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Abstract

Based on the face-gear generation process, the analytical geometry of the face-gear drive and its
mathematical model for tooth contact analysis of the face-gear and the spur pinion meshing were derived.
The tooth contact paths and the transmission errors due to assembly error along the axis of face-gear,
misalignment of crossed and angular displacements between axes of spur pinion and face-gear were analyzed.
Furthermore, the conditions of undercutting and pointing in the generation process were studied. Several
design charts were then developed. Finally, the conditions of undercutting and pointing for a face-gear drive
were all identified in meshing with and without assembly error along the direction of the axis of face-gear and
misalignment of angular displacement between axes of spur pinion and face-gear. Several numerical
examples were also presented. © 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Face-gears have been widely used in low-power transmission applications. An important
application of a face-gear drive is in a helicopter transmission [1,6] as shown in Fig. 1.

It uses the idea of the split torque that appears to be significant where a spur pinion drives two
face-gears to provide an accurate division of power. This mechanism greatly reduces the size and
cost compared to conventional design.
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Nomenclature

a,  addendum of the face-gear

D shortest distance between the axes of x, and z; in coordinate systems of S, and S,

KE kinematic error

L; transformation matrices which transform the vectors from coordinate system S; to S;

L, inner radius of face-gear out of undercutting in the generation process

Ly  inner radius of face-gear out of undercutting during meshing of the face-gear drive

L, outer radius of face-gear free of pointing in the generation process

L,  outer radius of face-gear free of pointing during meshing of the face-gear drive

m;;  gear ratio of N; to N;

M;; homogeneous transformation matrices which transform the vectors from coordinate
system §; to S;

N;  number of teeth of shaper, spur pinion and face-gear for i = s, 1, 2

n?  unit normal of the spur pinion and face-gear tooth surfaces represented in the
coordinate system S, (i = 1, 2)

R position vectors of the spur pinion and face-gear tooth surfaces represented in the
coordinate system S, (i = 1, 2)

r.s  addendum circle radius of the shaper

rp1  base circle radius of the spur pinion

rys  base circle radius of the shaper

rp1  pitch circle radius of the spur pinion

r,s  pitch circle radius of the shaper

r; position vectors of the shaper, spur pinion and face-gear for i = s, 1, 2

S; coordinate system S (i = 1,2, a,b,¢,f, m, s, 1)

Uy Gaussian coordinate of X,

U Gaussian coordinate of X,

v$?  sliding velocity between shaper and face-gear

o instant pressure angle in the generation process

%o pressure angle of the shaper

AE  shortest distance between the spur pinion and the face-gear axes

Ay  angular misalignment of the face-gear

Ap  assembly error along the axis of the face-gear

; rotational angle of shaper, spur pinion and face-gear for i = s, 1, 2

8, Gaussian coordinate of X,

6o the width of spur pinion teeth on the base circle

0,s  the width of shaper teeth on the base circle

0, Gaussian coordinate of X,

Y half-shaft angle of face-gear

Yy half-cone angle of face-gear including angular misalignment

vm  half-cone angle of face-gear

Z; tooth surface of spur pinion, face-gear and shaper (i = 1, 2, s)

w;  rotational speed of shaper, spur pinion and face-gear (i = s, 1, 2)

!  rotation speed of shaper, spur pinion and face-gear (i = s, 1, 2) in coordinate system S,
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Fig. 1. Face-gear generation process.

Until now, there were few research activities about manufacture and design of face-gear drive.
Buckingham [2] and Dudley [3] provided a brief description of face-gear drives. The research
about face-gear drives was initiated by McDonnell Douglas Helicopter Co. Important investiga-
tions of face-gear drives have been performed by Litvin [1,6] and Litvin et al. [4,5]. However, the
papers mentioned above did not yet study the misalignment effects on kinematic error of face-gear
drives, undercutting and pointing problems.

In this paper we include the following sections. (1) Generation process of the face-gear.
The face-gear tooth surface can be derived by the coordinate transformation and meshing equation
of the shaper. (2) Kinematics of the face-gear meshing with the spur pinion. The tooth surface
vectors of the face-gear and the spur pinion are both transformed to the fixed coordinate system
Ss. (3) Tooth contact analysis and kinematic errors. Numerical analysis is performed for contact
path and transmission errors induced by assembly errors along axis of face-gear direction and
by misalignment of the crossed and angular displacements between axes of face-gear and
spur pinion. (4) Undercutting and pointing. While designing a face-gear, it is important to
avoid pointing and undercutting of the face-gear. Effects of pressure angle and tooth number of
the shaper on undercutting and pointing of the face-gear are studied. (5) Numerical results
and discussion. (6) Conclusion. The analysis is limited to the case of face-gear drives with the
intersecting axes.

2. Generation process of the face-gear

The generation process of a face-gear by a shaper is illustrated in Fig. 1. The face-gear and the
shaper rotate about their own axes with angular velocities w, and w,, respectively. Both axes
intersect at the point O,,. Coordinate systems Sy(X, Vs, Zs), S2(X2, V2, 2z2) and S, (Xpm, Vs Zm), are,
respectively, fixed on the shaper, face-gear, and the frame of cutting machine.

The face-gear tooth surface, Z,, is determined as the envelope to the family of shaper surface,
%, represented in coordinate system S,. The shaper surface, X, and its position vector, r,
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are related by [4,6]

rbs[Sin(eos + es) - QSCOS(BOS + es)]
l's(lls,es) _ - rbs[cos(eos + 9s) + OsSin(gos + es)] X (1)

Ug

1

where u, and 6, are surface coordinates of the shaper, r,, is the base circle radius of the shaper,
6, determines the width of the shaper space on the base circle and can be represented by the
equation

905‘

L .
=3y~ invao, 2)

where N, and «, are tooth number and pressure angle of the shaper, respectively, and inv is the
involute function. The unit normal n, to the shaper surface is given by

Z—QE X % COS(OOS + Hs)

s Uy _ .

ng = -é_hx—a_fi = sin(0, + 6;) | 3
30, ou, 0

We represent the face-gear tooth surface, X,, in coordinate system S, by the following matrix
equation:

ra(us, U5, @) = Mas (@ors(us, 0), )

where M,; is the homogeneous transformation matrix from coordinate system S, to S, given in
appendix. The auxiliary coordinate system S,(x;, y,, z;) in Fig. 2 is set up to facilitate the coordinate
transformation. The angle y,, between axes z,, and z, is determined by y,, = 180 — y, where y is the
half-shaft angle of the face-gear. The rotational angles of the face-gear, ¢,, and the shaper, ¢, are
related by ¢, = ¢,N,/N, where N, and N, denote the tooth numbers of the face-gear and the
shaper, respectively. The equation of meshing is represented as Egs. (5) and (6) [1,6]. Such
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S
v \@
x4 _ \[Om.0 /
TS 05,03
' e // Zm,Zs
i Ym
Zi, Yul#/
Zy
¥s

Fig. 2. Coordinate system S;, S,,, S; and S, applied for generation.
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equations insure that the generating and the generated gear tooth surfaces are always in tangency
during the generating process. Due to the tangency of two mating surfaces, the relative velocity of
the surfaces must be on the common tangent plane.

ng: vgs2) =f(us, Oss ¢s) = O> (5)
D = @ — o) xr, ©

where v, of and @{® denote, respectively, the sliding velocity between shaper and face-gear,
angular velocities of shaper and face-gear in coordinate system S,. From Egs. (4)—(6), parameter
us can be eliminated, so that the position vector for the tooth surface of the face-gear can be
represented as a function of 6, and ¢,

3. Kinematics of face-gear meshing with spur pinion

The tooth surfaces are represented by X, i = 1 for pinion and 2 for face-gear. In computer
simulation, it is assumed that there are misalignment of crossed and angular displacements
between two rotating axes of the mating gears. Also assembly error is assume to exist along the axis
of face-gear direction.

Coordinate systems S;(x;, y1, z1) and S/(x, y,, z,) are fixed on the spur pinion and the frame of
the face-gear drive as shown in both Figs. 3 and 4(a) respectively. The coordinate system S, can be
transformed to the coordinate system S, by rotating the coordinate about axis z; or z, through an
angle ¢,. In order to simulate the misalignment of the face-gear, auxiliary coordinate systems
Sa(Xas Yar Za)s Sp(Xs, Vi, 2p) and S.(x,, y., z.) are set up in Fig. 4(b). The location of S, with respect to
S is shown in Fig. 4(a). Parameters AE, D and D cot y determine the location of the origin O, with
respect to O, where AE denotes the crossed displacement that is the shortest distance between the
spur pinion and the face-gear axes when the axes are crossed but not intersected. In the alignment
meshing, AE = 0 that is the spur pinion and the face-gear axes intersect. In the following analysis,
AE is used to simulate the misalignment of the crossed displacement between axes of spur pinion
and face-gear. The crossed angle, y, = 180 — vy + Ay, is used to simulate the angular misalignment

L, 1A12
17/IA52
o 0 P, Aqr IAs)
P pl
010 Z/ < 2)2¢
p rs ZZ
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Fig. 3. Relationship of coordinate systems of shaper, spur opinion and face-gear.
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Fig. 4. (a) Relationship of coordinate system S,, S; and Sj; (b) Relationship of coordinate system S», S,, S, and S..

of S, with respect to S,. Ay is caused by the misalignment of angular displacement between axes of
spur pinion and face-gear. The variable Ap along the axis of face-gear, also shown in both Figs.
3 and 4(b), represents the misalignment of S, with respect to S, that simulates the assembly error of
the face-gear along its rotating axis, z.. The coordinate system S, can be transformed to the
coordinate system S, by rotating axis z, through an angle ¢,. The face-gear rotates about the axis
z, as shown in both Figs. 3 and 4(b).

According to Figs. 3 and 4(a), the equation of the spur pinion tooth surface can be represented in the
fixed coordinate system S, by applying the following coordinate transformation matrix equation:

R(fl) = Mfll'l, (7)

where r, is position vector of the spur pinion surface similar to r, in Eq. (1) except subscript s is
replaced by 1. Matrix M/, is the homogeneous transformation matrix from coordinate system
S to S;. u;, 0, and ry; denote the surface coordinates and base circle radius of the spur pinion,
respectively. 6, determines the width of the spur pinion space on the base circle and can be
represented similarly to the equation (2) except N, is replaced by N;. N, denotes tooth numbers of
the spur pinion. The unit normal n; to the spur pinion surface is similar to Eq. (3) except subscript
s 1s replaced by 1. It can be expressed in coordinate system S, as

n(fl) =Lf1n1, (8)

where Ly, is the transformation matrix from coordinate system §; to §.
According to Figs. 1, 4(a) and (b), the equations for the tooth surface of the face-gear and its unit
normal can, respectively, be represented in the fixed coordinate system S, by

R(fz) = Mf2M25rs (9)
and
n(fz) = szLzsns. (10)

My, and L, are, respectively, the homogeneous transformation matrix and the transformation
matrix from coordinate system S, to S,. M, and L, are the homogeneous transformation matrix
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and the transformation matrix from coordinate system S; to S, respectively. See the appendix for
details on all the homogeneous transformation matrices and the transformation matrices.

4. Tooth contact analysis and kinematic error

In order to perform the tooth contact analysis (TCA), the equations of face-gear and spur pinion
tooth surfaces should be represented in the fixed coordinate system S,. At any instant, the spur
pinion meshes with the face-gear in point contact [4,6]. At the point of contact, due to the tangency of
the two gear tooth surfaces, the position vectors and their unit normals of both the face-gear and spur
pinion tooth surfaces should be the same. Therefore, the following equations can be observed [4,6]:

R = RP, (11
0D = n®. (12)

Egs. (11), (12) and with relationship of |n{"’| = |n{?’| = 1 form a system of five independent equations
with six unknowns: @,, ¢4, 01, u;, 65 and ¢,. ¢, and ¢, denote the rotational angles of spur pinion
and face-gear, respectively. One of the unknowns, ¢,, may be considered as input variable to solve
the five independent equations with five unknowns.

As ¢, is chosen as the input variable in practical operation, ¢, is then the output rotational
angle. However, for ideal gear meshing, the output rotational angle, ¢, = ¢,N,/N,, where N; and
N, denote the number of teeth of spur pinion and face-gear, respectively. From the derivation
above, the relation between ¢, and ¢, is a nonlinear function in practical case. The kinematic error
of the gear train can be expressed as

Apy = @1 — @2N/N,, (13)

where A, represents the kinematic error of the gear train as a function of input variable ¢,.

5. Undercutting and pointing

It is necessary to avoid undercutting and pointing of the teeth of the face-gear in the design of
a face-gear drive. The undercutting of the generated teeth will be developed near the root area when
interference between the shaper and the generated gear occurs. It means that the generated surface
is not always in tangency with the generating tool surface. The pointing of the teeth means that the
tooth thickness on the top of the tooth becomes zero. They both make the strength of the teeth
weak. Undercutting and pointing can be avoided by proper dimensions of the inner and outer radii
of the face-gear. In this section, we will consider the problems of undercutting and pointing of the
face-gear during generation and spur pinion meshes with face-gear.

5.1. Undercutting and pointing of the face-gear during generation

The general conditions of avoiding undercutting can be found from the works of Litvin [1,6] and
Litvin et al. [4,5]. During the generation process of the face-gear surface, X,, by a shaper,
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appearance of singular points on ¥, is a warning that the surface may be undercut. In the
generation process, the mathematical definition of singularity of X, may be represented by the
equation, v? = 0, that yields v + v¢? = 0, where v!? and v{” denote, respectively, the velocities of
the contact point on face-gear and shaper with respect to the coordinate system S, and v*» denotes
the sliding velocity between X and X,.

Combining equation v¥ + v*?) = 0 and differentiated equation of meshing,

d
a [f(uss 6s> (ps)] =0 (14)

allow one to find singular points at any rotational angle ¢ of shaper on Z,. By connecting singular
points allows one to determine a line L which would to divide the shaper tooth surface to two
regions. Solution exists for Eq. (14), if the following conditions are satisfied:

% 00X, o6
ou, 00,
_ ays 6YS (s2) _
Al - aus 595 Uys - O’ (15)
do;
ﬁls ﬁ)s (psd_(pt
0x, 0x, e
ou, 06,
0z, Oz
= | ¥ s () | —
AZ aus aes UZS 0 (16)
deo;
fuu o Sorgy
and
ou, 00,
0z, 0z
A= s 0 |,
3= o, 20, " 0 (17)
do,
fus Sos Jog

o2, 2 and v$? denote the components of the relative velocities at the point of contact between

shaper and face-gear in the coordinate system S which can be obtained from Eq. (6). The solution
of simultaneous system of Egs. (15)—(17) is the singular point (u,,0,) on the shaper surface for
rotational angle ¢,. A sufficient condition for singularity of X, can be represented by

A} + A} + A} = F(uy, 8, @) = 0. (18)
A simple way to avoid singularity and undercutting of the face-gear surface, X,, is to solve [1,6]
f(us, 05’ (ps) = 05 F(usa gs, (ps) =0. (19)
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With the relation of ry = ry(u,, 6,) given in Eq. (1), simultaneous Eq. (19) can be solved to determine
a line L, which defines the undercutting limit on the generating surface. Similarly, the undercutting
limit line on the generated face-gear can also be derived by transformation from coordinate system
Ss to S,.

In Fig. 3, The location of the tooth pointing is at the point 1. Point P in the figure is the pitch
point. The maximum radius L, which will limit the tooth length to avoid pointing on the face-gear
can be determined by

L, = r,(1/tany, — 1/tany) + a,/tany + Al, (20)
where
AL = s (cos oo — COS oc>. 1
tan vy cosu

7s and a, denote half-pitch cone angle of the shaper and addendum of the face-gear, respectively,
and « is the instant pressure angle during generation.

5.2. Undercutting and pointing of the face-gear meshing with spur pinion

During the spur pinion meshes with the face-gear, the mathematical definition of singularity of
2, are same as Eqgs. (14)-(19) except the subscript s is replaced by 1. With the relation of
ry = ry(uy, 0,), simultaneous Eq. (19) where the subscript s is replaced by 1 can be solved to
determine a line L} with which defines the undercutting limit of the spur pinion surface. Similarly,
the undercutting limit line on the generated face-gear can also be derived by transformation from
coordinate system S; to S,.

The maximum radius L’ which will limit the tooth length to avoid pointing on the face-gear can
be determined by Egs. (20) and (21) except the subscript s is replaced by 1.

6. Numerical results and discussion

The analysis of tooth contact paths, kinematic errors, undercutting and pointing of face-gear
drives are presented in this section. In the following numerical examples, pressure angle of spur
pinion, face-gear and shaper is 25°, the tooth number of spur pinion, face-gear and shaper are 28,
107 and 31, respectively, and the pitch cone angle of the face-gear is 160°. We will limit the analysis
to the case of face-gear drives with intersecting axes. Numerical examples are given below to
illustrate the effects of various conditions of gear meshing on the tooth contact path, kinematic
error, the undercutting and pointing.

In Table 1, we consider the displacement of contact point for aligned face-gear drive with
intersecting axes and for misalignment of AE = 0.1 mm between axes of face-gear and spur pinion.
The effect of positive value of AE is to bring the contact points closer to the inner radius and the
root of the face-gear teeth. It leads to less torque driving upon the gear sets and a larger load
capacity for the face-gear. Displaced bearing contacts due to assembly error, Ap, and misalignment
of angular displacement, Ay, are shown in Table 1 as well. The effects of positive Ap and Ay just
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Table 1
Contact paths of ideal case, AE = 0.1 (mm), Ap = 0.1 (mm) and Ay = 0.01 (deg.)

Ideal case AE = 0.1 (mm)

Diff. case
@y (deg) x;(mm) y,(mm) z,(mm) x;(mm) y,(mm) z;(mm)

1.5 5.49 —42.506 192.463 5.516 —42.299 188.249
1.0 4.182 — 42986 199.625 4.199 — 42755 194.62
0.5 2.874 — 43467 208.256 2.881 — 43207 202.191
0 1.565 — 43947 218.529 1.563 —43.659 211.278
—-05 0.256 — 44424  230.796 0.245 —44.111 222.16
—-1.0 — 1.053 ~ 44901 245.588 - 1.074 —44.564 235229
- 15 —2.363 — 45378  263.496 —2.393 — 45013  250.895
Ap = 0.1 (mm) Ay = 0.01(deg)

@2 (deg) x;(mm)  y,(mm) z; (mm)  x,(mm)  y,(mm)  z; (mm)

1.5 5.727 —43.003 204.809 5.579 —42.709 197.287
1.0 4.446 —43.55 214435 4.285 —43.227 205.656
0.5 3.163 —44.095 225.881 2.994 —-43.75 215791
0 1.88 —44.64  239.656 1.704 — 44279 228.11
—-05 0.598 — 45185 256.341 0.417 —44.812 243.084
- 1.0 — 0.685 —45.728 276.611 — 0.866 — 45356 261.671
- 15 — 1.969 — 4627  301.663 —2.144 — 45914  285.088

show opposite to that of positive AE. It results in a larger torque on the gear sets and more bending
for the teeth of the face-gear.

The effects of misalignment of angular displacement, Ay, and the assembly error, Ap, along the
axis of the face-gear on the undercutting and pointing were also calculated when the spur pinion
meshes with the face-gear. Table 2 shows the inner radius L] to avoid undercutting and outer
radius L) to avoid pointing of face-gear for various Ay and Ap. It shows that larger misalignment of
angular displacement results in a larger inner radius to avoid undercutting and larger outer radius
to avoid pointing of the face-gear. A larger assembly error, Ap, along the axis of face-gear leads to
smaller inner radius to avoid undercutting and smaller outer radius to avoid pointing of the
face-gear.

Kinematic errors due to misalignment AE between axes of spur pinion and face-gear as functions
of input rotational angle are shown in Fig. 5. In this particular gear meshing, the spur pinion and
face-gear will contact at input angle, ¢,, from 1.6° to — 1.6°. In the negative rotational part
(0 to 1.6°), larger misalignment AE leads to a larger kinematic error. In the positive rotational part
(1.6 to 0°), kinematic error is relatively insensitive to misalignment. Kinematic errors due to
misalignment Ap along the rotational axis of the face-gear direction as functions of input rotational
angle are shown in Fig. 6. In the negative rotational part, larger misalignment Ap leads to a larger
kinematic error. In the positive rotational part, there is less effect on kinematic error due to larger
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Table 2

Inner radius to avoid undercutting and outer radius to avoid pointing of face-gear with
respect to different misalignment of angular displacement between axes of spur pinion
and face-gear and different assembly error along the axis of the face-gear direction

Pressure Ay = 0.01 (deg) Ay = 0.03 (deg) Ay = 0.05 (deg)
angle Ap = 0.0 (mm) Ap = 0.0 (mm) Ap = 0.0 (mm)
%o (deg)  Lj (mm) 2 (mm) Ly (mm) L5 (mm) L) (mm) L) (mm)
25.0 156.0737  194.0157 156.0828  194.0308  156.0910  194.0459
22.5 159.2568 1954317  159.2665 1954470  159.2761  195.4623
20.0 162.1221 1964710 162.1325 1964864  162.1489  196.5019
17.5 164.6630  197.2017 164.6738  197.2173  164.6748  197.2329
14.5 167.2733  197.7481  167.2864 197.7638  167.2982  197.7794
Ap = 0.05 (mm) Ap = 0.1 (mm) Ap = 0.2 (mm)
Ay = 0.0 (deg) Ay = 0.0 (deg) Ay = 0.0 (deg)
o (deg) i (mm) Ly (mm) Lj(mm) L;(mm) Lj{(mm) > (mm)
25.0 156.0520  189.0918  156.0377 184.1754  156.0091 1743427
22.5 159.2070  190.4718 159.1927 185.5194  159.1641 175.6147
20.0 162.0860 191.4845 1620717 186.5057 162.0431 176.5482
17.5 164.6315 192.1966 164.6172  187.1993  164.5886  177.2046
14.5 167.2490  192.7291  167.2347  187.7179 1672061  177.6954
4 AE=0mm

= R 3T 7 (aligned cond)

U RS 2r AE=0.1mm

B al

"u‘: ' 1 1 & ' 1 1

E -16 -12 -08 -04.16¢ X 08 12 16

k=

- I AE=02mm2 | e

- AE=03mm-3
Input angle(deg)

Fig. 5. Effect of crossed displacement between axes of spur pinion and face-gear on kinematic errors.

value of Ap. Kinematic errors due to angular misalignment, Ay, as functions of input rotational
angle are shown in Fig. 7. In the negative rotational part, larger misalignment Ay leads to a larger
kinematic error. In the positive rotational part, larger assembly error leads to a smaller kinematic
error.

Fig. 8 shows the boundary lines between undercutting and non-undercutting regions for a given
pressure angle of shaper and an inner radius of module 3.175 mm under different shaper tooth
number. For non-undercutting meshing, it shows that smaller pressure angle of the shaper would
require larger inner radius of the generated face-gear.
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31 Ap'—'(klm
—_ h\\ 5 (a]igﬁdconi)
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[3Y i 1 1 o L 1 L
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E-l6 -12 08 -04 ;0 kg 08 12 16
£ Seel
8 | —aoo- Ap=0.lmm 3 | e
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Input angle(deg)

Fig. 6. Effect of displacement in the direction of rotation axis of face-gear on kinematic error.

L 3| Ay=0deg
N \\ (aligned cond.)
- R 2t
2 >
& \\ T Ay=0.01deg
E
LM L L * !
2 i
g6 12 08 -04 ;0 U%a 08 12 16
g S
2 =[S
. S Ay=0.03deg -2 | SIS
S
—om - -Ay=0.05deg -3 |
Input angle(deg)

Fig. 7. Effect of misalignment of angular displacement between axes of spur pinion and face-gear on kinematic errors.

Fig. 9 shows the boundary lines between pointing and non-pointing regions for a given outer
radius of the face-gear and a pressure angle of the shaper as functions of tooth number of the

shaper. For non-pointing meshing, a less tooth number and a larger pressure angle of the shaper
require a smaller outer radius of the generated face-gear.

7. Conclusions

From the numerical examples discussed above, some important characteristics of this type of
face-gear drive are listed as follows:

1. The effect of positive AE leads to the less torque driving upon the gear sets and the larger load
capacity for the face-gear. The effect of positive of Ap or Ay just shows the opposite consequence.
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. Larger misalignment of angular displacement, Ay, leads to larger inner and outer radii of the
face-gear to avoid undercutting and pointing, respectively. The effects are just opposite due to
assembly error, Ap, along the axis of the face-gear.

. Kinematic error is insensitive to the assembly error along axis of the face-gear direction,
misalignment of crossed and angular displacement between axes of spur pinion and face-gear in
this type of face-gear drive.

. When the tooth number of shaper increases, the dimensions of inner radius free of undercutting
and outer radius to avoid pointing of the generated face-gear are smaller.

. The developed design charts provide the undercutting and pointing conditions in the generation
and meshing processes.
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Appendix A

1. Homogeneous transformation matrices My, My, My, My, and transformation matrices
I42s, LZt, Ltm, Lms- .

M, is the homogeneous transformation matrix from coordinate system S; to S, expressed by the
following

M2s = MZtthMmsa (Al)
where
[cosp, —sing, 0 0]
singp;, cosgp, 0 O
My =| o7 ¢ : (A2)
0 0 10
0 0 0 1}
M1 0 0 07
M, = 0 C?S Tm  —sinp, 0 ) (A.3)
0 siny, cosy, O
10 0 0 1]
[ cosgy sing, 0 O
— si 00
M,, = smM @y, COS Py, ‘ (A4)
0 0 1 0
i 0 0 0 1

M,,.., M,,, and M, are the homogeneous coordinate transformation matrices from S; to S,,, S,, to
S, S; to S, respectively, as seen in Figs. 1 and 2. Matrices L., L,,, L, and L, are the
corresponding rotational submatrices of M,,, M,,, M,,, and M,,,,, respectively.

2. Homogeneous transformation matrices M, and transformation matrices L.

M, is the homogeneous transformation matrix from coordinate system S; to S, given by

cos¢@; sin@,

Mfl = (AS)

0 0

00

—sing; cosp; O O

1 0o
0 0 01

L, is the corresponding rotational submatrice of M.
3. Homogeneous transformation matrices M, My, My, My, M,,, and transformation ma-

trices sz, L]‘a, Lab’ Lbc’ ch.
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M/, is the homogeneous transformation matrix from coordinate system S, to S;. M,,, M,,,
M., M, are the homogeneous matrices from coordinate systems S, to S, S. to S;, S, to S, and
Sa to Sy, respectively, as seen in Figs. 4(a) and (b).

Mf2 = MfaMabecMc2’ (A6)
where
cosgp, —sing, 0 O
B singp, cosp, O O
S 0 1 ol A7)
0 0 01
M 0 0 0
M 010 0 AR
bc — O 0 1 Ap 5 ( . )
[0 0 0 1
M1 0 0 0
0 cos — sin 0
M, =| Land} (A9)
0 siny, cosy, O
[0 0 0 1
M 0 0 D
010 AE
Mg, = . (A.10)
0 01 —Dcoty
(0 0 0 1

Matrices Ly;, Ly,, Las, Ly, and L, are the corresponding rotational submatrices of the homo-
geneous matrices My,, My,, M, M, and M,,, respectively.
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