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Abstract

A theoretical model based on the virtual work principle was proposed to calculate the restraining force
produced by the drawbead located on a stamping die surface. In the theoretical model the deformation or'
the sheet metal drawn over the groove shoulder or bead is assumed to be subjected to bending, sliding
and unbending processes, and only the sliding process is responsible for the frictional force. The governing
equations derived from the theoretical model were solved by a numerical procedure. In order to validate
the proposed model, the finite element simulations were also performed to calculate the drawbeac
restraining forces for various steels. The simulated results together with the experimental data obtained
from the published literature were compared with the predicted values calculated by using the numerica:
procedure. The good agreement between the simulated results, experimental data and the calculated values
justifies the proposed theoretical model. © 1998 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In a stamping process, a sheet metal is first clamped by the binders around the periphery of
the die cavity and is subsequently drawn into the die cavity by a moving punch to form the
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desired shape, as shown in Fig. 1 [1]. The amount of the sheet metal moving into the die cavity
is usually controlled by the frictional force generated between the binders and the shzet metal.
For some stamping operations, the restraining force provided by the friction alone is not enough
to control the metal-flow, and drawbeads are therefore added to the binders for reinforcement.
The drawbead consists of a small groove on the die surface matched by a bead on the binder
surface, as shown in Fig. 1. When it is drawn over the drawbead after the binder closure. the sheet
metal is subjected to a bending and a subsequent unbending around the entry groove shoulder, and
a repeated sequence at the bead and at the exit groove shoulder, as shown in Fig. 2. These
bending and unbending deformations together with the frictional force account for the drawbead
restraining force.

The magnitude of the restraining force is very important to the part formability in a stamping
practice. For a shallow stamped part, such as a car roof, a large restraining force is required to
deform the central area of the part, while a large restraining force will lead to fracture in a deep
drawn part. Therefore, quite a few efforts have been focused on the study of the drawbead
restraining force. In order to measure the drawbead force, Nine [2] designed a drawbead simulator
and conducted a series of experiments on various steels and aluminum alloys. He alsc replaced
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Fig. 1. Stamping process with round drawbeads [1].
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Fig. 2. Bending and unbedening deformations over a drawbead.

the shoulders and bead of the drawbead with rollers to isolate the bending deformation component
from the friction component. In addition, Nine [3] found that the Coulomb friction holds for most
steels but breaks down for some materials, such as Al 2036-T4, when drawn over a very small
drawbead. In his work, Wang [4] proposed a mathematical model of the drawbead forces for
calculating the force required to draw sheet metal past a bead of constant cross section. Triantafyl-
lidis et al. [5,6] also presented an analytical model and applied the finite element technique tc
analyze the deformation of sheet metal over the drawbead.

In the present study, a theoretical model based on the virtual work principle for calculating the
drawbead restraining force was developed. In this model, the shift of neutral axis is allowed for
and the elastic deformation is neglected. The governing equations dertved from this model were
solved incrementally by an iterative process and a numerical procedure was constructed for the
computer programming. In order to validate the theoretical model, the finite element analysis was
performed to compare the calculated values with the simulated results. The experimental dat:
published in reference [2] are also adopted to justify the theoretical model.

2. Theoretical model

The configurations of drawbeads used in the stamping operations vary a lot depending on the
stamping requirements. In the present study, a typical drawbead which consists of a semicylindr-
ical bead fitting into a groove on the opposite binder surface, as schematically shown in Fig. I,
is adopted to define the configuration of the model to be analyzed. For simplicity, the profile radi:
of both the groove shoulders and the punch are chosen as the same.

The restraining force builds up from nearly zero at the beginning of drawing and reaches &
steady-state value after the first material point completes its travel across the drawbead. In the
present study, the restraining force at the steady-state is calculated by a theoretical model. Tc
facilitate the analysis, the following assumptions are made:
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1. The drawbead has a constant cross section along the width direction and the sheet metal drawn

over the drawbead is under plane strain condition.

The plane sections remain plane and perpendicular to the neutral surface during the bending

or unbending.

The shear stress is negligible.

The material is isotropic and strain-rate independent.

The Bauschinger effect is neglected during the cyclic bending and unbending processes.

The variation of the sheet metal thickness is small during the deformation process and can

be neglected.

7. The normal stress in the thickness direction is small compared to the bending stress and can
be neglected.

8. The elastic strains are assumed to be relatively small in comparison with the plastic strains in
the bending and unbending processes and can be neglected. Hence, the material is assumed
to be rigid-plastic.

o

S

The repetitive nature of the bending and unbending processes suggests that the analysis may
be reduced to a basic one as shown in Fig. 3. According to Swift [7], there exists a sliding process
between the bending and the unbending processes in which the mid-surface curvature of the sheet
equals «,, i.e.,

K= (0

where R is the profile radius of the groove shoulder or the bead, and ¢ is the thickness of the
sheet metal. Hence, when the sheet metal is being drawn over the bead, its mid-surface curvature

unbending

Fig. 3. The basic unit for a bending or an unbending process.
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Fig. 4. The free body diagram for an arbitrary differential element.

increases from O to k, in the bending process, and remains at k, in the sliding region, and then
decreases from k, to 0 in the unbending process, as shown in Fig. 3.

Figure 4 shows the free body diagram for an arbitrary differential element dL of the deformed
sheet over the drawbead. Since the neutral axis shifts during the bending process, while the mid-
surface is known from the assumption that the variation of the thickness of the sheet metal is
negligible, it is convenient to express all the kinematic relations taking the mid-surface as refer-
ence, i.e., the origin of the z coordinate is taken on the mid-surface, as shown in Fig. 4. The
forces and moments shown in Fig. 4 correspond to a unit width of the sheet metal. If the element
is subjected to a virtual displacement du on the left-hand side, resulting in a virtual displacement
éu’ on the right-hand side, as shown in Fig. 5, then the work (W) done by the external forces is
equal to the change of the internal plastic energy dissipation, i.e.,

W= Qs' - Qs’ (Zb

or

dar \/
du

Fig. 5. The differential element subjected to a virtual displacement.
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Su + du’
(F + dF)8u’ — Fu + (M + dM)80' — M86 — wp-dL- =0, - Q. 3)

s

where
86, 86’ = the rotation angles at sections having the displacements u and 8u’, respectively;

pn = coefficient of Coulomb friction;

p = normal force acting on the element per unit length;

Q,, Q, = the plastic energy dissipation in the elements of lengths dL and dL’, respectively.

It is to be noted that at the steady-state the overlapped region dL, as shown in Fig. 5, has the
same volume and plastic energy dissipation with respect to the virtual displacement. Consequently,
the volume conservation for the plastic deformation implies that

rdu=1-8u, “4)

where r and ¢ are the thicknesses of sheet at sections displaced by du and 8u’, respectively. Since
the variation of thickness is negligible, then Eq. (4) can be written as

ou = bu’ 5)
Also, let k,, and k,, + dk,, be the mid-surface curvatures at the extremities of the considered
element, as shown in Fig. 5. The corresponding angles subtended by 8u and Su’ may therefore
be given by
86 = K,,bu, (6)
00" = (k,, + dk,,)-0u’ = (K, + dxk,,)-8u.
If the plastic energy dissipation in the overlapped region df is denoted by O, then the change
of the plastic energy dissipation for the element dL at the steady state is
0y = Q,=(0+ Q) = (0 + Qa) = Os ~ Qs O
where @, and @, are the plastic energy dissipations in the elements of lengths du’ and du,
respectively, and may be written as

{
2 &+de

2
Qs = bu’ f f odedz = du f j ode dz (8)

t 0 14 4]

2 2

€ + de

t
2 &

QOs. = éu J J&dézdz,

0

=~

where de, appearing in the integrals denotes the incremental effective strain in an element at a
distance z form the mid-surface; & is the effective stress, € is the cumulative effective strain at
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the left-hand end, and de is the change in effective strain between the two ends of the con-
sidered element.
Therefore, the change of plastic energy dissipation can be written as

€+dé

2 2
- Q, = éu j J ode,dz = du j odedz. (9)

Nl~
N~

Substitution of Egs (5), (6) and (9) into Eq. (3) and dividing it by &u, yields

2
dF =k, dM + M-dk,, = J odeédz + p-p-dL 10)

BN~

The force and moment at an arbitrary cross section can be calculated from

12

F= J odz, (n

- 12

and

"2

M= J oz — z,)dz, (12)

— 2

where o, is the bending stress at a generic point in the cross section, and z, is the coordinate of
the neutral axis, taking the mid-surface as the datum for the z-coordinate.

Egs (10)—(12) are the governing equations for solving the problem. However, even though o,
can be derived from the stress-strain relations, there are still five unknowns, F, M, «,,, p, and dL,
in the equations. In order to obtain a solution to the governing equations, a simple friction model
described below will be adopted.

As shown in Fig. 3, the sheet metal is subjected to bending, sliding and unbending when it is
being drawn over the groove shoulders or the bead. The regions of the bending and unbending
are usually very small compared to the region of sliding. Also, the sheet metal is not completely
in contact with the groove shoulder or the bead in the bending and unbending regions. Hence,
the frictional force in the bending and unbending regions is negligible, and only the sliding region
accounts for the existence of the frictional force.

For the bending and unbending regions, which are assumed to be under the frictionless con-
dition, the second term on the right-hand side of Eq. (10) drops out, giving
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2
dF + k,.dM + M-dk,, = J odedz (13)
7
T2

In consequence, the system equations are solvable. On the other hand, a well-known friction
model represented by Fig. 6 is adopted instead of Eq. (10) for the sliding region to simplify the
analysis for the change in the restraining force across this region. In the model shown in Fig. 6,
it is assumed that no additional plastic deformation occurs in the sliding region, and the sheet
metal is subjected to frictional force only. It is easy to show that the relationship between the
drawing force, F, and the back tension F, is

F2 = Fl-e”’e, (]4)
where 6 is the wrapping angle in radian. The back tension is actually the restraining force at the

exit of bending region and the drawing force can be taken as the restraining force at the entry of

the unbending region.
In the rigid-plastic deformation, the magnitude of o, can be calculated from the effective stress.
The effective stress & for the plane strain condition and o, = 0 is easily obtained as

o= \/% [(0x = 0,0’ + (0, = 0.)* + (0. — 0,)] (15)

V3

=%l

%
d

Fig. 6. The free body diagram for a simple friction mode!,
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Use of g, = 1/2(0, + 0,) = 1/20, has been made in the derivation of Eq. (15). The bending
stress is then given by

2
+§/§0', 1=z,
= 16
o, ) (16)
T EEE

The effective stress can be determined from the stress-strain relations of the sheet metal. It is
assumed, therefore, that the sheet metal work-hardens according to the stress-strain relations:

o = Ke", (17

where K is a stress constant and n is the work-hardening exponent, and € is the cumulative
effective strain. If a fiber of material is considered along a given z-coordinate, then the cumulative
effective strain is the integrated value of the effective incremental strain de. The preservation of
volume in the plastic deformation under plane strain condition (de, = 0) implies that

de, = — de,, (18)

and the effective incremental strain associated with the von Mises yield criterion reduces to

de = \/5 [(de, — de)* + (de, — de)* + (de, — de,)’] (19)

2
= \]§ |d€xl.

The total bending strain €, of any point at a distance of z form the mid-surface is defined by
the following equation under the assumption (2) made above:

27, 272, .
- _ , 20)
Pr [
where p, and p,, are the radii of the curvature for the neutral surface and the mid-surface, respect-
ively.
The strain at the mid-surface (z = 0) is then given by

€,

Zn
€, = — — " 21)
p’ﬂ + ZIT
which implies that

P

l1+€, 22)

Z, =~
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Substituting Eq. (22) into Eq. (20), yields

€= (1+€)+e, (23)

m

=k, 2(l +€,) + €,

Differentiating Eq. (23) results in
de. = dk, z(l + €,) + de, (k2 + 1). 24)

The accumulated effective plastic strain accounts for the entire strain history in a material point
which travels from the entry of drawbead to any location in either bending or unbending region.
Due to the possibility of unloading, only the incremental form, i.e., Eq. (24), will be used to
define the total effective strain as

é = eré - \/2§ JI{deZ(l + Em) + dem'(sz + 1)}| (25)

It can be seen that a closed-form solution to Eq. (13) does not seem to exist. Hence, the system
of governing equations will be solved numerically, using a step-by-step process.

3. Numerical procedure

A numerical procedure is constructed to solve the system of Eq. (11) to Eq. (25), which forms
the basis of the analysis for the drawbead restraining force. To start with the numerical procedure,
the region where bending or unbending takes place must be defined. Since the curvature of the
mid-surface is a function of the curvilinear coordinate s, the bending (or unbending) process can
be clearly defined as beginning at «,, = 0 (or k,, = «,) and ending with «,, = k, (or «,, = 0). It is
therefore convenient to treat k,, as the independent variable instead of the curvilinear coordinate s.

The moment M, force F, mid-surface curvature «,,, and the bending strain €, are all set to zero
at the entry of the drawbead as the boundary conditions for the numerical procedure. It is to be
noted that the numerical procedure can also take the back tension at the entry of the drawbead
as a boundary condition if the back tension is applied. However, since the main purpose of this
paper is to calculate the restraining force produced by the drawbead when the shect metal is
drawn through, the back tension is not considered here.

An equal increment of the curvature of the mid-surface is set to

Ko
Ak = N (26)

where N is the number of increments. In the bending region, the curvature of the mid-surface
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varies according to a typical increment from «{ to x{*", with @ =0. For each «{* ", the
numerical procedure begins by assigning a trial value for €,. With dk,, and de,, given, the bending
strain incrememt de, for a material pom &t a Giswance z 18 cacuaed from £g. (245, Toe locaton
of the neutral axis is determined from Eq. (22), and the effective incremental strain de is obtained
from Eq. (19). Adding the effective incremental strain to the effective strain at the step (i) results
in the effective strain € at the step ({ + 1), from which the effective stress ¢ can be calculated
from Eq. (17). Subsequently, the bending stress, o, is found according to Eq. (16).

In order to determine the sign of o, and calculate the integral in the z direction, the thickness
of sheet metal is equally divided into a number of layers. The location of each layer is defined
by the z-coordinate measured from the centerline of the layer. The stresses and strains in each
layer are comsidered o be constant. With this division i the thickness, dr {orce and moment
can be calculated form Egs (11) and (12), respectively, and the plastic energy dissipation given
by the integral in Eq. (13) is also obtained. The magnitudes of dF, dM, and dk,, can be easily
calcujated from their values at i-th and (i + 1)-th steps. If the calculated quantities satisfy Eq.
(13), then the calculation for the current step (i + 1) is completed. Otherwise, a new value of ¢,
should be assigned and the above procedure iterates upon untii Eq. {13) is satisfied. At the end
of the bending region, «,, reaches the value of «,, and the calculated quantities then serve as the
initial conditions for the subsequent sliding region.

In the stding region. no addiionat plastc deformaton occurs, and onty tne {rictional force
accounts for the force change. Since the bending and unbending regions are usually very small,
a wrapping angle of 80° is assumed for the sliding region over the bead or the groove shoulders.
The drawing force at the end of sliding region can then be calculated from Eq. (14). The drawing
force anb ine chobaied poaritines oouneb 1 tne'penbme regon provibe ine mimd conbiimhons
for the subsequent unbending region.

Tne Tierative procedure Tor {ne unbending process is simitar 10 those appiied 10 tne ‘pending
process, except that the mid-surface curvature starts from k, and decreases to zero at the end of
the process.

Tne sneet metdl 1s subjecied 1o tnree repedied cycies whnen 1t 1s drawn over the draw-pead as
shown in Fig. 2. Each cycle consists of bending, sliding and unbending as indicated in Fig. 3.
To obtain the restraining force produced by the drawbead, the above iterative procedure needs to
be repeated twice more. It is to be noted that the effective strain is accumulated with each
increment, and the work-hardening property is preserved. Also, it is expected that the accuracy
of the calculated force can be improved if both the number of increments and the number of
layers W the Tmoxness $irechon are mcyeased.

4. Fiunite element model

A simple finite element model, as shown in Fig. 7, was constructed to calculate the restraining
force probuced by Ine bGrawbead. In Tms mode), Ine sneet MerA 18 WDANY Paced Dorzonia)y
and is held on by a frictionless device. The bead is then moved down to bend the sheet metal
while the leading end of the sheet metal is fixed. The bead travels through a distance at which
the centers of curvature for both the groove shoulders and the bead are at the same height, as
shown in Fig. 7. The boundary condition at the leading end of the sheet metal is then released
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hold-on device

leading end

o+

Fig. 7. The finite element model for drawbead force simulations.

and the sheet metal is pulled to the left until a steady-state is obtained. The steady-state is indicated
when the pulling force reaches a constant value which is also the restraining force produced by
the drawbead.

In order to compare the simulated results with the experimental data obtained by Nine [2], A-
K steel and rimmed steel are used in the simulations and the material constants of these metals
are those given in Table 1 of reference [2]. The radii of both the groove shoulders and the bead
used in the simulations are 5.5 mm. Both the frictionless condition and the coefficient of Coulomb
friction equal to 0.1 at the interfaces between the sheet metal and the drawbead are simulated.

The elastic-plastic finite element program ABAQUS was adopted to perform the simulations.
In the simulations, the drawbead is treated as rigid and four layers of elements are assigned in
the thickness direction of the sheet metal. The four-node plane strain element is used to construct
the finite element mesh for the sheet metal.

5. Results and discussions

With the use of the same conditions as those set for the finite element simulaticns, the
restraining forces were calculated following the numerical procedure based on the proposed
model. In each calculation, the curvature increment Ak = k,/200 was assigned in the numerical
procedure, and the thickness of sheet metal was equally divided into 40 layers to perform the
evaluations of o, and the integrals involved in the system equations. Both the finite ¢lement
simulations and the present theoretical model consider the sheet metal drawn over the drawbead
with and without friction. The calculated values of the restraining forces based on the proposed
method are compared mainly with those obtained by the finite element simulations. The experi-
mental data [2] for the frictionless case are also used for comparison with the present theory
under identical conditions.

Under the frictionless conditions, the theoretical, finite element and experimental results
obtained for A-K steel and rimmed steel with thicknesses of 0.76 mm, 0.86 mm and 0.96 mm are
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Fig. 8. Restraining forces versus sheet thicknesses for A-K steel (u = 0).

shown in Figs 8 and 9, respectively. It is seen in both figures that the restraining forces obtained
from the present theoretical model and the finite element simulations agree very well but are
consistently small compared to the experimental data. This difference is partly due to the effect
of strain-rate sensitivity of the material properties being neglected in both the theoretical model
and the finite element simulations. The sheet metal was drawn over the drawbead by a speed of
85 mm per second in the experiments which is much higher than the speed used in the tensile
tests to obtain the material properties of the sheet metal. Nine [2] also showed that the restraining
forces for A-K steel and rimmed steel could increase by about 25% over the range of strain rates
from 0.035/sec to 35/sec. The neglect of the Bauschinger effect in both the theoretical model and

671
~—~ F »
g5
8 4
S
o0 3 1 —e— experiment
g 21 —&— finite element
dg‘ B —a— theroretical
0 F
0.7 0.8 0.9 1

Sheet Thickness (mm)

Fig. 9. Restraining forces versus sheet thicknesses for rimmed steel (u = 0).
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Fig. 10. Restraining forces versus sheet thicknesses for A-K steel (u = 0.1).

the finite element simulations is considered to be another reason for the difference, since the
sheet metal is subjected to cyclic bending and unbending deformations when passing through the
drawbead. Also, the extraction of the frictional part of the restraining force from the total is
achieved by replacing the shoulders and bead with rollers in the experiments. This device cannot
make the drawbead tests completely free from friction and the small amount of frictional force
accounts for the difference as well.

The results obtained from the theoretical model and the finite element simulations for A-K
steel and rimmed steel under the coefficient of friction of 0.1 are shown in Fig. 10 and Fig. 11,
respectively. It is noticed in both figures that the restraining forces calculated from the theoretical

7
> 6
E /
¢,
.%ﬂ 3 —o— finite element
£, '
2 ~—8— theoretical
& |
0 F——r— ey
0.7 0.8 0.9 1

Sheet Thickness (mm)

Fig. 11. Restraining forces versus sheet thicknesses for rimmed steel (u = 0.1).
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model agree with the simulated resuits in trend but underestimate the values by about 10% fcr
both the A-K steel and rimmed steel. This discrepency is obviously due to the assumed friction
model which implies that the friction occurs only in the sliding region of the sheet metal. However.
since the difference is not so significant, the calculated results suggest that the proposed friction
model is satisfactory to a large extent.

The percentage of the restraining forces due to friction to the total is also calculated for A-K
steel and rimmed steel and the results are shown in Fig. 12. It is seen in Fig. 12 that about 339%
of the total restraining force is due to friction for A-K steel and about 35% for rimmed steel
under the coefficient of friction of 0.1. It can be expected that the percentage difference will vary
with coefficient of friction, radius of the drawbead and the material properties of sheet metal.

It is also noted in Figs 8-11 that the restraining force increases as the thickness of the sheet
metal increases. Comparison of the results shown in Fig. 10 with those in Fig. 11 also indicates
that the restraining forces increase as the stress constant K increases.

6. Concluding remarks

The assumption that the deformation of the sheet metal drawn over the groove shoulders or
bead can be divided into bending, sliding and unbending regions has been shown to be reasonable
for the calculation of the restraining force under the frictionless condition, while the assumed
friction model leads to a small difference between the simulated results and the calculated values.
But the relatively small discrepency suggests that the simple friction model is satisfactory to a
large extent. Also, since the theoretical model allows the shift of the neutral axis, the location of
the neutral axis along the deformed sheet metal can be found by using the numerical procedure,

36 T
£ |
I —o— AK Steel
34 7
I —&— Rimmed Steel
33 e
0.7 0.8 0.9 1

Sheet Thickness (mm)

Fig. 12. The percentage of the restraining force due to friction.
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which provides very useful information for a better understanding of the deformation mechanism
of the sheet metal subjected to cyclic bending and unbending processes.

As for the industrial applications, the die designers can easily write a simple computer program
according to the proposed model to calculate the restraining force produced by a circular drawbead
with various groove shoulder radii.

In conclusion, the calculated restraining forces are found to be in general agreement with the
finite element results and the experimental data, and the proposed theoretical model is therefore
validated. It is obvious that the proposed model can be extended to calculate the drawbead force
produced by any other shapes of drawbead as long as the bending-sliding regions and the bending
curvatures are well defined. However, it is also to be noted that the present model is only valid
for the steady-state deformation of the sheet metal passing through the drawbead. For the future
extension to include the non-steady-state deformation, the formulation for the variation of plastic
energy dissipation needs to be modified.
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