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BACKGROUND: The maximal number of live births (k) per donor was usually determined by cultural and social
perspective. It was rarely decided on the basis of scientific evidence or discussed from mathematical or probabilistic
viewpoint. METHODS AND RESULTS: To recommend a value for k, we propose three criteria to evaluate its impact
on consanguinity and disease incidence due to artificial insemination by donor (AID). The first approach considers the
optimization of k under the criterion of fixed tolerable number of consanguineous mating due to AID. The second
approach optimizes k under fixed allowable average coefficient of inbreeding. This approach is particularly helpful
when assessing the impact on the public, is of interest. The third criterion considers specific inheritance diseases.
This approach is useful when evaluating the individual’s risk of genetic diseases. When different diseases are con-
sidered, this criterion can be easily adopted. All these derivations are based on the assumption of shortage of
gamete donors due to great demand and insufficient supply. CONCLUSION: Our results indicate that strong
degree of assortative mating, small population size and insufficient supply in gamete donors will lead to greater
risk of consanguinity. Recommendations under other settings are also tabulated for reference. A web site for calculat-
ing the limit for live births per donor is available.
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Introduction

A legal restriction on the number of live births is usually

decided not just for social or cultural considerations, but also

for reduction in genetic risks. The regulation on limitation (k)

of live births per donor varies greatly in different countries.

For instance, the limit in France is 5 (Le Lannou et al.,

1998), 10 in UK (Deech, 1998), 6 in Spain (Jones and

Cohen, 2001) and 1 in Taiwan; whereas the limit in The

Netherlands is 25, based on the coefficient of inbreeding (F)

(de Boer et al., 1995). The coefficient increases with respect

to the number of matings in which both are artificial incremina-

tions by donor (AID) children of a single donor or one of the

pair is the donor’s natural child or relative. Without knowing

whether the pair is related, inadvertent mating may happen

because the pair is phenotypically similar, called assortative

mating. Other factors also play important roles. For instance,

when the demand in gametes is keen and when the number

of available donors (D) is small, a large value of k may be

urged and it may then induce an increase in F. The phenom-

enon of shortage of donors occurs for both semen and oocyte

donors (Kan et al., 1998; Lo et al., 2003; Thum et al., 2003;

Magnus and Cho, 2005; Pennings, 2005; Ferraretti et al.,

2006). The shortage is increasing possibly due to the recent

policy of removal of donor anonymity (Pennings, 2001;

Janssens et al., 2006). Furthermore, because not every regis-

tered donor produces AID offspring successfully, the number

of donors achieving live births can be smaller than D. This

proportion S may depend on the quality of donated gametes,

standards for acceptable gametes in various fertility centres,

procedures used during donor treatment, medical condition of

recipient and the medical procedures adopted. Some fertility

centres may even discard the semen of a donor that does not

produce pregnancy after some time of use. In Paul et al.

(2006), only 40 men out of 1101 potential sperm donors were

not rejected after a suboptimal semen quality examination.

These released sperm donors completed 330 clinical pregnan-

cies. Because the centre has adopted a standard higher than

the World Health Organization (WHO) criteria for normal

semen quality, its release rate is low, but almost every released

donor achieved live births, i.e. their proportion S of achieving
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live births is �1. However, if the clinic has used a different

criterion to increase the recruitment rate of donors, it may

then associate with a lower number of clinical pregnancy.

Carrell et al. (2002) reported significant differences in semen

quality between seven semen banks and within a given bank.

Consequently, some among the released D donors may fail to

achieve a live birth and S will be ,1. In fact, there may not

be a second screening stage for suboptimal semen quality in

some clinics. We call S the effective ratio to stand for the pro-

portion of donors who achieve live birth. It differs from the

release rate of donors (Paul et al., 2006) and is not the preg-

nancy rate (ESHRE, 2006) per transfer for various assisted

reproductive techniques (ART) either. Therefore, the product

of D and S can be considered the number of donors who suc-

cessfully achieve pregnancy. Some fertility centres report the

number D and some report the value of DS.

A more convincing and evidence-based recommendation for

the number of live births should be provided on the basis of

transmission probability of hereditary diseases, degree of

assortative mating, probability of consanguinity, coefficients

of inbreeding by kinship and the availability of donors. The

formulae proposed by Curie-Cohen (1980) and de Boer et al.

(1995) have included many variables. They calculated F

from individual viewpoint and set a threshold for the tolerable

coefficient, without assuming genetic risks in the model. The

number 25 regulated in The Netherlands was derived on the

basis of their recommendations. However, further examination

of this number has been urged, especially after the event that a

sperm donor with 18 children developed a brain disease many

years after he stopped donation (Sheldon, 2002; Janssens,

2003), as well as the introduction of a new law on abolition

of donor anonymity in The Netherlands (Janssens et al.,

2006). Furthermore, the prevalence of hereditary diseases of

interest should be considered in the maximal number as well.

In this article, under the assumption of insufficient supply,

we first set up a model for Y, the potential number of

unwittingly consanguineous mating due to AID, and then

explore its relation to the number of live births (k), number

of donors (D), degree of assortative mating (C) and effective

ratio (S). Therefore, an optimal k can be derived under a con-

strained Y and fixed D, C and S. Next, we follow the same

idea from previous researchers but adopt the viewpoint from

population perspective to derive the average F (Hedrick,

2005) due to donor insemination. In other words, we focus

on the coefficient induced by AID (FAID) beyond the already

existing coefficient of inbreeding (F0) in a given society

with no AID children. We then examine the relation between

the total coefficient of inbreeding (F ¼ F0þ FAID) and the

number of live births per donor. Our results imply that

the influence of k on Y and F will be large if the population

size is small, if the number of donors is limited and/or if the

degree of assortative mating is strong.

Alternatively, we incorporate the risk of a certain hereditary

disease in the computation to evaluate the possible elevation in

incidence and prevalence due to AID. Some infertility centres

require the donors to take screening tests for genetic disorders

such as sickle cell anaemia or chromosome abnormalities

(Lewis et al., 1999). This will effectively exclude certain

genetic diseases, but it cannot reduce completely the risks of

other hereditary diseases that are not screened. From probabil-

istic perspective, we construct the corresponding incidence due

to donor insemination for any given prevalence of a disease and

its mode of inheritance. We next demonstrate how to determine

the maximal limit on the basis of the information of disease

characteristics, population data and donor statistics under toler-

able increased incidence.

Materials and methods

Number of consanguineous mating

Curie-Cohen (1980) proposed the formula Y ¼ Dm̄P for the

number of consanguineous mating, where m̄ depends on

the number of live births per donor (k) and is the expected

number of potential unwitting marriages between an AID

child and his/her unknown relative. P stands for the probability

of mating between any random pair. We extend this equality to

accommodate the effective ratio S and obtain Y ¼ DSm̄P to

reflect that DS is the number of effective donors that produce off-

spring successfully. We will assume the demand of gametes is

keen and there is thus no limit on the number of recipients.

The number of donors per year, D, can be estimated through

registration systems in centres performing ART. The ratio S

can be estimated using reported proportion of donors with

AID children. Depending on their definitions, however, some

clinics report D and some report DS. For instance, S is esti-

mated around 25% in Taiwan (Bureau of Health Promotion,

2006) and DS is 40% in Paul et al. (2006). In the following

illustrations, we use 80 and 100% for S in calculations. The

computation of expected number m̄ of various consanguineous

marriages, including half-sibling, biological father or mother,

uncle–niece, aunt–nephew, half uncle–niece, half aunt–

nephew, first cousin, half first cousin, first cousin once

removed and half first cousin once removed, can be found in

Hajnal (1960), with a modification for possible multiple deliv-

ery, as listed in the Appendix. The probability of mating P

depends on age, geographic location and phenotypes involved

in positive assortative mating. Its value can be derived via

demographic data, and the magnitude is usually small. For

instance, the maximum number of P was around 1.78 � 1025

in Vermont and the minimum was around 7.31 � 1027 in Cali-

fornia, USA (Curie-Cohen, 1980). For an area with population

size of 23 millions and 1.5 total fertility rate, P is around

1 � 1025. More detailed explanations and calculations can

be found in Hajnal (1960), Cavalli-Sforza (1966) and Curie-

Cohen (1980).

Average level of F in population with AID

The average level of F in a population with AID should include

three parts: (i) the original F existing in a population (F0);

(ii) coefficient due to intentional mating involving an AID

child and a known relative; (iii) coefficient due to inadvertent

consanguineous mating between an AID child and one

unknown relative. The second part is simply half of F0 once

k is positive because the known relative is the recipient’s

(not donor’s) relative. Therefore, the expected coefficient is

half of that when relatives of both parents are considered.
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The third part concerns the mating between AID child and

unknown relative. It is a weighted average of coefficients

with respect to different degrees of consanguinity, where the

weights depend on the corresponding percentages of mating.

The sum of the last two parts is the coefficient of inbreeding

due to AID (FAID). The resulting F, average coefficient

including that due to AID, becomes

F ¼ F0 þ FAID ¼ F0 þ
1

2
F0 � I k . 0ð Þ þ

X
i

Yi

M
� Fi

" #
:

Explanations of further notations are in the Appendix. The

relation between F and k can be examined through Yi, the

number of matings of the ith kinships.

Incidence of hereditary disease due to AID

The incidence of a given hereditary disease due to AID depends

on whether the donor is a carrier, the characteristics of the

disease and/or the inheritance mode of the disease. Several

countries or clinics enforce some diseases to be screened at

the stage of examination before donation. However, there are

many hereditary diseases that are not screened or tested, such

as the autosomal dominant cerebellar ataxia (Janssens, 2003).

In this case, it is of interest to assess the increase in incidence

of the disease with respect to the choice for k.

The increased incidence can be interpreted as the ‘prob-

ability of positive number of cases due to AID’ (PI). It can

be shown that this probability is dominated by three factors:

(i) the donor carries the affected gene; (ii) the offspring

mates with others; (iii) number of offspring of the same

affected donor. This probability PI is approximately linear in

k because other non-linear terms are small and negligible.

More technical details are explained in the Appendix.

Results

We demonstrate first in Figure 1A–C the number of consangui-

neous matings due to AID per year (Y) and in Figure 1D–F the

average coefficient of inbreeding (F) with respect to the

number of live births (k) per donor under different degrees of

assortative mating (C), population sizes and numbers of effec-

tive donors (DS). Curie-Cohen (1980) suggested 1.44 when

considering IQ, stature and ear length as three independent

factors for assortative mating. Redden and Allison (2006)

selected several traits that have been observed to associate

with assortative mating, including body mass index, total

energy intake (per kg), depressive symptoms, introversion–

extraversion personality, uric acid levels, urinary sodium

excretion and systolic blood pressure. Here, we consider the

numbers of factors to be 3, 12, 18 or 24, and thus obtain corre-

spondingly 1.5 (�1.44), 4.3 (�1.4412/3), 9 (�1.4418/3) and

18.5 (�1.4424/3) for C, respectively. In Figure 1A and D, the

number of consanguineous matings and average coefficient

correlate positively with k for an area of 23 millions population,

DS ¼ 300, and 1.5 fertility rate. The increase enhances if C is

larger. For instance, when k ¼ 20, there are �5.8 pairs of con-

sanguineous mating due to AID per year and F becomes 151.4

if C is 9, whereas the number of pairs increases to 11.9 and F

reaches 152.8 when C is 18.5. Figure 1B and 1E demonstrates

the effect of population size under DS ¼ 300 and C ¼ 9. In an

area of smaller population, Y and F escalate faster than an area

of larger population. Similarly, Figure 1C and F illustrates that

both Y and F correlate positively with respect to k. Further-

more, if the number of donors is larger, more will be contribu-

ted to the overall number of consanguineous mating and

average F, assuming the demand for gametes is much higher

than supply. The fertility rate does not have much influence

(values not shown here) and hence has been set to 1.5 through-

out all computations.

It should be noted that in Figure 1D–F, the scales for

average F including AID (left y-axis) has been multiplied by

1 � 106 (¼1 000 000) for better readability. We have

adopted 1.501 � 1024 and 1.505 � 1024 as two choices for

the tolerance. It is because the tolerance in de Boer et al.

(1995) was around 9 � 1025 for F0, which is almost

1.0 � 1024. We consider the tolerance (1þ 0.5þ 0.001) �

1 � 1024, where 0.001 represents a ratio of increase compared

with F0. The coefficients in other countries are of similar mag-

nitude (Bittles and Sullivan, 2005). Alternatively, we have also

considered the ratio F/F0 as another presentation (right y-axis

in Figure 1D–F).

Table I lists the maximal numbers under two different tol-

erance values of F. The multiplication of D and S indicates

the number of effective donors considered. Under the

threshold 1.501 � 1024 and C ¼ 9, the maximal number of

live births per donor is �5 if DS ¼ 240 for an area of 23

millions and 1.5 fertility rate, whereas the limit is 4 if

DS ¼ 300 (the second row in Table I). On the other hand,

when the threshold increases to 1.505 � 1024, the corre-

sponding maximal numbers become 13 and 11, respectively

(the second row in the lower part of Table I). Other combi-

nations of population size, DS and C will produce different

values of k, as listed in Table I. Table II provides the same

information as Table I, but focuses on only half-sibling

mating. As expected, the maximal number is larger than

that in Table I.

Figure 2A–C illustrates the increased incidence of two auto-

somal recessive inheritance diseases, the hereditary haemo-

chromatosis with 1/250 prevalence (Ellerbik et al., 2001;

Scotet et al., 2003) and cystic fibrosis with 1/2500 prevalence

(Ratjeu and Döring, 2003) and an autosomal dominant disease,

spinocerebellar ataxia, with 1/25 000 prevalence (Manto,

2005). The number of new cases due to AID increases with

respect to k and the increase escalates, when the prevalence

is higher and when C is large. Figure 2D and E further displays

the increased incidence due to AID as a function of k for poly-

genetic disorders of quantitative trait, such as schizophrenia

with 81% heritability in liability (Sullivan et al., 2003)

and around 1% life time prevalence rate (Tsuang et al.,

2001) and depressive disorder with low genetic etiological

influence and around 5.9% prevalence rate (Bland, 1997).

When C ¼ 9 and k ¼ 10, there will be around 50 and 500

new cases of schizophrenia and depression, respectively.

Figure 2A–E is based on the population size of 23 million,

DS ¼ 240 and 1.5 fertility rate.
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Some caution should be employed while reading the figures.

The increased numbers of cases in Figure 2A–C are calculated

under 10 kinship relations and 3 relations in Figure 2D–E. It

may take a long time to cumulate the risks and observe the

cases if all conditions, such as the chance of recruiting affected

donors, deficiency of screening policy or technique and

medical advancement, remain constant. Therefore, the dis-

played values are not immediately comparable to the current

incidence rates. Because the value is extremely small when

compared with the incidence per year, some may prefer to con-

sider it irrelevant, especially for autosomal dominant diseases

(Janssens, 2003).

Figure 1. (A–C) the numbers of consanguineous matings due to AID per year (Y); (D–F) the average population coefficients of inbreeding (F)
with respect to the maximal number k under different degrees of assortative matings (C), population size and number of effective donors (DS). In
(A) and (D), DS ¼ 300 and the population size is 23 millions. In (B) and (E), DS ¼ 300 and C ¼ 9. In (C) and (F), C ¼ 9 and the population size is
23 millions. The fertility rate is fixed at 1.5.
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Discussion

In this article, we propose three methods to assess the influence

of the maximum number of live births per donor under the

assumption that the supply of gamete donors is far less than

demand. The first one focuses on the number of consangui-

neous matings. The second approach computes the average

F. It can provide legislators with an estimate of allowable

maximal number at a tolerable average population F. Major

factors include the degree of assortative mating, population

size and number of donors per year. A more careful estimation

of the number k based on demographic variables of the area

under study can be conducted when setting the limit for legal

purposes. Under various conditions, such as population size

(16, 23, 43 and 60 millions), fertility rate (1.3, 1.5, 1.7 and

1.9), number of donors (300–600) and degree of consangui-

neous mating, we derive the maximal k, as listed in Table I.

When population coefficient of inbreeding is set below

1.501 � 1024, k needs to be smaller. These values of k are

.1 and ,10 in UK and 25 in The Netherlands. However,

when the constraint for F increases to 1.505 � 1024, most

k’s are .10. The setting with a population of 16 millions is

similar to the case in The Netherlands, although the number

of donors and degree of consanguineous mating are approxi-

mates. The maximal values, however, are ,25, suggested in

de Boer et al. (1995). The main reason is, in contrast to their

m̄i (expected number of consanguineous mating of the ith

kinship for an AID child), we consider here the average F

from the population perspective with Yi (expected number of

inadvertent mating of the ith kinship due to AID) as part of

the weight. By doing so, every donor in D (or DS) will be

included and thus the corresponding F is larger. A more

detailed presentation of F versus k can be found in Figure 3.

The settings in Figure 3A–D are approximate numbers of

those in The Netherlands, Taiwan, Spain and France, respect-

ively (WHO, 2005). It seems that the legal limits 1, 6 and 5

in Taiwan, Spain and France, respectively, are conservative,

whereas the legal limit 25 in The Netherlands is larger. Calcu-

lations of other settings can be done through the author’s

webpage http://homepage.ntu.edu.tw/�ckhsiao/art.htm.

Our third approach evaluates k on the basis of the incidence

of a genetic disease. This is helpful in assessing the probability

of disease status of an AID child of a specific donor who was

not screened for a hereditary disease, but developed it years

after successful transfer. It can also be used when someone

needs to predict the possible risk of the child before receiving

ART. The only prerequisite information before calculation

is the mode of inheritance and prevalence of the disease.

The results indicate that there will be more cases if the preva-

lence of the recessive disease is higher. In addition, there are

more cases with recessive than with dominant disease. This

is because, for dominant diseases, we assume the parent

receiving donated gamete is not affected (recipient is normal

homozygote) and the AID child will not mate with those

affected (those who carry mutant homozygote or heterozy-

gote). For complex diseases, the probability of offspring’s

disease status conditional on parents’ disease status is required.

Figure 2D and E shows the increased incidence due to AID as a

function of k for schizophrenia and depressive disorder. The

calculations in Figure 2D and E cover only the relations of half-

sibling, biological father or mother and grand-parents because

Table I. The maximal numbers of live births k per donor under tolerance F ¼ 1.501 � 1024 and 1.505 � 1024 (where 1 � 106 ¼ 1 000 000), respectively

Tolerance F Population size
(million)

Fertility rate Number of donors Effective ratio S ¼ 100% Effective ratio S ¼ 80%

C ¼ 18.5 C ¼ 9 C ¼ 4.3 C ¼ 1.5 C ¼ 18.5 C ¼ 9 C ¼ 4.3 C ¼ 1.5

F ¼ 1.501 � 1024 16 1.7 400 0 1 2 5 1 2 3 6
23 1.5 300 3 4 7 13 3 5 8 14
43 1.3 500 4 6 10 17 5 7 11 19
60 1.9 400 5 8 12 21 6 9 14 24

F ¼ 1.505 � 1024 16 1.7 400 3 4 7 13 3 5 8 15
23 1.5 300 7 11 17 30 8 13 19 34
43 1.3 500 10 15 23 40 12 17 26 45
60 1.9 400 13 19 29 49 24 15 22 32

F, coefficient of inbreeding; C, degree of assortative matings.

Table II. The maximal numbers of live births k per donor under tolerance F ¼ 1.501 � 1024 and 1.505 � 1024, respectively, for half-sibling matings only

Tolerance F Population size
(million)

Fertility rate Number of donors Effective ratio S ¼ 100% Effective ratio S ¼ 80%

C ¼ 18.5 C ¼ 9 C ¼ 4.3 C ¼ 1.5 C ¼ 18.5 C ¼ 9 C ¼ 4.3 C ¼ 1.5

F ¼ 1.501 � 1024 16 1.7 400 3 5 8 14 4 6 9 15
23 1.5 300 7 11 16 28 8 12 18 31
43 1.3 500 9 13 19 33 10 15 22 37
60 1.9 400 14 21 31 53 16 24 34 59

F ¼ 1.505 � 1024 16 1.7 400 9 13 18 31 10 14 21 35
23 1.5 300 17 25 36 62 19 28 41 69
43 1.3 500 21 30 44 74 23 34 49 83
60 1.9 400 33 48 70 118 37 54 78 132
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the conditional probability of disease status under other kinship

is not available. All the increased numbers of cases in Figure 2

are derived on the basis of different kinship relations. There-

fore, it may take a long period of time to observe the cases

and these values may not be considered comparable to

current incidence per year.

Our first approach considers the number of consanguineous

mating, and this number is then used to compute the average F

in the second approach or to evaluate the increased incidence of

a genetic disease in the third approach. It may not be fair to

compare directly among the three approaches because they

are not based on the same selection criteria. Nevertheless,

Figure 2. Increased number of cases of (A) hereditary haemochromatosis with prevalence ¼ 1/250; (B) cystic fibrosis with prevalence ¼
1/2500; (C) spinocerebellar ataxia with prevalence ¼ 4/100,000; (D) schizophrenia with prevalence ¼ 1%; (E) depressive disorder with
prevalence ¼ 5.9% versus the maximal number k.
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they do not result in maximal numbers that differ greatly. For

instance, in Figure 1A and D, under a somewhat stringent

condition for Y ,1 or F ,1.501 � 1024, k is around 5 for

the population of 23 millions. If Y is set ,2 and F

,1.502 � 1024, then k is between 5 and 10 when C ¼ 9. For

the third approach, the prevalence and inheritance mode need

to be specified a priori. Disease with a higher prevalence

always results in more new cases due to AID.

The factors influencing the maximal number are certainly

beyond what we have considered here. Further investigations

are worth pursuing. For instance, due to self-reporting bias

and various screening criteria, the estimates of D and S may

be biased. In addition, when gamete donations are possible

from other nearby countries or globally (such as the Cryos

International Sperm Bank Ltd, 2006), the curves shown here

will become steeper and lead to a smaller k, if most recipients

considered donors from the same company. On the other hand,

the act will reduce the risk if it increases the donor pool and

lessens the stress of demand. However, as the anonymity

policy is no longer followed (such as in North Europe,

England and several states in USA), the number of donors

may drop dramatically (Janssens et al., 2006), which can

result in a shortage of supply and lead to a request of more

live births per donor. A balance between the increase in

demand and the request for suppress in k is always a task.

Furthermore, we have assumed the phenotypes to be inde-

pendent when computing assortative mating coefficient C. It

is an over-simplified assumption. For instance, correlation

between IQ scores may relate to that of education received,

and correlation in facial features may depend on correlation

between the couple’s stature or fitness. In other words, pheno-

types are correlated with each other. Therefore, C may be

smaller under dependence assumption. On the other hand, it

is argued that mating behaviour is much more complex and

more factors should be considered (Luo and Klohnen, 2005).

Therefore, the determination of its range prior to the compu-

tation of P and the maximal number k for the area under

study is essential. In addition, due to numerous illegitimate

children, there are more inadvertent matings than considered

here. In other words, the population F0 may be larger and

then leads to smaller ratio F/F0. A more careful and refined

conclusion for k is worth pursuing after these matings are incor-

porated. As an alternative proposal, Le Lannou et al. (1998)

suggested, instead of the number of pregnancies or children, to

constrain on the number of families where the children are

born because a brother and a sister of the same family are

Figure 3. Average population coefficients of inbreeding versus k where (A) is for the population size of 16 millions, DS ¼ 320, 1.7 fertility rate;
(B) is for the population size of 23 millions, DS ¼ 240, 1.5 fertility rate; (C) is for the population size of 43 millions, DS ¼ 400, 1.3 fertility rate;
(D) is for the population size of 60 millions, DS ¼ 320, 1.9 fertility rate.
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unlikely to marry. This approach can be incorporated in the

current model as multiple deliveries (ni in the Appendix), and

the computation of k can be carried out in the same way.

However, our current approach does not include the number of

families as a variable. Further modifications are necessary.

Finally, to assess the precision of Y, we assume k is fixed for

every donor and approximate the variance of number of

consanguineous matings by (m̄P)2Var(DS), where P and the

expected value m̄ depend on demographic data. The variance,

Var(DS), can be estimated, assuming a Poisson distribution.

The approximation, however, is much smaller than the magni-

tude of Y itself (data not shown here). Similarly, the variability

in F and in the increased incidence due to AID is both extremely

small and negligible. When k varies among donors or when more

private donors are involved, its uncertainty needs to be incorpor-

ated in the model, and its variability will influence the variance

of Y and F. As a consequence, the risk of consanguinity may

decrease.
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APPENDIX

The probability of mating (P)

A male and female, chosen randomly from a population, are more likely

to mate if they are similar with respect to age, residence and phenotype

as a result of positive assortative mating. Curie-Cohen (1980) assumed

that mates were assortatively chosen by the above three factors. We

consider the same factors and hence the probability of mating was

estimated by multiplying the coefficients of these three. According to

Hajnal (1960), Cavalli-Sforza (1966) and Curie-Cohen (1980), de

Boer et al. (1995), the probability of mating was

P ¼ 2l �dC
Q

A
;
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where l is the chance that a newborn will ever reproduce, d̄ the

factor of assortative mating for age, C the factor of assortative

mating for phenotype, Q the factor that people mate in the area

where they were born and A the average number of newborns in

a year.

The number of potential marriages between offspring

and relatives (m̄)

Hajnal (1960) presented a method to calculate the number of

potential marriages between a donor’s offspring and a relative. He

estimated the expected number of unintentional consanguinities

under one AID child per pregnancy. However, rates of multiple

births using ART rose substantially in the 1980s and

1990s (Reynolds et al., 2003), and hence this model needs

modification.

Take half-siblings for example. Under the assumption of multiple

use of a single donor’s gametes, each donor has k live births and ni

(i ¼ 1, . . . ,k) AID children per pregnancy, where n1 , . . . , nk are

independently and identically distributed with mean n̄ and

variance sn
2. Furthermore, assume that every donor has f natural

children, where f follows a normal distribution with mean f̄ and

variance sf
2. Among the AID children of a given donor, let vi be

the number of girls per live birth, q be the probability of giving

birth to a girl and p for boy, pþ q ¼ 1, and then vi is a binomial

distribution, Bin(ni,q), i ¼ 1 ,. . ., k. Among natural children, let w

be the number of girls with probability s and (f 2 w) for boys

with probability r, where sþ r ¼ 1, then w is binomially

distributed.

There are two kinds of unwitting incestuous marriages between

half-siblings, those between AID children from different live births

and those between AID and natural child. As for the first case, the

potential number of consanguinities is

Ev

X
i=j

viðnj � vjÞ
��ni; nj

" #
¼
X
i=j

ninjpq:

If p ¼ q ¼ 1/2, then the above equation becomes
P

i=jninj/4.

Similarly, for the second case, the potential number of

consanguinities is

Ew;v

Xk

i¼1

½wðni � viÞ þ við f � wÞ�
��ni; f

( )
¼
Xk

i¼1

fnið psþ qrÞ:

If r ¼ s ¼ 1/2, then it becomes
P

i¼1
k fni/2. Adding both numbers,

we obtain the estimated number m of potential matings among

the children of a donor. Hence, the expected value of

unintentional consanguineous mating between one single donor’s

children is

�m ¼ En;f
1

4

X
i=j

ninj þ
1

2

Xk

i¼1

fni

 !
¼ k k � 1ð Þ

�n2

4
þ k

�n�f

2
:

For other types of consanguinities, m̄ ¼ (1/2)kn̄ for biological

father or mother, m ¼ (1/2)kn̄ (f̄ 2 1) for uncle–niece or aunt–

nephew, m̄ ¼ kn̄f̄ 2
þ (1/2)k(k 2 1)n̄2f̄ for half uncle–niece or half

aunt–nephew, m̄ ¼ (1/2)kn̄f̄(f̄ 2 1) for first cousin, m̄ ¼ (1/
2)kn̄f̄ 3

þ (1/4)k(k 2 1)n̄2f̄ 2 for half first cousin, m̄ ¼ kn̄f̄(f̄ 2 1)

(f̄þ 1/2) for first cousin once removed and m̄ ¼ kn̄f̄ 4
þ (1/

2)k(k 2 1)n̄2f̄ 3 for half first cousin once removed. Detailed

derivations can be found on the author’s webpage.

Average level of coefficient of inbreeding in population with AID (F)

The average coefficient F, including that due to AID, is

F ¼ F0 þ FAID ¼ F0 þ
1

2
F0 � I k . 0ð Þ þ

X
i

Yi

M
� Fi

" #
;

where I(.) is an indicator function, i indexes various degrees of

consanguinity, Yi/M is the corresponding proportion of mating and

M is the average number of marriages per year. The coefficient of

inbreeding due to AID (FAID) is the sum of the last two items. This

formula extends what was previously proposed in de Boer et al.

(1995) and Curie-Cohen (1980) in two places. First, the effective

ratio S is considered in Yi. Second, we use Yi/M as the weight when

summing Fi. The effects of D, S, m̄ and P on F can be assessed

through Yi in the above equation and may vary among countries or

clinics.

The incidence rate of autosomal recessive inherited disease

Taking an autosomal recessive inherited disease for an example.

Assume the frequency of normal allele is p and that for mutant

allele is q. Under Hardy–Weinberg equilibrium, the frequency of

diseased is f(diseased) ¼ q2 (also the prevalence), the frequency of

non-diseased is f(normal) ¼ p2 and the frequency of carrier is

f(carrier) ¼ 2pq � 2q ¼ 2
p

prevalence. Then, the incidence rate due

to AID is

PI ¼ Prðcase � 1due to AIDÞ

¼ Prðcase � 1due to AIDjdonor is normalÞ

� Prðdonor is normalÞ

þ Prðcase � 1due to AIDjdonor is carrierÞ

� Prðdonor is carrierÞ

þ Prðcase � 1due to AIDjdonor is diseasedÞ

� Prðdonor is diseasedÞ:

Because the mutant rate of genes is very low, the chance of a

child of normal parents being affected is extremely slim and

negligible. Therefore, the following probability is close to zero,

Pr (case � 1 due to AIDj donor is normal) �0. It is non-zero

only when mutation occurs. Then, the probability and its

approximation are

PI � Prðcase � 1due to AIDjdonor is a carrierÞ

� Prðdonor is a carrierÞ

þ Prðcase � 1due to AIDjdonor is diseasedÞ

� Prðdonor is diseasedÞ;

where each conditional probability depends on Y, probability of

having an affected AID child, average number of children per

couple and average number of new borns per year. The two

marginal probabilities of donor being carrier or diseased depend on

the prevalence of the disease. All these probabilities can be obtained

Maximum birth number per donor in artificial insemination
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or derived from demographic data. Next,

PI ¼ Prðcase � 1due to AIDÞ

� Prðcase � 1due to AIDj

donor is carrier and recipient is normalÞ

� p2 � 2pqþ Prðcase � 1due to AIDj

donor is carrier and recipient is carrierÞ

� 2pq� 2pqþ Prðcase � 1due to AIDj

donor is carrier and recipient is diseasedÞ

� q2 � 2pqþ Prðcase � 1due to AIDj

donor is diseased and recipient is normalÞ

� p2 � q2 þ Prðcase � 1due to AIDj

donor is diseased and recipient is carrierÞ

� 2pq� q2 þ Prðcase � 1due to AIDj

donor is diseased and recipient is diseasedÞ � q2 � q2

where Pr (case �1 due to AIDj donor is carrier and recipient is

normal) ¼
P

i Yi � f̄ � Pi
0/A, A represents the average number of

newborns per year, Yi the number of the ith type of consanguineous

matings, f̄ the average number of natural children per couple and Pi
0

the probability of the child being affected under the ith type of

consanguineous mating. The approximate probability PI now is

taken linear in k because other non-linear terms are small and

negligible. By fixing a desirable magnitude for the increased

incidence, the maximal allowable number k per single donor can

then be determined.

For autosomal dominant disease, the calculation differs.

PI � Prðcase � 1due to AIDjdonor is heterozygousÞ

� Prðdonor is heterozygousÞ

� Prðcase � 1due to AIDj

donor is heterozygous and recipient is normal homozygousÞ

� Prðrecipient is normal homozygousÞ

� Prðdonor is heterozygousÞ

¼ Prðcase � 1 due to AIDj

donor is heterozygous and recipient is normal homozygousÞ

� p 2� 2pq
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