected genes. Empirical analyses of five

data sets from acute leukemia, colon cancer, small round blue tumors, breast cancer, and lung cancer

studies are presented. The proposed algorithm is demonstrated and its performance is compared with the

analysis conducted by others [6, 7, 15,16,19,21,22].
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Method

Let {(xi, yi)}
n
i=1 denote the training data set, where xi ∈ X ⊂ Rp are gene expressions and yi ∈ {1, . . . , J}

are class memberships such as the cancer types or disease states. The traditional gene selection methods

assume every sample subject (or sample tissue) with equal contribution and thus weight all samples

uniformly. Our proposal considers every sample differently and assigns various weights via the RLS-SVR.

In the following we introduce the principle of the proposed gene selection procedures, and illustrate the

RLS-SVR algorithm for assigning weights and SVM classification.

Principle of gene selection

Before proceeding to the procedures of gene selection, it is necessary to standardize the gene expression

data. Let A be the collection of standardized input data with subjects by row and genes by column,

A =







xT
1
...

xT
n







n×p

,

where the vector xi denotes the standardized data of the ith tissue, and A is standardized in such a way

that each row has mean zero, i.e.,
∑p

j=1 xij = 0, and variance 1, i.e.,
∑p

j=1 x2
ij/p = 1, for all i = 1, . . . , n.

Earlier gene selection methods, as discussed in Introduction, regarded each tissue equally important when

assessing the information of gene-disease association, and therefore used the expressions directly in their

selections. Tissues of similar expressions, however, often contain some information for further investigation.

For example, some “clustering” pattern may imply similar contributions to disease-gene association.

Therefore, these tissues should be assigned with similar weights when computing the importance measure

for each gene. In addition, the similarity between expression values can arise from similar conditions in

disease stages; while the difference may be due to the different degrees of cellular mutations. In other

words, the weight on each tissue should depend on its “closeness” to others and its association to disease

stages. In the following, we propose a weighting scheme that accounts for the difference in contribution

from different subject tissues.

The first procedure is to measure the clustering pattern between tissues via a kernel function. The kernel

transformation maps data into a high dimensional space, where data with similar characters locate closely.

Therefore, the kernel data [κ(xi, xj)]
n
i,j=1, denoted by κ(A,A) for short, measure the between-subject

similarity (here subjects are the sample tissues). For instance, the row-vector

κ(xi, A) = (κ(xi, x1), κ(xi, x2), . . . , κ(xi, xn)) represents the similarity measures of gene expressions
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between the ith subject and the rest. Thus, tissues sharing similar expression levels will produce a large

kernel value indicating a high similarity. Next, we determine the relative contribution of individual sample

tissue by the regression coefficients of class labels on tissue similarities. This regression step is performed

via RLS-SVR (more discussions about RLS-SVR and derivations are in next section) to determine the

weights. The resulting n regression coefficients ω̂1, . . ., and ω̂n, denoted as a vector ŵ, represent the

correlations between κ(xi, A) and y for i = 1, . . . , n, and are regarded as the contributions of individual

tissues. These numbers ŵ are called kernel weights. The use of regression approach for classification is not

new [24,25]. The fitted regression coefficients convey the information of association as well as contribution

of regressors to class labels such as disease status. In the kernel data setting, the ith regressor is κ(A, xi),

which records the ith sample tissue similarity with others. As each regressor represents a tissue effect in

terms of similarity, the regression coefficients can be utilized as association measure for weighting sample

tissue contribution to disease status. Combining the weights and the standardized expression data matrix

A, we obtain a p-dimensional vector β = AT ŵ as weighted expression genes, where the jth component in β

stands for a weighted summation over all xij , i = 1, . . . , n, for the jth gene,

βj =







x1j

...
xnj







T

ŵ.

In other words, the importance of the jth gene, βj , is a weighted average of all n expression levels of this

gene, where the weights are tissue contributions. Ranking the p components by their absolute values, the

resulting leading genes are candidates for the next step.

Because this kernel-weighting scheme reduces the p genes to a smaller intermediate candidate subset in

which all expressions are close to being independent, it is useful in avoiding the curse of dimensionality and

filtrating the dependence among genes. For instance, if the final search subset is of size q genes, we can

first obtain an intermediate subset of size 10q genes from the original set of p genes, and next search the q

candidate genes within this 10q intermediate subset, where both q and 10q are predetermined. Within the

q-candidate subset, we re-weight the n tissues and obtain the q absolute weighted expression sums, denoted

as {|βj |, j = 1, . . . , q}. Define the proportion of each |βj | by

δj =
|βj |

∑q
j=1 |βj |

,

this serves as an indication of the relative importance. If the importance of these q genes are about the

same, the proportion of each gene, δj , would be roughly 1/q. Therefore, a strict selection criterion would
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be to retain all genes with δj larger than 1/q, and remove those with smaller δj . Other less stringent

criteria will be discussed in the empirical data analysis.

Regularized least squares support vector regression and classifiers

The RLS-SVR, also known as the ridge support vector regression, is a least-squares algorithm for solving

support vector regression problems [23]. Here we use RLS-SVR to estimate the kernel weights in the

computation of gene importance, and next we adopt two classification methods, kernel Fisher discriminant

analysis (KFDA, [26] ) and support vector machine (SVM), to test the discriminant ability of the final

selected genes.

By learning from the given training data, the main goal of solving a linear regression problem is to find an

object function η(x), η(x) = xT θ + b with slope coefficients θ = (θ1, . . . , θp)
T and an intercept b, that can

correctly predict the response, y, based on a new input of explanatory variables, x. For nonlinear

extensions by support vector methods, η is modeled as a linear function of a nonlinear feature map, i.e.,

η = θT z + b, where z = Φ(x) is the feature map for some function Φ, which can be infinite dimensional,

such that Φ(x)T Φ(u) = κ(x, u). The LS-SVM [23] has the decision function of the form

n
∑

i=1

αiκ(x, xi) + b,

where αi’s are the Lagrange multipliers to the optimization problem: minθ,b,e

∑n
i=1 Ce2

i /2 + ‖θ‖2/2 subject

to the equality constraints ei = yi − η(xi). Based on the LS-SVM formulation, here we directly model the

response η as a kernel mixture:

η(x) =

n
∑

i=1

wiκ(x, xi) + b, (1)

where w1, w2, . . . , wn are mixing coefficients. The least-squares approach is to minimize the square errors of

regression, i.e.,

min
w,b

n
∑

i=1

|yi − η(xi)|
2. (2)

In general, the unique solution of (2) can be determined numerically. Often the kernel predictor variables,

κ(x, xi)’s, are highly correlated, thus, the solution of regression coefficients w will be unstable. This

problem can be solved by adding in a penalty on the norm ‖w‖ so that no single coefficient can be too

large to reveal high variance. The regression coefficients are then derived from the regularized least squares

(RLS):

min
w,b

{

n
∑

i=1

C

2
|yi − η(xi)|

2 +
1

2
‖w‖2

}

, (3)
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where C controls the trade-off between data goodness of fit and degree of regularization. The SVR here is

formulated and solved in the primal space. There is a strong connection between the dual optimization and

primal optimization in terms of regularized least squares [27].

In this article, the Gaussian kernel κ(x, xi) = e−γ‖x−xi‖
2

is used throughout. Let κ(x, A) be the kernel

functions (κ(x, x1), . . . , κ(x, xn)), and [κ(xi, xj)]
n
i,j=1, denoted as κ(A,A), be the kernel data matrix, where

κ(xi, xj) represents the similarity between the ith and jth subjects. Coefficients w and b are estimated by

RLS (3). The estimates of w are the kernel weights for subject contribution.

Procedures

The procedures of this proposed algorithm are stated as follows:

Step 1. Standardize row-wise the design matrix, denoted as A, and calculate the n × n similarity measure

matrix κ(A,A).

Step 2. Find ŵ(1), the estimated regression coefficients of the regression model y = κ(A,A)w(1) + b(1) by

RLS-SVR, where y = (y1, . . . , yn)T is the n× 1 vector of class memberships and κ(A,A) is the matrix

of kernel similarity. This estimate ŵ(1) is used to weight subject contribution in next step.

Step 3. Set a small number q. Let β(1) = AT ŵ(1), I1 be the index of the 10q largest |β
(1)
j | and

A(1) = {xj , j ∈ I1}, where xj is the jth column of A, and A(1) is an n × 10q matrix.

Step 4. Rerun RLS-SVR for the reduced gene data: y = κ(A(1), A(1))w(2) + b(2). Denote the solution for w by

ŵ(2).

Step 5. Similar to Step 3, let β(2) = A(1)T ŵ(2). Define I2 as the index of the q largest |β
(2)
j | and

A(2) = {A
(1)
j , j ∈ I2} where A

(1)
j is the jth column of A(1). Note that A(2) is an n × q matrix.

Step 6. Solve the regression model y = κ(A(2), A(2))w + b and obtain the final estimates ŵ and b̂. Let

β = (β1, . . . , βq)
T = A(2)T ŵ.

Step 7. Calculate δj , j = 1, . . . , q. Define I = {j, δj ≥ 1/q} and Ã = {A
(2)
j , j ∈ I}, where A

(2)
j is the jth

column of A(2). The resulting Ã is the final expression data matrix consisting of the selected genes.

There are tuning parameter C and kernel parameter γ involved in the gene-selection procedures. In the

numerical study below, we use training data cross-validation (CV) for parameters selection. Often in CV

parameters selection, the search is over some lattice grid points. To speed up the CV parameter selection,
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we suggest to use uniform design points to replace the lattice grid points [28]. Or one may start with a

crude uniform design search to locate a candidate setting of parameters and next go on a fine grid search

around the candidate point. All the steps above use the same pair of (C, γ) obtained at Step 2. The

gene-selection procedures have been implemented in matlab and R, and codes are available at

http://homepage.ntu.edu.tw/∼ckhsiao/RLS/RLS.htm.

Results
Data sets

We illustrate the proposed algorithm with data from acute leukemia [1], colon cancer [29], small, round

blue cell tumors (SRBCT) [30], breast cancer [31], and lung cancer [32] studies. Once genes are selected,

we conduct classifications to evaluate the performance of these genes, and compare with other existing

analyses [6, 7, 15,16,19,21,22].

Acute leukemia study

Samples of the acute leukemia microarray data were taken from bone marrow or peripheral blood of

patients with acute lymphoblastic leukemia (ALL) or acute myeloid leukemia (AML). The ALL group can

be further divided into B-cell and T-cell ALL. In other words, the acute leukemia study can be handled as

a binary-class or a three-class problem. There are 38 training samples and 34 testing samples in total.

Among the 38 training cases, 27 are ALL (19 B-cell ALL and 8 T-cell ALL) and 11 are AML. In the 34

testing samples, 20 are ALL (19 B-cell ALL and 1 T-cell ALL) and 14 are AML. Each sample contains

7129 gene expressions. The 38 training samples were used in the proposed algorithm to select genes. To

evaluate the performance of classification with this set of selected genes, training data were used to train

the model and the 34 testing tissues were next tested to compute the accuracy.

Colon cancer study

For the colon cancer data set, it consists of 22 normal and 40 tumor colon tissues. There were originally

6500 genes per tissue, and 2000 expressions of the highest minimal intensity across tissues were selected.

Because this data set was not split into training and testing sets, we considered all samples in the

procedures of gene selection. Based on the set of selected genes, we performed a 5-fold cross-validation 10

times to examine the performance in classification.
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Small, round blue cell tumors data

This data set contains four types of small, round blue cell tumors of childhood, including neuroblastoma,

rhabdomyosarcoma, non-Hodgkin lymphoma and Ewing family of tumors. There were 63 training and 25

testing samples (5 testing samples belong to other types, and hence were removed from the testing set).

The original number of genes is 6567 for each sample. Genes were excluded if their intensities are too low.

The final number of genes remained for analysis was 2308. Again, only training data were used to perform

gene selection.

Breast cancer study

This study investigated 3226 gene expression profiles to identify the gene set that can discriminate three

types of breast cancer: the BRCA1-mutation, BRCA2-mutation, and sporadic cases. It is a three-class

problem. There were seven samples in the first class, eight in the second, and seven in the third. All 22

samples were used to perform the procedures for gene selection, and a leave-one-out approach is adopted

for classification validation.

Lung cancer study

This study examined the ability of discrimination with microarray data in identifying five subclasses of

human lung carcinomas, including adenocarcinomas, squamous cell lung carcinomas, pulmonary carcinoids,

small-cell lung carcinomas cases, and normal lung specimens. A total of 203 tissues were collected and

there were 139, 21, 20, 6, and 17 samples in these five classes, respectively. The 3312 most variably

expressed genes among 12600 transcript sequences were included in the data. Again, all samples were used

in the procedures of gene selection, and a 5-fold cross-validation is performed 10 times to evaluate

classification accuracy.

Classification methods

To evaluate the performance of the proposed gene selection algorithm, we conduct the classification using

only selected genes. Here, two classifiers are utilized, the kernel Fisher discriminant analysis (KFDA, [26])

and SVM (a smoothing SVM algorithm [33] is adopted for solving SVM solutions in our data analysis).

When it comes to multiclass problems, KFDA can be applied directly; while SVM adopts the

winner-takes-all in one-against-one voting. The resulting accuracy is compared with others, denoted as

BVS (Bayesian variable selection) [19], BMA (Bayesian model average) [21], SGS1 and SGS2 (stable gene
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selection) methods based on two ranking scores [7], IFFS (incremental forward feature selection) [16],

SVM-RFE (SVM recursive feature elimination) [15], EB (entropy-based) [6], and MBGS (multiclass

Bayesian gene selection) [22], respectively. The SVM-RFE, BVS and IFFS can only deal with binary-class

problems. For IFFS, Lee et al. [16] applied the directed acyclic graph model and converted this problem

into two binary classification procedures. For instance, for the three-class leukemia, IFFS solves a two-step

classification problem. The first step is to split ALL and AML (there are 14 genes selected in this step),

and the second step is to further classify B-cell from T-cell within the ALL class (there are 9 genes selected

in this step using the remaining 7115 genes). Furthermore, if the list of selected genes was provided in the

above references, we perform the KFDA and SVM classifications, respectively, to compare the performance

of various selection sets.

Selected genes and classification ability

Acute leukemia study

Tables 1 and 2 list the selected final q genes in the candidate subset of leukemia data with two classes and

three classes, respectively. Based on earlier analyses of the same data (SVM-REF by [15], and BVS

by [19]), we assume the number of responsible genes is no larger than 10 and set q = 10 here. In Tables 1

and 2, the first column represents the absolute weighted sum, denoted by |βj |, of gene expressions for the q

genes, where the sum is taken over all weighted subjects in the training set. The second column lists δj ,

the proportion of |βj | in all q |β|’s. The third column is the cumulative sum of proportions, i.e.,
∑l

j δj ,

l=1, . . . , q. The indices of these q genes in the original data and gene descriptions are listed in the last

column. When 10 is determined a priori for the size of influential genes, these 10 genes ought to be

reported. Alternatively, if one considers this set not small enough, a threshold of 1/q can be adopted. For

instance, the top 4 genes in Table 1 and the top 5 genes in Table 2 all correspond to δj ≥ 1/10. This

choice, however, usually results in a small set of candidate genes. Other set of a moderate size can include

j∗ genes, where
∑j∗

j=1 δj ≥ 80%, such as the first 7 genes in both Tables 1 and 2. In the following analysis,

we select genes based on the strict 1/q criterion, the intermediate 80% threshold, and the largest set of all

q genes, respectively; and we examine, for each selection criterion, the corresponding classification

accuracy. Results from others are also listed for comparison [6, 15,16,19,21].

The upper half in Table 3 is binary-class and the lower half is for three-class. The table is sub-divided into

three parts, A, B, and C, where part A includes results from our RLS-SVR approach and the

corresponding classification accuracy, B includes other gene selection methods with the KFDA and SVM
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classifiers, respectively, and C simply lists the reported results in other works. For example, the lists of

selected genes were provided based on BVS [19] and BMA [21], thus the same lists were used to classify the

testing cases with KFDA or SVM in part B. In addition, we apply the stable gene selection methods (SGS1

and SGS2 [7]) to select 10 genes and then classify with KFDA or SVM for comparison (part B). In

contrast, the set based on IFFS [16] was not provided and therefore we report only the accuracy in part C.

For the binary-class in leukemia data, when the strict 1/q criterion is adopted, the RLS-SVR selects 4

genes and both KFDA and SVM attain an accuracy of 0.9412, same as that of BMA with 20 selected genes

(there is only one gene in common). Using the 80% threshold, the proposed algorithm selects 7 genes and

both KFDA and SVM attain an accuracy of 1; while IFFS takes 14 genes to reach the same accuracy. If all

q (q = 10) genes are selected, both classifiers reach accuracy of 1; while SGS1 and SGS2 achieve less

accurate results.

The lower half of Table 3 displays the accuracy for the three-class leukemia classification. The strict 1/q

and 80%-cutoff criteria select 5 and 7 genes, respectively. Both KFDA and SVM classification rule with 7

selected genes reach an accuracy of 1. With the same classifiers KFDA and SVM, other gene selection

procedures, BMA, SGS1, and SGS2 achieve less accuracy with more genes. When considering selection and

classification together, IFFS and BMA attain the same or higher accuracy, but require more genes (23 for

IFFS and 15 for BMA). In the three-class case, RLS-SVR+KFDA and RLS-SVR+SVM outperform the

rest, since they reach the best accuracy with a much less number of genes than others. It is noticeable that

our method does not depend on the data structure, and its computation is easy and fast. In contrast, IFFS

and SVM-REF require iterations, and BVS and BMA involve the simulation of posterior samples from

MCMC.

Colon cancer study

Similar to Tables 1 and 2, Table 4 lists the information of the q candidate genes of the colon cancer data.

Again, we let q = 10 based on the information from earlier analysis in [15,16]. Here, the threshold

1/10 = 0.1 leads to 4 genes in the final model; while 80% threshold selects 5 genes. The accuracies of colon

cancer in Table 5 are mean accuracies of 10 replicate runs of a random 5-fold partition for cross-validation

and the last column contains the standard deviations of accuracies in these 10 replicate runs. The best

accuracy is 0.94 by RLS-SVR with KFDA using 10 genes. It is higher than SGS and other methods.

SVM-RFE was conducted based on one particular split of the 62 samples into 31 training and 31 testing

sets and the accuracy is 0.9032; and EB adopted the leave-one-out cross-validation with accuracy 0.919.
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Small, round blue cell tumors data

The information of q-candidate subset for the SRBCT data is in Table 6. The numbers of selected genes are

2 and 8 with the threshold levels 0.1 and 80%, respectively. The best accuracy in Table 7 is 1 with 10 genes

by RLS-SVR with either KFDA or SVM. Note that it takes 14 genes for EB to reach the same accuracy.

Breast cancer

Table 8 states the information of the q candidate genes for the breast cancer study, and Table 9 contains

classification accuracies with selected genes. There are 4 and 7 genes selected under the 0.1 and 80%

thresholds, respectively. The best accuracy is 0.9545 (only one is misclassified) based on 10 genes. MBGS

attains the highest accuracy, while results of SGS with two classifiers are similar to ours. Since BMA

selects the most significant genes within each training set (BMA also adopts leave-one-out

cross-validation), different genes are selected in different training validation sets (13-18 genes).

Lung cancer

The information of q candidate genes and the classification results for the lung cancer data are listed in

Tables 10 and 11, respectively. Five and seven genes are selected under the 0.1 and 80% criteria,

respectively. The best result is 0.9222 using 10 genes with SVM. Both SGS1 and SGS2 can attain better

accuracy if more genes (98 here) are included.

Discussions

We propose in this article a new algorithm that identifies influential genes with rich information for

classification. This approach allows the collected tissues to provide different strength of association with

the disease. In other words, patients sharing similar gene expressions contribute in a similar way. The

similarity between tissues is quantified via kernel functions, and RLS-SVR is applied to compute the kernel

weights for tissue contribution. Genes are then selected based on their weighted expression sums. The

results of empirical data analysis show that the proposed selection procedure performs better in the sense

that it attains a higher accuracy based on fewer genes. Furthermore, the proposed gene selection method is

not restricted to binary-class problems. It handles the multiclass responses directly. Although Lee et

al. [16] dealt with the 3-type leukemia case, their method assumed the knowledge of a hierarchical

structure of the three types of leukemia. This hierarchy property may not be common for other multiclass

problems; and if it is, the knowledge may not be known a priori. When the number of genes increases, the
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computation of BMA [21], EB [6], and MBGS [22] become heavy and some pre-selection process may be

needed. Yang et al. proposed two methods to rank the genes [7]. Their algorithms are fast, but require

more genes to achieve a higher classification accuracy. In contrast, the implementation of our proposed

procedures is easy, fast and accurate. In our algorithm, the most intensive computation involves solving

the inverse of an n × n matrix in regression. Since n is usually small, there is no obvious computational

load. Furthermore, other approaches often rely on iterations to find the ranking orders of genes; while our

SVR-weight based procedures require only one run of seven steps.

There are several issues to be discussed. First, we have set q = 10 in our experimental studies, and reduce

from an intermediate subset of size 10q genes to a candidate subset of size q. We assign 10 for q under the

assumption that no more than 10 genes will be included in further investigations. When other information

is available, this value can be determined with ease. In our experience, the number 10q for the size of an

intermediate set is fairly robust. Other choices do not alter the results much. Varying this number only

changes slightly the order of genes in the final step. Figure 1 represents the accuracies of the five data sets

with q genes, where q = 1, 2, . . . , 10, respectively. The accuracy increases with the number of genes and

remains stable near q = 10. Hence, setting 10 for q may be large enough to capture the influential genes.

Second, as we have pointed out in previous sections, the proportion δj is helpful in determining the final

number of selected genes. The threshold for the number of genes to be selected can be set at different

levels. If the researcher prefers a parsimonious model, he or she can set the cutting point at 1/q for δj . If

more information is desired, the value can be set at the 80% cutoff, or one can simply include all q genes.

It can be seen from Figure 1 that the accuracy with respect to the 80% cutoff is close to that with all q

genes. In unreported analyses, we also tried 75% and 90% as the threshold levels and have obtained similar

results. Finally, we define in this article the subject weights via regressing class labels on kernel data. The

class labels are denoted as 1, 2, . . . , and J , which can be replaced by other representations. For instance,

the optimal scores [25] of the first leading component would be a good choice. This may improve the

performance of regularization least squares regressions. Further investigations are worth pursuing.

Conclusions

In conclusion, with unequal kernel weights on tissues, the proposed gene selection algorithm can detect the

most influential genes and obtain a higher accuracy with a less number of genes. In addition, no classifier is

involved during the search of significant genes. In other words, the selected genes will not depend on or be

13



restricted to the classifiers. For instance, the accuracies under RLS-SVR+KFDA and RLS-SVR+SVM are

quite similar, which supports that the selected genes are important regardless of the classifier.
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Figures
Figure 1 - Accuracies with respect to different numbers of genes

Tables
Table 1 - The gene weighted sums, proportions, cumulative proportions, and corresponding gene

numbers of the selected genes in acute leukemia data with two classes

weighted sum proportion cumulative gene number description [1]
|βj | δj proportions

150.6797 0.1847 0.1847 6201 interleukin-8 precursor
125.3594 0.1536 0.3383 1882 CST3 Cystatin C (amyloid angiopathy and

cerebral hemorrhage)
117.9711 0.1446 0.4829 2402 Azurocidin gene
92.7434 0.1137 0.5966 5552 probable G protein-coupled receptor

LCR1 homolog
72.3649 0.0887 0.6853 1779 MPO Myeloperoxidase
69.6762 0.0854 0.7707 6181 PTMA gene extracted from Human prothymosin

alpha mRNA
64.7264 0.0793 0.8500 1763 Thymosin beta-4 mRNA
61.0759 0.0749 0.9249 2345 G-gamma globin gene extracted from H.sapiens

G-gamma globin and A-gamma globin genes’s
55.6241 0.0682 0.9931 5308 GDP-dissociation inhibitor protein (Ly-GDI) mRNA
5.6697 0.0069 1 5648 HLA-B null allele mRNA

Table 2 - The gene weighted sums, proportions, cumulative proportions, and corresponding gene

numbers of the selected genes in acute leukemia data with three classes

weighted sum proportion cumulative gene number description [1]
|βj | δj proportions

206.1576 0.1583 0.1583 6201 interleukin-8 precursor
196.3753 0.1508 0.3091 1674 FTL Ferritin, light polypeptide
155.8362 0.1196 0.4287 1882 CST3 Cystatin C (amyloid angiopathy and

cerebral hemorrhage)
143.1404 0.1099 0.5386 5552 probable G protein-coupled receptor

LCR1 homolog
141.0207 0.1083 0.6469 2402 Azurocidin gene
120.1933 0.0923 0.7392 6209 VIM Vimentin
112.4293 0.0863 0.8255 4017 HLA class II histocompatibility antigen,

DR alpha chain precursor
96.7316 0.0743 0.8998 5716 RPS3 Ribosomal protein S3
83.2569 0.0639 0.9637 1779 MPO Myeloperoxidase
47.4576 0.0364 1 5648 HLA-B null allele mRNA

Table 3 - Testing accuracies under different procedures for the acute leukemia data.
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Binary classes
Procedures Classifier No. of genes Accuracy

A: Proposed selection and criterion
RLS-SVR δj ≥ 1/q +KFDA 4 0.9412

+SVM 4 0.9412
∑

δj ≥ 80% +KFDA 7 1
+SVM 7 1

q genes +KFDA 10 1
+SVM 10 1

B: Other selection procedures
BVS +KFDA 5 0.9706

+SVM 5 0.9706

BMA +KFDA 20 1
+SVM 20 1

SGS1 +KFDA 10 0.9118
+SVM 10 0.0.9118

SGS2 +KFDA 10 0.9412
+SVM 10 0.9412

C: Selection and classification together
IFFS 14 1

SVM-RFE 8 1
BVS 5 0.9706
BMA 20 0.9412

Three classes
Procedures Classifier No. of genes Accuracy

A: Proposed selection and criterion
RLS-SVR δj ≥ 1/q +KFDA 5 0.7353

+SVM 5 0.9118
∑

δj ≥ 80% +KFDA 7 1
+SVM 7 1

q genes +KFDA 10 0.9706
+SVM 10 0.9412

B: Other selection procedures
BMA +KFDA 15 0.9706

+SVM 15 0.9706

SGS1 +KFDA 10 0.9118
+SVM 10 0.8529

SGS2 +KFDA 10 0.8824
+SVM 10 0.8529

C: Selection and classification together
IFFS 23 1
BMA 15 0.9706
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Table 4 - The gene weighted sums, proportions, cumulative proportions, and corresponding gene

numbers of the selected genes in colon cancer data

weighted sum proportion cumulative gene number description [29]
|βj | δj proportions

33.2835 0.2522 0.2522 164 interferon-inducible protein 1-8D (human);
contains MSR1 repetitive element

28.4860 0.2158 0.4860 1378 80.7 KD alpha trans-inducing protein
(Bovine herpesvirus type 1)

21.0143 0.1592 0.6272 115 H.sapiens p27 mRNA
13.9334 0.1056 0.7328 249 human desmin gene, complete cds.
10.4369 0.0791 0.8119 13 H.sapiens ACTB mRNA for mutant beta-actin

(beta’-actin)
8.2575 0.0626 0.8745 16 human tra1 mRNA for human homologue of

murine tumor rejection antigen gp96
5.9915 0.0454 0.9199 33 40S robosomal protein S24 (human)
5.8151 0.0441 0.9640 167 IG lambda chain C regions (human)
3.7171 0.0282 0.9922 14 myosin light chain ALKALI,

smooth-muscle iosform (human)
1.0403 0 0079 1 44 ubiquitin (human)
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Table 5 - Testing accuracies under different procedures for colon cancer data

Procedures Classifier No. of genes Accuracy SD
A: Proposed selection and criterion
RLS-SVR δj ≥ 1/q +KFDA 4 0.9250 0.0083

+SVM 4 0.9067 0.0082
∑

δj ≥ 80% +KFDA 5 0.9200 0.0163
+SVM 5 0.9183 0.0157

q genes +KFDA 10 0.9400 0.0186
+SVM 10 0.9300 0.0167

B: Other selection procedures
EB +KFDA 9 0.9283 0.0076

+SVM 9 0.9200 0.0194

SGS1 +KFDA 10 0.925 0.0083
+SVM 10 0.9100 0.0153

SGS2 +KFDA 10 0.9283 0.0076
+SVM 10 0.9100 0.0186

C: Selection and classification together
IFFS 5 0.8806 0.0167

SVM-RFE 8 0.9032 n.a.
EB 9 0.919 n.a.
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Table 6 - The gene weighted sums, proportions, cumulative proportions, and corresponding gene

numbers of the selected genes in SRBCT data

weighted sum proportion cumulative gene number description [30]
|βj | δj proportions

366.2124 0.2283 0.2283 509 human DNA for insulin-like growth factor II (IGF-2);
exon 7 and additional ORF

293.0313 0.1727 0.4110 187 insulin-like growth factor 2 (somatomedin A)
139.3697 0.0869 0.4979 246 caveolin 1, caveolae protein, 22kD
130.3774 0.0813 0.5792 1955 fibroblast growth factor receptor 4
120.8319 0.0753 0.6545 1645 olfactomedinrelated ER localized protein
118.9978 0.0742 0.7287 545 antigen identified by monoclonal antibodies 12E7,

F21 and O13
110.2948 0.0688 0.7975 1954 follicular lymphoma variant translocation 1
109.6586 0.0684 0.8659 1389 Fc fragment of IgG, receptor, transporter, alpha
108.1788 0.0674 0.9333 1372 nucleolin
107.1303 0.0667 1 430
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Table 7 - Testing accuracies under different procedures for SRBCT data

Procedures Classifier No. of genes Accuracy
A: Proposed selection and criterion
RLS-SVR δj ≥ 1/q +KFDA 2 0.6

+SVM 2 0.55
∑

δj ≥ 80% +KFDA 8 0.95
+SVM 8 0.95

q genes +KFDA 10 1
+SVM 10 1

B: Other selection procedures
EB +KFDA 14 1

+SVM 14 1

SGS1 +KFDA 10 0.8
+SVM 10 0.7

SGS2 +KFDA 10 0.85
+SVM 10 0.85

C: Selection and classification together
EB 14 1
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Table 8 - The gene weighted sums, proportions, cumulative proportions, and corresponding gene

numbers of the selected genes in breast cancer data

weighted sum proportion cumulative gene number
|βj | δj proportions

68.8881 0.1897 0.1897 422
49.4341 0.1361 0.3258 2886
45.0788 0.1241 0.4499 1612
42.2519 0.1163 0.5662 114
39.0654 0.1076 0.6738 1066
29.6513 0.0816 0.7554 3023
25.4254 0.0700 0.8254 719
25.0111 0.0689 0.8943 1084
20.1092 0.0554 0.9496 497
18.2996 0.0504 1 1561
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Table 9 - Testing accuracies under different procedures for breast cancer data

Procedures Classifier No. of genes Accuracy
A: Proposed selection and criterion
RLS-SVR δj ≥ 1/q +KFDA 5 0.9091

+SVM 5 0.9545
∑

δj ≥ 80% +KFDA 7 0.9091
+SVM 7 0.9545

q genes +KFDA 10 0.9545
+SVM 10 0.9545

B: Other selection procedures
MBGS +KFDA 10 0.9545

+SVM 10 1

SGS1 +KFDA 10 0.9091
+SVM 10 0.9545

SGS2 +KFDA 10 0.9091
+SVM 10 0.9545

C: Selection and classification together
BMA 13-18 0.7273
MBGS 10 1
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Table 10 - The gene weighted sums, proportions, cumulative proportions, and corresponding gene

numbers of the selected genes in lung cancer data

weighted sum proportion cumulative gene number description [32]
|βj | δj proportions

211.3186 0.1600 0.1600 732 GRO2 oncogene
208.0781 0.1576 0.3176 2722 ligand of neuronal nitric oxide synthase

with carboxyl-terminal PDZ domain
191.642 0.1451 0.46278 2194 fatty acid binding protein 7, brain
158.3931 0.1200 0.5827 3243 bridging integrator 1
142.839 0.1082 0.6909 2010 progesterone binding protein
121.546 0.0921 0.7830 2096 interferon regulatory factor 3
106.1448 0.0804 0.8634 1881 occludin
102.9994 0.0780 0.9414 2987 apoptosis-associated tyrosine kinase
46.473 0.0352 0.9766 215 ribonuclease, RNase A family, 1 (pancreatic)
30.9358 0.0234 1 270 UNC13 (C. elegans)-like
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Table 11 - Testing accuracies under different procedures for lung cancer data

Procedures Classifier No. of genes Accuracy SD
A: Proposed selection and criterion
RLS-SVR δj ≥ 1/q +KFDA 5 0.903 0.0082

+SVM 5 0.9051 0.0111
∑

δj ≥ 80% +KFDA 7 0.9179 0.0059
+SVM 7 0.9097 0.0065

q genes +KFDA 10 0.9222 0.009
+SVM 10 0.9071 0.0104

B: Other selection procedures
SGS1 +KFDA 10 0.9005 0.0062

+SVM 10 0.9005 0.0052

SGS2 +KFDA 10 0.8077 0.0164
+SVM 10 0.8513 0.0015

C: Selection and classification together
SGS1 98 0.938 n.a.
SGS2 99 0.931 n.a.
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