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A unified approach for nonslip and slip

boundary conditions in the lattice Boltzmann

method

Long-Sheng Kuo a, Ping-Hei Chen a,∗
a Department of Mechanical Engineering, National Taiwan University, Taipei

10617, Taiwan

Abstract

This work proposed a unified approach to impose both nonslip and slip boundary
conditions for the lattice Boltzmann method (LBM). By introducing the tangential
momentum accommodation coefficient (TMAC), the present implementation can
determine the change of the tangential momentum on the wall and then impose the
correct boundary conditions for LBM. The simulation results demonstrate that this
implementation is equivalent to the first-order slip model.

1 Introduction

The lattice Boltzmann method (LBM) has been proved a powerful numerical
tool for fluid mechanics since it can recover the Navier-Stokes equations with
Chapman-Enskog expansions. In the beginning of the development, a lot of
researches focused on the problems in which nonslip boundary conditions were
applicable. The most popular scheme applied is the bounce-back scheme be-
cause of its easy implementation. However, the bounce-back scheme has been
proved that it would generate a nonzero slip velocity [1]. There were then
several works to impose correct nonslip boundary conditions in LBM [2–8].

On the other hand, the developments of micro-electro-mechanical systems
(MEMS) and nano-technology have stimulated the study of the systems with
micro-scale sizes, such as microchannel flows. In such the scale range, the
mean free path of the fluid could be the same order as the geometric size
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 of the devices. Thus, the Knudsen layer is large and the nonslip boundary
conditions are no longer valid. Therefore, many researches have applied the
LBM with various slip boundary conditions to the microscale fluid systems
[9–17]. Since the specular reflection implies slippage, a popular slip-boundary
scheme introduced two parameters (r and s, r + s = 1) to adjust the weight-
ing of distributions on the wall between bounce-back and specular reflections
[10,11,16,17]. When r = 1, it recovers the bounce-back scheme. Their physical
boundaries locates between nodes and their slip velocity is the velocity at the
nodes nearest to the wall, not the velocity on the wall. To get the ordinary
slip velocity, an extrapolation is required [11]. Therefore, if a fair comparison
between the numerical work and the theoretical analysis is desired, either an
extrapolation of the numerical work or an interpolation of the theoretical work
should be made.

The purpose of this work is then to propose a unified approach for non-slip
and slip boundary conditions in LBM. First, the microscopic point of view of
the slip phenomena is reviewed. The key point is the tangential momentum
change caused by the boundary. With the help of the tangential momentum
accommodation coefficient (TMAC, σ) [18], one can know the change of the
tangential momentum of the fluid on the wall. Therefore, correct boundary
conditions can be imposed for LBM. In addition, the present scheme locate the
nodes on the physical boundaries. This makes the verifications of boundary
conditions more directly, no extrapolations or interpolations required. The
present scheme is applicable to either nonslip or slip boundary conditions.
The numerical results show that this scheme is equivalent to the first-order
slip model [18].

2 Slip phenomena and tangential momentum accommodation co-

efficient

From the microscopic point of view, when the fluidic particles are specularly
reflected, the tangential velocity are preserved. It implies that the wall would
not exert tangential stresses on the fluid (shear stress free) and slippage would
be observed. On the other hand, if the wall exerts tangential stresses on the
fluid, the tangential momentum would be altered after reflection. To deter-
mine the momentum change, one can first calculate the incident tangential
momentum (PI) by

PI ≡
∫

v·n≤0
(fv)‖dv (1)

where f is the mass density distribution of the fluid, n is the normal direction
of the wall toward the fluid field, and v‖ is the velocity in the tangential
direction. From the macroscopic point of view, PI can be expressed by the
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 product of the density and the velocity:

ρI ≡
∫

v·n≤0
fdv, PI ≡ ρIUI (2)

where ρI is the density of the incident particles on the boundary, and UI is
the incident tangential velocity. Similarly, the reflected parts are

ρR ≡
∫

v·n≥0
fdv, PR ≡

∫

v·n≥0
(fv)‖dv = ρRUR. (3)

Meanwhile, the overall average density, ρ, and the overall average tangential
velocity of the fluid on the boundary, U , are determined by

ρ≡
∫

fdv =
(
∫

v·n≤0
+
∫

v·n≥0

)

fdv

= ρI + ρR (4)

ρU ≡
∫

(fv)‖dv =
∫

v·n≤0
(fv)‖dv +

∫

v·n≥0
(fv)‖dv

= ρIUI + ρRUR. (5)

From the mass conservation and to avoid particle accumulations on the bound-
aries, the reflected fluid should be equal to the incident fluid for an imperme-
able boundary. Therefore, ρI = ρR = ρ/2.

To describe the effect of the boundary on the tangential momentum of the
fluid, the tangential momentum accommodation coefficient σ (TMAC) is de-
fined as [18,19]

σ ≡ ρRUR − ρIUI

ρRUW − ρIUI

=
UR − UI

UW − UI

(6)

where UW is the tangential velocity of the wall. Thus, the velocity U can be
expressed by

U =
1

ρ
(ρIUI + ρRUR) =

1

2
σUW +

(

1 − σ

2

)

UI . (7)

When σ = 0, it means no shear stress acts on the fluid and the wall is a slip
boundary. On the other hand, if σ=2, U = UW and it is the non-slip boundary
condition.

In order to consider the effect of the permeation, and to describe the effects of
the boundary on the tangential momentums with the macroscopic quantities,
e.g., ρ and U , a modified tangential momentum accommodation coefficient,
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 σ′, is defined by

σ′ ≡ U − USR

UW − USR

(8)

where USR is the average tangential velocity under the specular reflection by
the impermeable boundary, which is equal to UI . The relation between σ and
σ′ is

σ′ =
ρU − ρUSR

ρUW − ρUSR

=
(ρIUI + ρRUR) − (ρI + ρR)UI

ρ(UW − UI)

=
ρR

ρ

UR − UI

UW − UI

=
ρR

ρ
σ. (9)

For an impermeable boundary, σ = 2σ′. The tangential momentum change of
the fluid caused by the boundary can be also determined by

ρ(U − USR) = σ′ρ(UW − USR). (10)

If USR can be expressed by the Taylor expansion at the wall about one mean
free path (λ) away,

USR ≈ U + λ
∂U

∂n

∣

∣

∣

∣

∣

w

+ · · · , (11)

then the slip velocity, U − UW , can be calculated by

U − UW ≈ 1 − σ′

σ′
λ

∂U

∂n

∣

∣

∣

∣

∣

w

. (12)

This is the first-order slip model [18].

3 General description of LBM

The lattice Boltzmann equation with BGK relaxation time approximation can
be written as.

fi(x + ci∆t, t + ∆t) − fi(x, t) =
∆t

τ
[f eq

i (x, t) − fi(x, t)] (13)

where ci is the basis vector of the lattice, τ is the relaxation time constant for
the flow field, and the superscript eq denotes the distribution at equilibrium.
The density, ρ, velocity, u, of the fluid are determined by

ρ =
∑

i

fi, ρu =
∑

i

fici. (14)
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 In this study, the D2Q9 lattice is used as illustration. For D2Q9 lattice, the
nine basis vectors are given by

ci =



























0, i = 0

cos
(

(i−1)π
2

)

ix + sin
(

(i−1)π
2

)

iy, i = 1 ∼ 4
√

2
[

cos
(

(2i−1)π
4

)

ix + sin
(

(2i−1)π
4

)

iy
]

, i = 5 ∼ 8

(15)

The corresponding equilibrium distributions are

f eq
i = ρwi

[

1 + 3u · ci +
9

2
(u · ci)

2 − 3

2
|u|2

]

(16)

where w0 = 4/9, w1 = w2 = w3 = w4 = 1/9, w5 = w6 = w7 = w8 = 1/36.
The macroscopic transport property of the fluid like kinematic viscosity ν is
determined by

ν =
1

3

(

τ

∆t
− 1

2

)

. (17)

4 Slip boundary conditions in LBM

For a boundary with given σ′ and the permeation velocity UP , the unknown
distributions of the boundary nodes are contributed from three parts: the spec-
ular reflection (f sr

i ), the stress exerted by the wall (fw
i ), and the permeation

condition (f p
i ):

fi = f sr
i + fw

i + f p
i (18)

where the subscript i of the unknown distributions satisfies ci · n > 0. Each
part can be treated individually as follows. First, the specular reflection is
readily determined if the boundary is horizontal or vertical. For example, the
unknown distributions for a upper horizontal wall are f4, f7 and f8. Thus,
f sr

4 = f2, f sr
7 = f6, f sr

8 = f5.

Once f sr
i are determined, USR can be calculated by

ρ =
∑

i

fi (19)

ρUSR =
∑

ci·n≤0

(fici)‖ +
∑

ci·n>0

(f sr
i ci)‖. (20)

The change of the tangential momentum caused by the wall is contributed by

5



 

 

 

ACCEPTED MANUSCRIPT 

 unknown fw
i .

σ′ρ(UW − USR) =
∑

ci·n>0

(fw
i ci)‖ (21)

0 =
∑

ci·n>0

(fw
i ci)⊥ (22)

0 = fw
i for normal direction. (23)

The zero sum of the normal parts in Eq. (22) makes sure that fw
i ’s alter the

tangential momentum only. It also implies
∑

fw
i will not contribute to the

density calculation.

If the boundary is permeable, the permeation conditions are counted by

ρUP =
∑

ci·n≤0

(fici)⊥ +
∑

ci·n>0

(f p
i ci)⊥ (24)

0=
∑

ci·n>0

(f p
i ci)‖. (25)

The zero sum of the tangential velocity of f p
i in Eq. (25) guarantees that f p

i

won’t affect the calculation of the tangential momentum.

D2Q9 Lattice

Consider a lower flat boundary in D2Q9 lattice as an example. The tangen-
tial direction is in x direction, and the normal direction is in +y direction.
The unknown distributions after streaming processes are f2, f5, and f6. The
corresponding specular-reflection distributions are then

f sr
2 = f4, f sr

5 = f8, f sr
6 = f7 (26)

ρUSR = f1 − f3 + 2(f8 − f7). (27)

The shear stress exerted by the wall leads to the momentum change.

σ′ρ(UW − USR) =
∑

ci·n>0

(fw
i ci)x = fw

5 − fw
6 (28)

0 =
∑

ci·n>0

(fw
i ci)y = fw

2 + fw
5 + fw

6 = fw
5 + fw

6 (29)

where fw
2 = 0. Therefore,

fw
5 =

σ′ρ

2
(UW − USR), fw

6 = −fw
5 . (30)

If the wall is permeable and the permeation velocity, UP (= Uy in this case),
is known, then
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ρUP =

∑

i

(fici)y = f p
2 + f p

5 + f p
6 (31)

0=
∑

ci·n>0

(fw
i ci)x = f p

5 − f p
6 . (32)

Additional constraint is needed to determine f p
2 , f p

5 , and f p
6 . Here the non-

equilibrium bounce-back scheme in normal direction is applied [20]. Thus,

f p
2 =

2

3
ρUy, f p

5 = f p
6 =

1

6
ρUy. (33)

The only unknown now is ρ, which can be determined by

ρ ≡
∑

i

fi = f0 + f1 + f3 + 2(f4 + f7 + f8) + ρUy

ρ =
f0 + f1 + f3 + 2(f4 + f7 + f8)

1 − Uy

. (34)

In summary,

f2 = f4 +
2

3
ρUy (35)

f5 = σ′f7 + (1 − σ′)f8

+
σ′

2
[ρUW − (f1 − f3)] +

1

6
ρUy (36)

f6 = σ′f8 + (1 − σ′)f7

−σ′

2
[ρUW − (f1 − f3)] +

1

6
ρUy. (37)

The implementation has some important features. The presence of UW indi-
cates that the new scheme deals with moving boundary conditions directly.
This is indeed an important result. If the referecne frame moves with the
wall velocity like [22], when the populations of interior nodes propagate to the
boundary nodes, one has to make transformations of fi on the boundary nodes
so that all values of fi are counted on the same reference frame. Moreover,
the representation of f eq

i in the moving frame may not be the same as that in
the stationary frame. The present scheme applies the same stationary frame
to all nodes and no such transformation is necessary.

In addition, one should notice the presence of f1 and f3. In order to imple-
ment the slip and/or nonslip boundaries more correctly, f1 and f3 should be
considered since they are involved in the calculation of the fluid velocity and
then will affect the slip velocity in LBM. For nonslip boundaries (σ′ = 1), it
recovers the results by [20,21].

This scheme can also determine the unknown distributions of the corner nodes
uniquely, no need to additionally assume the constant density at the corner
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 nodes, as done in [20]. As an illustration, consider the lower-left corner of an
impermeable, stationary boundaries, UW = UP = 0. The unknown distribu-
tions are f1, f2, f5, f6, and f8. From the non-equilibrium bounce-back scheme
in the normal directions, one can get

f1 = f3, f2 = f4. (38)

If considering the lower boundary, the zero vertical velocity requires f5 + f6 =
f7+f8. On the other hand, if considering the left boundary, the zero horizontal
velocity requires f5 + f8 = f6 + f7. These two constraints lead to

f5 = f7, f6 = f8. (39)

Substituting into Eq. (37), one gets

f6 = σ′f6 + (1 − σ′)f7. (40)

Thus,

0 = (1 − σ′)(f6 − f7). (41)

To solve f6 and f7 for arbitrary σ′, it requires f6 = f7. It explains why Zou
and He [20] could not determine the unknowns uniquely because for nonslip
boundary conditions (σ′ = 1), Eq. (41) becomes trivial and leaves f6 and f7

undetermined.

5 Numerical Results

The Couette flows and planar Poiseuille flows are performed as benchmark
tests for the present scheme.

5.1 Couette flows

Consider a steady Couette flow with the upper plate moving at constant speed
UW and the lower plate stationary. The distance between two plates is H . The
simulation uses the nodes of Nx × Ny = 11 × 11 with periodic boundary
conditions in the horizontal direction. The spacing between two plates is then
H = Ny−1 = 10. The velocity profile at steady state should be linear. Suppose
σ′ of the upper plate is given. Without loss of the generality, the lower plate
is assumed nonslip (σ′ = 1). Thus, the slip velocity, U(y = H) − UW , can be

8
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Fig. 1. Steady-state normalized velocity profiles for different σ′ with τ = 1. The
straight lines are the fitting lines.

determined by

∂U

∂y
=

U(y = H)

H
= const (42)

U(y = H) − UW =
1 − σ′

σ′
λ

∂U

∂n

∣

∣

∣

∣

∣

y=H

. (43)

Fig. (1) shows the normalized steady-state velocity profiles (U/UW ) under
different values of σ′. The linear velocity profiles are verified. For σ′ = 1, the
simulation captures the nonslip boundary condition. In addition, one can see
that the slip velocity is not linear with σ′. For σ′ ≥ 0.5, the slip velocity is less
5%.

Recall that the Knudsen number is defined as Kn ≡ λ/H , therefore,

Kn =
λ

H
=

σ′

1 − σ′

(

UW

U(y = H)
− 1

)

. (44)

Note that the mean free path depends on the collision frequency. Therefore,
Kn would depend on τ , but it should be independent of σ′. Fig. (2) presents
the calculated Kn at different σ′ under τ = 1. The horizontal line indicates
that Kn is independent of σ′, as expected. The value of Kn is equal to 1/30.
This means that λ = KnH = 1/3.

The simulation results suggest that the Couette flow can be used to determine
the mean free path in LBM for different relaxation time τ . Fig. (3) presents λ
as a function of the relaxation time τ at fixed σ′ = 1/2. The relation is linear
and the slope is 1/3.

λ =
1

3
τ, Kn =

1

3

τ

H
. (45)

From the macroscopic point of view, λ is related to ν = 1
3
(τ − 1/2). The

numerical result shows that no 1/2 shift is necessary.
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Fig. 2. Knudsen number as a function of σ′ for τ = 1. The results indicate that Kn
is independent of σ′.
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Fig. 3. Dependence of the mean free path (λ) on the relaxation time (τ) for σ′ = 1/2.
The slope of the fitting straight line is 1/3.

5.2 Planar Poiseuille flows

Consider a planar Poiseuille flow within two horizontal stationary plates with
same σ′. The spacing between the plates is H . The simulation uses the nodes
of Nx ×Ny = 101×11. Pressure boundary conditions are imposed at the inlet
and the exit. The steady-state velocity profiles for the flow are parabolic for
Poiseuille flows. Applying Eq. (12) to both plates, one can get the normalized
velocity profiles as

U(y)

U0
= 4(Y − Y 2) + Us (46)

U s =
U(y = 0)

U0

= 4
1 − σ′

σ′
Kn (47)

where Y = y/H , U0 is the maximum velocity under nonslip boundary condi-
tions, and Us is the normalized slip velocity.

Fig. (4) shows the normalized velocity profiles at the exit for τ = 1. The profiles
fit well the parabolic shapes. It is obvious that the slip velocity is larger for
smaller σ′. Fig. (5) presents the normalized slip velocity as a function of σ′.
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Fig. 4. The steady-state normalized velocity of a Poiseuille flow (τ = 1) at the exit
for various σ′.

Eq. (46) with Kn=1/30

,

|

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

σ

N
or

m
al

iz
ed

 s
lip

 v
el

oc
ity

, U
s

Fig. 5. The normalized slip velocity as a function of σ′ at the exit. The Knudsen
number is calculated based on Eq. (45).

One can see that Eq. (47) can well fit the simulation results if the Knudsen
number is calculated by Eq. (45). This indicates that the present scheme can
well implement a first-order slip model.

6 Conclusion

A unified implementation for nonslip and slip boundary conditions in LBM
were proposed and verified. With a given modified TMAC σ′, the change
of the tangential momentum of the fluid caused by the interactions can be
calculated. Therefore, one can impose the corresponding boundary conditions
in LBM. Couette flows and planar Poiseuille flows were studied under different
slip conditions. When σ′ = 1, the simulations produce the nonslip results. For
σ′ < 1, the numerical results demonstrate that the present scheme imposes the
first-order slip model. Contrast to the works placing the physical boundaries
between nodes, the present study made fair comparisons between numerical
and theoretical work directly without any extrapolations. The fact of using the
same stationary frame for all nodes makes the calculations simpler compared
with the scheme applying the moving frame on the boundary nodes.
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