Rz 2B~ FLIPTAFTRTBIAET
FArig 452

Department of Electrical Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Bachelor’s Thesis

ATRIA SRR OPFER AR B 2
GTM: A Generic Graph-Neural-Network-Based

Timing Macro Modeling Framework

5k 38
Kai-Chun Chang

KRR L L
Advisor: Iris Hui-Ru Jiang, Ph.D.

PoER R 111 & 40

April 2022

BB ARELLHLAHX
DRERCELE
AN E AT E W2 B AR KRy
GTM: A Generic Graph-Neural-Network-Based

Timing Macro Modeling Framework

WX AR RN E (B07901056) R L& AL TH T
REZAMZELHEL B HEBR 111 £ 04 A 06 8%
THERXEE L L BBR ORXEME o 45 e

OREBEQG) :
-2 éj o (% 4)
(8 E442)

A Z
A &2

FNE //EA % Y}')%%(A%z)

(REARZFRERARE)

Approval Letter from the Oral Examination Committee
Bachelor’s Thesis

National Taiwan University

Ry B A% @ e 2 38 A o 0 AR A BRI
GTM: A Generic Graph-Neural-Network-Based

Timing Macro Modeling Framework

This certifies that this Bachelor’s Thesis has been completed by
Kai-Chun Chang (with the Student ID No. B07901056) of the
Department of Electrical Engineering, National Taiwan
University. This Thesis was approved by the examination
committee and the author of the Thesis passed the examination

administered by the oral examiners on April 6, 2022.

Oral examiners -

—

Tns g«fz,m — [JTon ;/ (Signature)
(Thesis Ad¥isor)

V4 /H:‘(”k/l,, (%///([/,
//%/V\,): Wei /Z&/
7 «Z/ M\Signature)

(Each college/department will defermine whether personal seals are required.)

Department Chair:

Acknowledgements

B RERMRIEE LG E o3t WA T RAE ~ZPEEX BT
BRPZEH AR LEHF SR H EREF ST AR E S
SRR AT REEHR IR TR 6B TR SR E BRI LT R

BHHE o AT XES WP K 6L

B RBRA A 0 RE ARSI R B P B
BRI T F i RSAFREEEES RRALRHORY -

BREBZRHATRENTAZREFEE LERFEME I L2822 K 1bIE

RARGBRTRETRS F o BB T RER R -

BR > BEBHBROGTALT B LR BN A EE LA T B8 - 3B
o ERRAEBRRERGHARLE LOEEIE -

B RERHERTHRA ACTHERBI TREBETNES LA T L2 2]
% RE 5 LR A LB 69 REBAF B - A8 M TR R R PTG L egess

HHFETRRTEERERLRNELY AEMARNBE LR AT dE |

1
ENE T PN

2022 % 6 H

B A TR 2 Y PR] E R

£ 1 GEFE L E e B

@Z] %—’% ? w“ ﬁi? s

g

MF IC Ry B s F 2 ZB N pF B 03] (timing macro model) B 444 B
EAE R 0 LR IPE R ST 7R R AT A S PER A 4TS o B pE
BHAIEG THEA ST £ B POTR A B R PPN R B

g@ﬁﬁ%ﬁﬁ&ﬁy%+ﬁk%ﬁ%%ﬁ%&&ﬁﬁﬁﬁﬁoﬂ“’ 255

@h
&=
&
T+
A
=
=
0
X
3
o
=]

PR Al 4 & Ao e Lo o AR BRR N R B
ER$ IS PR O] BT L e R - AR e 0 MR KR H TR
B A BT REAE o FIM > AFT R DT - B AT B4 5 4 FL (graph neural
network, GNN)&fid * 5P~ N pF R 03 28 4 - 7 i * e fe e i 2 B A e 5
EPRAFHE I EH N 2LFRAF g A AP - BEAFE TR E
BRE A R ARG SRS R RREG R) B
E%ﬁﬁﬁ’§%ﬁ§$&%§?‘i%&%ﬁﬂ%%@*¢?&”P%W°Jﬁ
FERT OB R EITTE A T AR R RFR

450] 10% e B3V pE B A < o] o b U X e B S R B "ﬁc‘ (common path
pessimism removal, CPPR) & &) » § S 5 % P A P it i * &7 b P R
AR BRI E R G- e A B AT 2 R AT 3 R p B A BB
M2 e R P B 1 € 3R (59th Design Automation Conference) s # ©

\%

REAES PE A A 45 s PEA
’ \Féb}é];kfﬁﬁ'&\’}ﬁ‘\f‘ﬁx—\‘ 2 - .
FRARAEA R SRR S PRES

BLLH “,‘TT

vi

GTM: A GENERIC
GRAPH-NEURAL-NETWORK-BASED TIMING
MACRO MODELING FRAMEWORK

Student: Kai-Chun Chang Advisor: Dr. Iris Hui-Ru Jiang

Department of Electrical Engineering
National Taiwan University

Abstract

Due to rapidly growing design complexity, timing macro modeling has been
widely adopted to enable hierarchical and parallel timing analysis. The main chal-
lenge of timing macro modeling is to identify timing variant pins for achieving high
timing accuracy while keeping a compact model size. To tackle this challenge, prior
work applied ad-hoc techniques and threshold setting. In this work, we present
a novel and generic timing macro modeling approach based on graph neural net-
works (GNNs) that is available on various delay models and multi-corner multi-
mode (MCMM). A timing sensitivity metric is proposed to precisely evaluate the
influence of each pin on the timing accuracy. Based on the timing sensitivity data
and the circuit topology, the GNN model can effectively learn and capture timing
variant pins. Experimental results show that our GNN-based framework reduces
10% model sizes while preserving the same timing accuracy as the state-of-the-art.
Furthermore, taking common path pessimism removal (CPPR) as an example, the

generality and applicability of our framework are also validated empirically. The

Vil

preliminary results have been accepted by the premier conference in Electronic De-
sign Automation, 59th Design Automation Conference.

Keywords: Timing analysis, hierarchical timing analysis, timing macro
modeling, interface logic model, common path pessimism removal, multi-

corner multi-mode, graph neural networks

viil

Table of Contents

Abstract (Chinese) \%
Abstract vii
List of Figures xi
List of Tables xii
Chapter 1. Introduction 1
Chapter 2. Problem Formulation 5
Chapter 3. Overview of Our Framework 7
3.1 GNN and Timing Macro Modeling Problem 7
3.2 Our Generic Frameworko 8
Chapter 4. Timing Sensitivity Data Generation 10
4.1 Timing Sensitivity (T'S) 10
4.2 Insensitive Pins Filtering 0oL 11
Chapter 5. GNN-Based Timing Macro Modeling 15
5.1 GNN Model Training and Prediction 15
5.2 Timing Macro Model Generation 16
5.3 Flexibility and Generality of Our Framework 17

Chapter 6. Timing Macro Modeling for Multi-Corner Multi-Mode 19
6.1 Multi-Corner Multi-Mode (MCMM) Timing Analysis 19
6.2 Timing Macro Modeling Covering All Corners 20

1X

Chapter 7. Experimental Results
Chapter 8. Conclusions
Bibliography

Publication List

24

32

33

37

1.1

2.1

3.1

3.2

4.1
4.2
4.3
4.4

5.1

6.1
6.2
6.3

7.1

List of Figures

Hierarchical and parallel timing analysis along with timing macro
modeling. The “core” block is analyzed once, and the corresponding
timing macro model is reused to all the “core” blocks [5].

Timing macro modeling and model accuracy evaluation flow.

The analogy between GNN aggregation and timing propagation. Tim-
ing values including slew, arrival time, and required arrival time are
propagated through edges (blue and green arrows). On the other

hand, node features of layer [, hgl), are aggregated through edges and

lJrl) (

transformed into node features of layer [+ 1, hz(» red arrows). . . .

Overview of our framework.

Timing sensitivity evaluation flow.
Timing sensitivity distribution of fft_ispd.
Slew difference and shielding effect.

Timing sensitivity training data generation flow.
Timing macro model generation.

The default flow to generate timing macro models for all the corners.
Our framework to generate timing macro models for all the corners. .

An example of our timing macro modeling framework for all corners.

Separated TS distribution based on the insensitive pins filtering. . . .

X1

13

20
22
23

27

5.1

7.1
7.2

7.3
7.4

7.5

List of Tables

Training features. The first eight features are basic features, while
the last feature is a dedicated feature for CPPR mode.

Testing data statistics. L

Experimental results on TAU 2016 [5] and TAU 2017 [1] benchmarks
with CPPR. For the avg. and the max error, we adopt the absolute
value of difference between the result of macro model and the one
of full netlist. If the results of macro model are more optimistic,
the difference is further weighted by 2. For the model file size, we
adopt the size of the library for late timing. Difference 1 and ratio
1 are compared with iTimerM [13]. Difference 2 and ratio 2 are
compared with [12]. Difference = compared result - our result. Ratio
= compared result / our result. Note that [12] is only evaluated on

TAU 2016 benchmark in their work.
Experimental results with and without CPPR-dedicated features.

Experimental results on TAU 2017 benchmark without CPPR. For
the avg. and the max error, we adopt the absolute value of difference
between the result of macro model and the one of full netlist. If the
results of macro model are more optimistic, the difference is further
weighted by 2. For the model file size, we adopt the size of the
library for late timing. Difference 1 and ratio 1 are compared with
iTimerM [13]. Difference 2 and ratio 2 are compared with ATM [10].
Difference = compared result - our result. Ratio = compared result /
our result. We additionally include the circuit mgc_matriz_mult_iccad
to evaluate since ATM [10] also adopts it as one test case.

Validation on insensitive pins filtering.

xii

Chapter 1

Introduction

During the IC design flow, static timing analysis (STA) is regarded as a crucial and
essential step to achieve timing closure. As the evolution of the IC industry, the
design complexity grows rapidly, and timing analysis has thus become a bottleneck
due to its high computational cost. To improve the efficiency of timing analysis, hi-
erarchical and parallel timing analysis has been widely adopted. During hierarchical
and parallel timing analysis, a large design is partitioned into several blocks, each
block is then analyzed once, and a corresponding timing macro model is generated.
The macro model could be reused for duplicate blocks in the following analysis, thus

expediting the whole process while preserving the quality. (see Figure 1.1.)

Several timing macro modeling approaches have been proposed in literature.
Interface logic models (ILMs) and extracted timing models (ETMs) [2] are two
pioneering paradigms. ILM contains all the interface logic while eliminating register-
to-register logic, and ETM builds context-independent timing arcs between input
and output ports. The later works start from either of the two paradigms and
attempt to improve the timing accuracy or model size. ILM-based approaches aim to
preserve high timing accuracy, but they often generate larger models. On the other
hand, ETM-based approaches generate relatively smaller models at the cost of high
timing accuracy loss. Moreover, it is not trivial to extend ETM-based approaches to

handle common path pessimism removal (CPPR), which is commonly considered in

[2 1 12] 12|

[¥] L2
4

Cache & Chip Interconnect

[2 1 12§ 12]

21 2

—-| Timing Macro Modeling |—> M

M | timingmacro model for a “core” block

Figure 1.1: Hierarchical and parallel timing analysis along with timing macro mod-
eling. The “core” block is analyzed once, and the corresponding timing macro model
is reused to all the “core” blocks [5].

modern design. For ILM-based approaches, LibAbs [11] and its following work [12]
perform tree-based graph reduction, preserve roots and leaves of maximal in-trees,
and construct primary output segments for output load. iTimerM [13] propagates
minimum/maximum slew values through the timing graphs, and pins with slew
range exceeding a user-defined tolerance are preserved. ATM [10] is an ETM-based
approach; it marks those pins with slew range exceeding a threshold as dirty, selects

checkpoints from dirty pins, and builds groups as well as timing arcs accordingly.

The main challenge of timing macro modeling is to identify timing variant
pins for achieving high timing accuracy while keeping a compact model size. First, to
tackle this challenge, previous work adopts some heuristic techniques during their
timing macro modeling procedure, which may cause degradation on the solution
quality. For instance, LibAbs [11,12] applies in-tree and out-tree graph reductions
alternatively, based on the observation on the timing arc forms of cells or nets.
Second, some works need to set a threshold for variant pins identification, which re-

quires considerable engineering effort, and the same threshold may not be applicable

for various circuit designs. For example, iTimerM [13] uses a threshold to separate
the variant regions with the constant region, and ATM [10] uses a threshold to de-
termine which pins are dirty. Lastly, for advanced node timing analysis models or
modes such as CPPR, existing methods have to design specific algorithms for dif-
ferent timing analysis models to meet the corresponding requirements, which may

be time-consuming and limited.

Therefore, there is still room for improvement. Recently, graph-learning-
based methods have been validated to outperform the traditional heuristic-based
approaches on multiple EDA problems on graphs, such as tier partitioning in 3D
ICs [16], predictions on parasitics and device parameters [21], and multiple pattern-
ing lithography decomposition (MPLD) [15], etc. To overcome the deficiencies of
prior work on timing macro modeling, we introduce graph neural networks (GNN)
to learn the timing variant pins from the circuit topology and timing propagation
properties. In this work, we first design a timing sensitivity metric that can capture
the influence of each pin on the overall timing accuracy, and generate the training
data for GNN models accordingly. Then, due to the applicability of GNN on the
timing macro modeling problem, the timing properties of circuit pins could be learnt
effectively. Eventually, we establish a flexible and general GNN-based timing macro

modeling framework that can achieve better solution quality than previous work.

The main contributions of this work are summarized below:

e We take a brand new graph-learning-based approach to the timing macro

modeling problem, in view of the high applicability of GNN on the problem.

e We propose a timing sensitivity metric that can evaluate the timing criticality
of each circuit pin accurately. The metric is then used to generate training

data for GNN models.

e We propose a flexible timing macro modeling with GNN framework which
is available on general designs, as we only include small designs during our
training phase while our framework could achieve superior quality on large

designs.

e Our framework can easily be applied to different advanced node timing anal-
yses. We use CPPR as an example, while the same strategy could be ex-
tended to other analyses such as advanced on-chip-variation (AOCV), para-
metric on-chip-variation (POCV), and composite current source (CCS) model.

We demonstrate how to generalize our framework to multi-corner multi-mode

(MCMM).

As an ILM-based approach, experimental results show that our framework
achieves the best timing accuracy in comparison with state-of-the-art works. More-
over, we improve the model size by 10% than iTimerM [13], the most accurate
state-of-the-art work. Besides, our framework generates high-quality solutions no
matter whether the CPPR mode is turned on, which implies the generality and

applicability of our framework.

The remainder of this thesis is organized as follows: Chapter 2 formulates
the timing macro modeling problem. Chapter 3 introduces GNN along with its
applicability to the problem and illustrates our framework. Chapter 4 details our
timing sensitivity metric as well as the data generation flow. Chapter 5 details the
GNN model training, the timing macro model generation, along with the generality
of our framework. Chapter 6 introduces the MCMM timing analysis and how to
extend our framework for various corners. Chapter 7 shows experimental results.

Finally, Chapter 8 concludes this work.

Chapter 2

Problem Formulation

In this work, we follow the problem formulation from TAU 2016 and 2017 contests
[1,5], which is also adopted by most previous work. The timing macro modeling

problem can be defined as follows:

Given a circuit design with its gate-level netlist and net parasitics, the early
and late cell libraries, and the boundary timing information (including slew and
arrival time of primary inputs, and output load and required arrival time of primary
outputs), the goal is to generate a timing macro model that encapsulates the timing

behaviors of the design.

The generated timing macro model is evaluated by its model accuracy, model
size, model generation performance, and model usage performance, where model
accuracy is validated by comparing timing analysis results using our timing macro
model and the original flat design, as shown in Figure 2.1. We adopt iTimerM [13]

as our reference timer, and the results are also aligned with OpenTimer [6].

Netlist Parasitics Cell Libraries Boundary Timing Information

Our Timing Macro Modeling
Framework

Full
Netlist

| Post-CPPR Timing Analysis |

I

Timing Report of
Our Macro Model

| Post-CPPR Timing Analysis |

!

Timing Report of
Flat Design

Model Accuracy Evaluation

Figure 2.1: Timing macro modeling and model accuracy evaluation flow.

Chapter 3

Overview of Our Framework

3.1 GNN and Timing Macro Modeling Problem

Encouraged by the success of deep learning paradigms on a variety of tasks,
graph neural networks (GNN) have been developed to apply deep learning methods
to graph data [17,22]. In a typical GNN scheme, node information is aggregated and
transformed between neighbors recursively. After several neural network layers, a
high-level representation of each node is extracted, which encapsulates the features

and structures of the node’s neighborhood [16, 21].

There are several reasons that GNN is suitable for the timing macro modeling
problem. First, the evaluation of timing criticality on circuit pins is usually chal-
lenging for heuristic-based methods. Nevertheless, graph-learning-based methods
could capture implicit properties of circuit pins and thus evaluating timing impor-
tance more precisely. Second, the aggregation of node attributes in GNN is similar
to the propagation of timing values on timing graphs, as shown in Figure 3.1. Con-
sequently, the timing properties of circuit pins could be captured and learned by
GNN models smoothly. Third, due to the information exchange mechanism in GNN,
the final representations of adjacent nodes tend to become similar. This property
is desired in timing macro modeling since neighbor pins are usually of comparable

degrees of timing criticality. Lastly, it is natural to represent circuit netlists by

required arrival time

required arrival time

|:(> (—

required arrival time
TS0 &
X

I:><:I Timing value propagation

- Feature aggregation

hP h{"Y Features of | and I+1 layers, respectively
O Target node
O 1-Hop neighbors of the target node

Figure 3.1: The analogy between GNN aggregation and timing propagation. Timing
values including slew, arrival time, and required arrival time are propagated through

edges (blue and green arrows). On the other hand, node features of layer [, hf;l), are

aggregated through edges and transformed into node features of layer [+ 1, hglﬂ)

(red arrows).

graphs, and thus GNNs could be easily embedded into the timing macro modeling

framework.

3.2 Our Generic Framework

Figure 3.2 illustrates the proposed timing macro modeling framework. In
the first stage, the timing sensitivity of each circuit pin is evaluated to reflect the
influence of each pin on the overall timing accuracy. Then, the training data is
generated accordingly. In the second stage, we adopt GNN models to learn the
properties of circuit designs and predict the timing sensitivities of testing data.
Finally, starting from the interface logic netlist (ILM), timing macro models are

generated based on our timing sensitivities prediction. Different from previous work,

LAn Arbitrary Delay Model and Mode |
I
Timing Macro Modeling Framework

| Timing Sensitivity Data Generation |
}

Timing Sensitivities of Training Designs |
!

| GNN Model Training |

!
| GNN Model Prediction |

}

Timing Sensitivities of Benchmark Designs |

|

| Timing Macro Model Generation |

}

Timing Macro Models of Benchmark Designs,
w.r.t. the Given Delay Model and Mode

Figure 3.2: Overview of our framework.

which mainly focuses on non-linear delay model (NLDM), our framework could also
be applied to other advanced node timing analysis models such as CCS, AOCV, and
POCYV, or different timing modes like CPPR. The generality of our framework comes
from the fact that timing sensitivities could be adaptively evaluated depending on
the given timing delay model. Moreover, the GNN models could effortlessly capture

the corresponding timing properties.

Chapter 4

Timing Sensitivity Data Generation

4.1 Timing Sensitivity (TS)

In order to generate a high-quality timing macro model, we need to precisely
evaluate the influence of each circuit pin on the timing accuracy of the whole de-
sign. Then, pins with subtle influences could be waived to reduce model size and

meanwhile the timing accuracy will not be degraded.

Figure 4.1 shows how we evaluate the timing sensitivity (TS) of each pin.
Given the input circuit graph, we first randomly generate several ! sets of bound-
ary timing constraints. Between each set of timing constraints, incremental timing
analysis [14] is performed on the ILM and the results are stored as references. In
the timing sensitivity evaluation stage, we remove a pin from the circuit each time.
After the removal, we perform timing propagation based on each set of boundary
timing constraints generated and compute the differences between the current and
the reference timing values (including slew, arrival time (at), required arrival time
(rat), and slack) at the boundary pins. Finally, T'S of a pin (for convenience, denoted
as A in the following discussion) is set as the average of timing value differences un-

der the different timing constraints. Equations (4.1) and (4.2) define the TS of pin

'We generate ten sets of boundary timing constraints in our experiments. Using more sets, e.g.
twenty, identifies extremely few extra sensitive pins. Thus, ten sets of constraints are sufficient to
cover the given operating conditions and find almost all sensitive pins.

10

A, where C denotes the collection of generated boundary timing constraints, and
slewh pe rore (TESP. SlEWP ,py,,) denotes the slew value of a boundary pin P under the
timing constraint ¢ before (resp. after) pin A’s removal. The definitions of Aat$,

Arat§, and Aslack are similar to that of Aslew$ (i.e., Equation (4.2)).

TS = AVGecc(AVG(Aslews, Aaty, Araty, Aslack?)) (4.1)
1 Slew%’ after Slew%before

Aslew$ = ————% ’ ’ 4.2

SEA T I pr U po| T TerIoro S1eWs . rore (4.2)

L Curcuit Graph G = (V,E) |
'
Timing Sensitivity Evaluation Flow For Each Pno eV
4 or Each Pin v :
| Randomly Generate PI/PO Constraints | / | Remove v |
I
/ 1
| Store Reference Timings | ! For Each Boundary Timing Constraints Set c :
— - _J" - { | Set Timing Constraints as ¢ |
I Timing Sensitivity Evaluation | :
: ‘\\ | Perform Timing Propagation |
I Compute Timing Sensitivity of Each Pin | \ T
T \\ Compute Differences between Current and
Circuit Graph with Timing Sensitivity ‘\\ Reference Timings

Figure 4.1: Timing sensitivity evaluation flow.

4.2 Insensitive Pins Filtering

Although the TS evaluation flow could accurately compute the influence of
each pin on the overall timing accuracy, running the flow for all the pins is time-
consuming as we need to perform timing propagation once in each iteration. To
enhance the efficiency, we first observe that the majority of the pins have extremely
small or even zero TS. It is due to the nature of timing graph that most of the
pins have subtle influences on the overall timing accuracy. For example, the TS
distribution of circuit fft_ispd is shown in Figure 4.2, where 70% pins have zero

TS, while only few pins have large TS. Therefore, if we can find a rapid screening

11

method to filter the insensitive pins first, we could perform TS evaluation flow on

the potential critical pins only.

Timing value difference propagation is a suitable method for insensitive pins
filtering. At each primary input (PI) or primary output (PO) port, two timing
values, tnin and ty.y, are set up. We then propagate the timing values through
the design and monitor the difference between the two timing values at each pin.
According to the shielding effect, as shown in Figure 4.3, the difference decays after
several levels, and pins with small difference tend to have subtle influence on the
overall timing accuracy. Inspired by previous works [10, 13], we choose slew to
propagate from each PI. After the propagation, the slew difference (SD) at each pin
is standardized, and pins with SD less than a threshold is filtered out. As mentioned
in Chapter 1, thresholds to distinguish crucial pins are also adopted in some previous
works, where the thresholds must be tuned delicately to obtain favorable results. In
contrast, the threshold here is not required to be precise since it only helps reduce
the number of pins to be evaluated, and thus the quality of generated timing macro
models from our framework is independent of the threshold. Actually, we have never
tuned the threshold value during our experiments. In addition, last stage pins and

pins connected to some output net are also remained for output load variant.

After the insensitive pins filtering, more than 88% pins are filtered out from
the TS evaluation flow, which implies the flow becomes almost 10 times faster. As
a result, the training data could be generated efficiently. Figure 4.4 illustrates the

whole training data generation flow.

12

10°

10*

U=
[=]
w

frequency
=
o
N

[u=y
(=]
=

10°

fft_ispd

| (L \ L |

0.00 0.05 0.10 0.15 0.20
timing sensitivity

Figure 4.2: Timing sensitivity distribution of fft_ispd.

Slew difference /
Input slew

A

el

Figure 4.3: Slew difference and shielding effect.

13

— L

Curcuit Graph G = (V,E) A

14

Insensitive Pins Filtering

Set PI/PO Slew Values

¥

Perform Slew Propagation

v

Filter Pins According to Slew Variant Range

y

L

Potential Sensitive Pins Set P

Timing Sensitivity Evaluation Flow

| Randomly Generate PI/PO Constraints

!

| Store Reference Timings

}

| Timing Difference Evaluation

)

| Compute Timing Difference of Each Pin

v

| Circuit Graph with Timing Sensitivity

2

For Each Pin v € P:

Remove v

7

For Each Boundary Timing Constraints Set c :

Set Timing Constraints as ¢

]

Perform Timing Propagation

Compute Differences between Current and
Reference Timings

Figure 4.4: Timing sensitivity training data generation flow.

Chapter 5

GNN-Based Timing Macro Modeling

5.1 GNN Model Training and Prediction

With the timing sensitivity training data, GNN models could learn and pre-
dict accordingly. In this work, we adopt GraphSAGE [4] as our main GNN engine.
For node v, it first aggregates the node features from its neighborhood N (v) through
Equation (5.1), then Equation (5.2) concatenates and encodes the representation of
node v with the aggregated vector. In the experiments, only four rounds of aggre-
gations and encodings are performed, as the timing property of a node is mostly
influenced by its neighborhood. Other existing GNN models such as GCN [9] or

even self-defined GNN models could also be embedded with our framework.

hiewy ¢— AGGREGATE,(hi™',Yu € N (v)) (5.1)

hy «— o(W*"- CONCAT (hy~", hfr()) (5.2)

As we treat the GNN prediction as a classification problem for the most
part, we need to convert the training labels of pins to {0,1}. We set the label of
a pin to 1 if and only if its TS is not zero. The conversion is reasonable because a
non-zero TS implies the corresponding pin may have some influence on the overall
timing accuracy. In addition, for CPPR mode, labels of multiple-fan-out pins of

clock networks are also set to 1, since previous works [7,14] point out that this kind

15

Table 5.1: Training features. The first eight features are basic features, while the
last feature is a dedicated feature for CPPR mode.

’ Feature \ Description 1
level_from_PI The minimum level from a PI to the pin
level_to_PO The min. level from the pin to a PO

is_last_stage_fanout If the pin is the fanout of a last stage pin
is_last_stage If the pin is the last stage of the timing graph
is_first_stage If the pin is the first stage of the timing graph
out_degree The number of output edges of the pin
is_clock_network If the pin belongs to clock network
is_ff_clock If the pin is the clock pin of a flip-flop
’ is.CPPR ‘ If the pin is crucial for CPPR ‘

of pins may be the common points of the clock paths of sequential elements pair,

which is essential for CPPR calculation.

The training features are listed in Table 5.1. The features are all basic circuit
properties which could be extracted within linear time. Features beginning with “is”
are of {0,1} Boolean values. For level from_PI, level_to_PO, and out_degree, the

values are normalized to [0, 1] so that each feature have the same level of influences.

5.2 Timing Macro Model Generation

Figure 5.1 details the timing macro model generation stage. First, we capture
the interface logic netlist to construct ILM. Second, based on the predictions from
GNN models, we perform serial and parallel mergings on timing edges iteratively to
remove insensitive pins. For serial merging, the delay of a merged edge is the sum of
the original ones, while the slew inherits the last edge. For parallel merging, delay
or slew is the minimum (resp. maximum) of the original edge values in the early
(resp. late) mode. Afterward, we apply the lookup table index selection method

proposed in [13], where indices that minimize the interpolation timing error are

16

selected. Lastly, the timing macro model is generated.

Netlist fﬂfitﬁj Cell libraries | Operating conditions|

Timing Macro Model Generation

Interface Logic Capturing
!

Timing Graph Reduction Based on
GNN Prediction

!

Lookup Table Index Selection

|

Timing macro model

Figure 5.1: Timing macro model generation.

5.3 Flexibility and Generality of Our Framework

As mentioned in Chapter 3, our framework can be applied to different timing
analysis models or modes. The reason is that the timing-sensitivity-based training
labels, the basic features, and the circuit netlist structure are enough to reflect the
importance of each pin, either in an explicit or implicit manner. However, to help
GNN model training, we may leverage domain knowledge for each specific timing
model or mode. Take CPPR as an example. As we know, multiple-fan-out pins of
clock networks are crucial for CPPR calculation. Thus, we could add a dedicated
training feature for CPPR to indicate this kind of pins, called is CPPR. Before
adding the special feature into GNN model training, the other features such as
out_degree and 1s_clock_network along with the timing sensitivities could implicitly
indicate multiple fan-out pins of clock networks; therefore, we could already obtain

high-quality timing macro models. After including the dedicated feature to explicitly

17

identify this kind of pins, we could further enhance the results, and the training
process becomes more efficient. The technique could be applied to other timing

models as well.

In addition, our training designs are of 10* to 10° pins, while testing designs
mostly have millions of pins. However, as experimental results show, our framework
could capture the timing properties from small designs and obtain good results on
large designs. It implies that our framework could be directly used to generate

timing macro models for general designs.

Lastly, the GNN prediction in our framework could also be treated as a
regression problem, i.e., timing sensitivities are set as training labels directly, and
the framework could not only learn which pins are critical for timing accuracy, but

also capture the relative criticality between pins.

18

Chapter 6

Timing Macro Modeling for Multi-Corner
Multi-Mode

6.1 Multi-Corner Multi-Mode (MCMM) Timing Analysis

In today’s advanced technology, different PVT corners (a combination of pro-
cess, voltage, and temperature parameters) and operation modes (a set of timing
constraints, supplying voltage, etc.) result in divergent timing analysis results. Ide-
ally, STA should be performed under all the corners and modes to guarantee that
timing constraints are met and enhance the design quality. However, as the number
of corners and modes grows exponentially in modern processes, the exhaustive ap-
proach becomes impractical. To tackle the complexity of MCMM timing analysis,
several works [3,18-20] attempt to find the worst-delay corner or an upper bound for
all the corner delays, so that the checking of timing violations could be performed
in practical time. Recently, a learning-based approach [8] leverages the timing anal-
ysis results of known corners to predict those of unobserved corners. Thus, analysis
results of all the corners could be obtained while only a limited number of corners

and paths are required to be analyzed.

19

| The Set of Corners C |

v
For Each CornerceC

i Delay Model of the Corner ¢ |
'

Timing Macro Modeling Framework
| Timing Sensitivity Data Generation |
v

Timing Sensitivities of Training Designs |

}

| GNN Model Training |
!

| GNN Model Prediction |
!

Timing Sensitivities of Benchmark DesignsJ

I
| Timing Macro Model Generation |

1
K 2

Timing Macro Models of Benchmark Designs
Under All the Corners in C

Figure 6.1: The default flow to generate timing macro models for all the corners.

6.2 Timing Macro Modeling Covering All Corners

To the best of our knowledge, however, no previous work has dealt with
MCMM for the generation of timing macro models. As described in Chapter 5,
our framework is available for various timing analysis models or modes. Thus,
intuitively, to generate timing macro models for all the corners, we could run our
framework once for each corner as shown in Figure 6.1. Similar to the exhaustive
STA, the method is impractical since timing sensitivity data generation and GNN

model training are time-consuming.

To generate macro models for all the corners efficiently, we observe that a
linear model is often assumed for the relation between delay /slew and the parameters
in previous works [3,19] as Equation (6.1) shows, where H is the real value of

delay/slew, o is the nominal value of delay/slew, X;’s are the parameters that

20

are normalized to [—1, 1], and «;’s are the sensitivities of H to the corresponding
parameters. In addition, Kahng et al. [8] point out the correlation between path

delays of different corners.

H=0op+o01X;+aXs+ .. +a,X, (6.1)

Inspired by these ideas, we propose a two-stage timing macro modeling frame-
work for all corners (see Figure 6.2). Firstly, all the corners (C') are divided into
two disjoint sets Cps and Cpops. Then, only the corners in C,4 are fed into the first
stage. After the timing sensitivities of benchmark designs under corners from Cps
are extracted, we adopt deep neural networks (DNN) to predict the timing sensi-
tivities of corners from Cl,,.s in the second stage, in view of the linear dependence
of timing values to process parameters and the correlation between timing analysis
results of different corners. After that, timing macro models for corners in C' can
be generated accordingly. Finally, the macro models are further merged into a sin-
gle timing macro model based on the similarities of timing values among different

corners.

An example is illustrated in Figure 6.3. In the first stage, only corners in
Cops (Corners 1, 2, and 3) undergo the timing macro modeling framework, and the
timing sensitivities of pins under each corner are determined (red for sensitive pins
and white for insensitive pins). On the other hand, the sensitivities of pins under
corners in C,0ps remain unknown. In the second stage, for each pin in the timing
graph, a DNN model is trained with the generated timing sensitivities (as training
labels) and the parameters (as training features) of the observed corners. Then, the
timing sensitivities of pins under the unobserved corners could be inferred by the

DNN models and the corresponding parameters.

21

L The Set of Corners € = Cops U Cunops |
1

For Each Observed Corner ¢, € Cyps

L Delay Model of the Corner ¢, € C,ps J

3
Timing Macro Modeling Framework

| Timing Sensitivity Data Generation |
!

Timing Sensitivities of Training Designs |
}

[GNN Model Training |
!

| GNN Model Prediction |

s\

Corner Conditions of Timing Sensitivities of Benchmark

\Tra‘“_ﬂlf‘w Designs UndilEme_

| DNN Model Training on PVTs and Sensitivities |
!
| DNN Model Prediction on Unobserved Corners |

]
Timing Sensitivities of Benchmark Designs
Under Each ¢y ,0ns € Cunobs
y
| Timing Macro Model Generation |4—
!

Timing Macro Models for All the Corners in C |

!
| Timing Macro Model Merging |
i

A Timing Macro Model Covering All the Corners in C |

Figure 6.2: Our framework to generate timing macro models for all the corners.

Observe Corners Cps

Corner 1

Corner 3

DNN Training

Py ——

Vv, —

T, —\

Py——f

V, —

T, —

P3 ———f

V3 —

DNN

Corner 2

23

Unobserve Corners Cyp0ps

Corner 4

(a) The first stage.

- ®

T3 —

1

[}

1

1

1

[}

Corner 1 :

:

DNN . :
~—— Corner 2 :
1

1

DNN —o. 1
1

~—— Corner3 :
1

)

Ta

DNN Inference

DNN

(b) The second stage.

Corner 4

Figure 6.3: An example of our timing macro modeling framework for all corners.

Chapter 7

Experimental Results

In our framework, the timing sensitivity data generation and timing macro model
generation are implemented in the C+4 programming language, while the GNN
model training and prediction are implemented in Python3 programming language
with the PyTorch library. The experiments are conducted on a Linux workstation
with 3.7 GHz CPU, 192 GB RAM, and a NVIDIA RTX 3090 GPU. Our framework is
validated on the benchmark suite released by TAU 2016 and TAU 2017 contests [1,5].

Table 7.1 list the statistics of the benchmarks.

Table 7.2 shows the results on TAU 2016 [5] and TAU 2017 [1] benchmarks
considering CPPR and the comparisons with two state-of-the-art ILM-based works
iTimerM [13] and [12]. Among all the criteria, max error and model file size are
viewed as the most crucial ones. Our framework achieves extremely high timing
accuracy as all the max errors are less than 0.1ps, which is same as iTimerM [13]
and 9 times better than [12]. As for model file size, our result is about 10% smaller
than iTimerM [13] and 45% smaller than [12]. To summarize, our framework
preserves the highest timing accuracy in terms of max errors among the state-of-the-
art works, while further improving the model size by 10% than the same-accuracy-
level work. Our framework also achieve similar or even better results in terms of
model generation performance and model usage performance. The average errors of

our framework are slightly higher than those of iTimerM [13]; however, the difference

24

Table 7.1: Testing data statistics.

’ Design \ #Pins \ #Cells \ #Nets ‘
mgc_edit_dist_iccad_eval | 581319 | 224113 | 224101
vega_lcd_iccad_eval 768050 | 286597 | 286498
leon3mp_iccad_eval 4167632 | 1534489 | 1534410
netcard_iccad_eval 4458141 | 1630171 | 1630161

leon2_iccad_eval 5179094 | 1892757 | 1892672
mgc_edit_dist_iccad 450354 | 164266 | 164254
vga_lcd iccad 679258 | 259251 | 259152
leon3mp_iccad 3376832 | 1248058 | 1247979
netcard_iccad 3999174 | 1498565 | 1498555
leon2_iccad 4328255 | 1617069 | 1616984

mgc_matrix_mult_iccad | 492568 | 176084 | 174484

is only a few femtoseconds and thus can be neglected. Although the max errors of
previous works are also fractions of picosecond, timing errors may be propagated and
accumulated to a larger amount since timing macro models are often cascaded during
hierarchical and parallel timing analysis in industrial applications. As macro models
are used more frequently in larger designs, our accuracy improvement becomes more

significant.

As mentioned in Chapter 5, we could leverage the domain knowledge to help
GNN model training for different timing models or modes. We use CPPR as an
example, and the result is shown in Table 7.3. We adopt the results of iTimerM [13]
as the baseline and calculate the differences and ratios as described in Table 7.2.
Before adding the CPPR-dedicated feature (i.e., is.CPPR), our framework could
already achieve the same timing accuracy as iTimerM [13] while reducing the model
size by 6%. After the is_CPPR feature is included, our framework still preserves the
same timing accuracy while improving the model size by 10%. The result tells that
our framework could achieve superior quality with only the basic features, while the

dedicated features could capture the timing properties of designs more precisely.

25

Table 7.4 displays the results on the TAU 2017 [1] benchmark without CPPR.
Our results are compared with the ILM-based work iTimerM [13] and the ETM-
based work ATM [10]. In comparison with ATM [10], our framework achieves 9
times better max error and 25 times better average error, but it suffers from a
larger model size. It is as our expectation since our framework is ILM-based while
ATM [10] is ETM-based. Besides, we also achieve 17 times faster model generation
runtime than ATM [10]. As for the ILM-based work iTimerM [13], we preserve the
same timing accuracy while improving the model size by 9%. The result validates
the applicability and generality of our framework on different timing modes (CPPR
on and CPPR off), and it may be further inferred to various timing delay models

and modes.

As mentioned in Chapter 4, the goal of the insensitive pins filtering is to
exclude non-critical pins rapidly, under the premise that the timing accuracy is not
degraded. Figure 7.1 shows the timing sensitivities of pins in the training design
systemcaes. TS of pins that are filtered out are shown in the left histogram, and those
of the potential sensitive pins are shown in the right histogram. It can be seen that
a majority of filtered pins indeed have zero TS, while many remained pins have non-
zero TS. It validates the consistency between the insensitive pins filtering and the
TS evaluation, which implies the insensitive pins filtering is suitable for accelerating
the training data generation flow. To further ensure the timing accuracy is not
degraded by the insensitive pins filtering, we conduct an experiment in which the
training labels of all the remained pins after the insensitive pins filtering are set to
1. The result is shown in Table 7.5. The results of iTimerM [13] are adopted as
the baseline, and the differences and ratios are calculated as described in Table 7.2.
The results achieve the same timing accuracy as iTimerM [13] which is of the best

accuracy among the previous works. Therefore, it is validated that the insensitive

26

systemcaes systemcaes
10%
10°
103,
> | &
5102 5
=" -
o | L
0‘ 0
0% L1 L1 L w11y | 10 |HH\|I ||| ‘II\ L |‘ ||||\||\‘|
0.000 0.002 0.004 0.006 0.008 0.010 0.000 0.002 0.004 0.006 0.008 0.010
timing sensitivity timing sensitivity

Figure 7.1: Separated TS distribution based on the insensitive pins filtering.

pins filtering does not degrade the resulting timing accuracy.

Lastly, to evaluate our framework’s efficiency when we encounter new bench-
marks under the same NLDM libraries, we only need to consider the GNN model
inference runtime and the model generation runtime since our framework is available
on general designs under the NLDM. The GNN model inference time usually takes
less than 5 seconds for each design, which is much less than the model generation
time listed in the above tables. Thus, our framework spends comparable or even
better runtime than previous work for unseen test data under the NLDM. As for
other timing delay models such as AOCV, POCV, and CCS, we need to further
consider the training data generation time and the GNN model training time. The
timing sensitivity training data generation takes several minutes to several hours,
depending on the size of the design, and the GNN model training consumes about
30 minutes. However, since our framework could be directly applied to perform
timing macro modeling no matter which timing model is chosen, users do not need
to spend a great deal of time designing specific algorithms for different timing delay
models and tuning a bunch of parameters. As a consequence, our framework still

shows high applicability and efficiency on the timing macro modeling problem.

27

28

9901 0,01 | ¥86°0 €06°0 780'T oney [0000 | €100°0- | eousmepiq | eSereay L10Z NV |
6z9¢ 79 6708 601 0bF | INBOWLLI | 6070 | €100°0 | INIOWLL
€19¢ 29 1L18 z1 8e¥ smQ | 660°0 | L200°0 smQ) PROOL gUoo]
€661 ce GYSL 86 8¥¢ | INIOWLLI | 6Z0°0 | £000°0 | INIOWLL
8€61 Gg P18 101 65T smQ | 62070 | £100°0 smQ PROST paeojou
907 9 1825 L9 9F INIOWLLT | 9700 | 9T00°0 | JNIOWILLI
zes G LO¥S 89 LE smQO | 9%0°0 | T£00°0 smQ peoor duguoo]
18T 8 62F1 1 86 INIOWLLT | 080°0 | €200°0 | INIOWLT
VLY L S5 91 96 smQO | 080°0 | 72000 smQ Pe2Or po[€3
LG 6 €901 1 99 INIOWLLT | 260°0 | €000°0 | INIOWILT
1S 8 7G0T 91 09 smQO | 250°0 | 6200°0 smQ PEOOT JSIp~1po-o8w
168°0 8¢L°0 818°0 SP'1 60S'T | zowed | 610 | VN | g oouolplq
760°1 660'T GL60 196°0 9TT'T | Toued | 0000 | 000070 | T ®uompl(| o8eidAy 9102 NV.L
GIES 8¢ 66251 01 9.9 [21] We0 | VN [21]
950€ 19 G98. z8 gle | INBWLLI | 97070 | 300070 | INIOWLL [BAD”PRODT Z U0
re0g 79 8628 68 69¢ smO | 910°0 | g000°0 smQ
4554 €z 91921 101 TLe [c1] | €00 | VN [21]
zzs1 6 €169 9 02¢ | INWOWLLI | $00°0 | 000070 | INIOWLLT [BAOPRIOL PIROJOU
LGLT 6 6099 68 €1z smO | $00°0 | 0000°0 smQ
G G G 8. 98 [21] 0250 | 'V'N [21]
68 9 LOSY 86 Gy NIOWLLE | 2600 | $000°0 | INIOWLL [eAd”prool dwguod|
s g 806¥ 0g Ge smQO | 250°0 | $000°0 smQ
G ¥ 66¢ ke zL [z1] 680 | VN [z1]
2oy L 8071 €1 05 NIOWLLE | 0700 | 9000°0 | INIOWLL [8AD”PRODT PO eSA
€8¢ 9 7031 4 Gy smO | 0¥0°0 | 9000°0 smQ
G ¥ g <1 6L [c1] | 810 | VN [21]
0SS 8 €701 01 79 JNOWLLL | 200°0 | 0000°0 | NIPWILLL | [8A”PRIDT)SIp 4Ipo ot
QLy 8 L80T 11 96 smQ | L00°0 | 0000°0 smQ
(am) (%) (am) (s) (am) (sd) | (sd)
Arowopy | owmnuny | AIoWON ownuny | ozIg 9L IOLIY | IOXIN] uSIso(]
o8es) o8es(] | UOIIRIOUDY) | UOIRIDUOL) | [OPOIN XeN "SAY

IOM II9T[} UL YIRWDUaq 9T()g (V. UO pajenyead ATUo st [gT] 1ey) 9J0N "3[Nsed 1o / Jnsal paredwod = orpey
“J[Nsal Ino - 9 nsal paredwiod = UYL ‘[g]] YIm pareduwod are g OIjel pue g 9dusLPl ‘[€]] JNIOWLLT
UM poredwlon oI T OIjel pUR T 9OULIOYPI(] "Surwly oje[I10j AIelqr oy} jo ozIs oy} ydope om ‘9zIs o[[opouwl
o) 10 "z Aq PoYSoM IO ST 90USIOPIP oY) OISTIIdO 9I0W oI [9POUW OIDRUI JO SINSII oY) J] “ISI[IOU [[1]
JO 2UO oY} PUR [oPOW OIJRWL JO }[NSOI 9} UOM)O(9OULIDPIP JO onfea ajnjosqe oy} jdope am ‘10110 Xeul oY)
pue -3ae oY) 104 YddD I Srewpuaq (1] L10¢ NV PUe [G] 9T0Z NV.IL U0 $HNSd [eyuomtiodxy gL d[qR],

29

G90°T 0L0°T 786°0 €060 80T PPV oy | 000°0 | €T00°0- | 103V S9USISHI(]

2E0°T GIr't ¥66°0 8¢8°0 090°T a10j9¢ oY | 000°0 | T000°0- | 2I0Jog dULIPLJ | (*8A®) JT0ZNV.L

¥60°T 6601 G160 196°0 91T’ T PPV oy | 000°0 | 0000°0 | 103V SIUSISHI]

8701 eIl 6560 GG0°T1 7901 a1059¢ O1eY | 000°0 | 00000 | 2I0Jog UL | (*A®) 9TOZNV.L
AIOWRIN | ownuny] | AIOWN owrnuny | 921§ o IoLIf | IOIIY

a8esN) 98es() | UOIjRIBULY) | UOIJRIAUAL) | [9POIA XRIN "SAY FHETHPRod

"SOINYed] PIYedTPap-JJD MOYIM pue M SNsal Tejuawirodxyy :¢) 9[qe],

30

V'N 6200 V'N 0T6LT 8¢0°0 ¢oney | L9¢°0 | 87,0°0 | ¢ 9oUaIofI(d
€e0’T G80°'T 8L6°0 086°0 €60°T Toney | 0000 | 9T00°0- | T 99usIogI(] oBeIoAy
VN €91 V'N 629 4! NIV 05%°0 | 00ET°0 LV
8601 i PITT 6¢ TLT WNPWILTT | #G0°0 | 0600°0 JNIOWITT | PROOT N XLIjeul D3
£45) 8T 90TT L3 Vel Smo 750°0 | ¢€00°0 SO
V'N ¥€0 V'N Gaot i NIV 0¥¢'0 | 0070°0 LV
06€€ 64 G8LL (44! 0Ty N-PWLTT | G60°0 | €100°0 NOWIT T pBooT guo9]
8LEE 09 94918 €61 807 Smo G600 | 42000 SO
V'N L0 V'N 819 91 LV 9¥¢’0 | 07S0°0 LV
8€E8T €€ 6€5L v0T 6¢¢ NPWLTT | 620°0 | S000°0 N-OWI T peool preajou
G6LT 45 708 Vel 9¢¢ Smo 6¢0°0 | €€00°0 SO
V'N 60°0 V'N 0L 90 INLV 09¥°0 | 0L0T°0 LV
98¢ v 18¢S a0T 1€ N-PWLTT | 970°0 | 8T00°0 N-OWIT T peoor durguos|
G.L¢ g ¢6€9 8L 1€ Smo 9%0°0 | €€00°0 SO
V'N 900 V'N as €0 INLV 091°0 | 0070°0 LV
0S¥ 6 44! L1 ag N-PWLTT | 080°0 | €600°0 N-OWIT T Peodr PaT B3A
oy L LGVT 3T (44 R O) 080°0 | 9¢00°0 SO
V'N 9¢0 V'N €es 4 INLV ¢0¥°0 | 0960°0 LV
€cs 6 ¢901 el g9 NPWLTT | ¢60°0 | 2000°0 N-OWIL T PeOOT ISIP~HIPa-o8w
€94 6 6901 4! 64 Smo 6500 | €€00°0 SO
() (s) () (s) () (sd) | (sd)
Arowoly | owrpuny | AIOWLN owmuny | 9ZIg ol IolIf] | IOLIY usrso(]
ogdes() o8es() | UOIJRIOUDY) | UOIRIOUOY) | [OPOIN XN SAY

"9seD 1599 9u0 se 1 sydope osfe [OT] INLY
90UIS 9JBN[RAD 0 PDIILYNUL~TLDW 26U JMOID S} SPN[DUL A[[RUOIYIPPR 9\\ }[NSeI Ino / jnsal paredurod
= oney ‘NSl INo - jnsal paredwod = UYL ‘[0T] INLV UM pareduiod aIe g Oljel PUR g 9OULISHI(]
‘[e1] oW Yam poredwion oIe] OIjel pue | 9dULIOHI(] "Sultul) oye[I0] AIRI|I[9U) Jo ozIs o) jdope om
‘9718 O [PpOWL o} 10 g AQ POISIoM ISULIN] ST dOUDISHIP o) OIIsTuIjdo 910w oIe [9pOU OIORUW JO SHNSOI
oYY} JI "ISI[I9U [JO OUO O} PUR [OPOW OINRW JO NSO 9} UMD 9OUSISYIP JO onpea ajnjosqe oy} jdope om
‘I0LId XRW 9Y) puR “SAR 9} 10 “HJJD MOYNM JIewypuaq L1007 (VI U0 synsal [ejuswitiedxy), o[qe],

Table 7.5: Validation on insensitive pins filtering.

’ Benchmark \ Avg. Error \ Max Error \ Model File Size ‘

TAU2016 0.0000 0.000 1.040
TAU2017 0.0000 0.000 1.009

Chapter 8

Conclusions

In this thesis, we propose a generic timing macro modeling framework that is ap-
plicable on various timing analysis models and modes. In our framework, we first
evaluate the timing criticality of each pin through a timing sensitivity metric, and
generate the training data accordingly. Then, due to the analogy between the GNN
and the timing macro modeling, GNN model can capture the timing properties
effectively. Eventually, high-quality macro models could be generated. Experimen-
tal results based on TAU 2016 [5] and TAU 2017 [1] contests show our framework
achieves extremely high timing accuracy while further improving the model size than
the most accurate state-of-the-art work. Moreover, taking CPPR as an example,
the generality and applicability of our framework is also validated empirically. We
also demonstrate a generalized framework for MCMM. Future work includes timing

analysis of MCMM timing macro models in a heterogeneous integration system.

32

1]

(6]

Bibliography

S. Chen, A. Khandelwal, X. Zhao, and X. Chen, “TAU 2017 timing contest
on macro modeling,” in International Workshop on Timing Issues in the
Specification and Synthesis of Digital Systems (TAU), 2017. [Online]. Available:
https://sites.google.com/site/taucontest2017/

A. J. Daga, L. Mize, S. Sripada, C. Wolff, and Q. Wu, “Automated timing
model generation,” in 39th Design Automation Conference (DAC), pp. 146
151, 2002.

L. G. e Silva, L. M. Silveira, and J. R. Phillips, “Efficient computation of
the worst-delay corner,” in Design, Automation Test in Europe Conference

Ezhibition (DATE), pp. 1617-1622, 2007.

W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation learning

b

on large graphs,” in 31st Conference on Neural Information Processing Systems

(NIPS), pp. 1025-1035, 2017.

J. Hu, S. Chen, X. Zhao, and X. Chen, “TAU 2016 timing contest
on macro modeling,” in International Workshop on Timing Issues in the
Specification and Synthesis of Digital Systems (TAU), 2016. [Online|. Available:
https://sites.google.com/site/taucontest2016/

T.-W. Huang and M. D. F. Wong, “OpenTimer: A high-performance timing

33

https://sites.google.com/site/taucontest2017/
https://sites.google.com/site/taucontest2016/

[10]

[11]

[12]

[13]

analysis tool,” in International Conference on Computer-Aided Design (IC-

CAD), pp. 895-902, 2015.

T.-W. Huang, P.-C. Wu, and M. D. F. Wong, “Fast path-based timing analysis
for CPPR,” in International Conference on Computer-Aided Design (ICCAD),
pp. 596-599, 2014.

A. B. Kahng, U. Mallappa, L. Saul, and S. Tong, ““Unobserved corner” predic-
tion: Reducing timing analysis effort for faster design convergence in advanced-

node design,” in Design, Automation Test in FEurope Conference Exhibition

(DATE), pp. 168-173, 2019.

T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2016. [Online]. Available: arXiv:1609.02907

K.-M. Lai, T.-W. Huang, P.-Y. Lee, and T.-Y. Ho, “ATM: A high accuracy
extracted timing model for hierarchical timing analysis,” in 26th Asia and South

Pacific Design Automation Conference (ASP-DAC), pp. 278-283, 2021.

T.-Y. Lai, T.-W. Huang, and M. D. F. Wong, “LibAbs: An efficient and accu-
rate timing macro-modeling algorithm for large hierarchical designs,” in 54th

Design Automation Conference (DAC), pp. 65:1-65:6, 2017.

T.-Y. Lai and M. D. F. Wong, “A highly compressed timing macro-modeling
algorithm for hierarchical and incremental timing analysis,” in 23rd Asia and

South Pacific Design Automation Conference (ASP-DAC), pp. 166-171, 2018.

P.-Y. Lee and I. H.-R. Jiang, “iTimerM: A compact and accurate timing macro
model for efficient hierarchical timing analysis,” ACM Transactions on Design
Automation of Electronic Systems (TODAES), vol. 23, no. 4, pp. 48:1-48:21,
2018.

34

arXiv:1609.02907

[14]

[15]

[16]

[17]

[18]

[20]

[21]

P.-Y. Lee, I. H.-R. Jiang, C.-R. Li, W.-L. Chiu, and Y.-M. Yang, “iTimerC 2.0:
Fast incremental timing and CPPR analysis,” in International Conference on

Computer-Aided Design (ICCAD), pp. 890-894, 2015.

W. Li, J. Xia, Y. Ma, J. Li, Y. Lin, and B. Yu, “Adaptive layout decom-
position with graph embedding neural networks,” in 57th Design Automation

Conference (DAC), pp. 200:1-200:6, 2020.

Y.-C. Lu, S. S. K. Pentapati, L. Zhu, K. Samadi, and S. K. Lim, “TP-GNN: A
graph neural network framework for tier partitioning in monolithic 3D ICs,” in

5Tth Design Automation Conference (DAC), pp. 64:1-64:6, 2020.

Y. Ma, Z. He, W. Li, L. Zhang, and B. Yu, “Understanding graphs in EDA:
From shallow to deep learning,” in International Symposium on Physical Design

(ISPD), pp. 119-126, 2020.

J.-J. Nian, S.-H. Tsai, and C.-Y. Huang, “A unified multi-corner multi-mode
static timing analysis engine,” in 15th Asia and South Pacific Design Automa-

tion Conference (ASP-DAC), pp. 669-674, 2010.

S. Onaissi and F. N. Najm, “A linear-time approach for static timing analysis
covering all process corners,” IEEE Transactions on Computer-Aided Design

of Integrated Clircuits and Systems, vol. 27, no. 7, pp. 1291-1304, 2008.

S. Onaissi, F. Taraporevala, J. Liu, and F. Najm, “A fast approach for static
timing analysis covering all PVT corners,” in 48th Design Automation Confer-

ence (DAC), pp. 777-782, 2011.

H. Ren, G. F. Kokai, W. J. Turner, and T.-S. Ku, “ParaGraph: Layout par-
asitics and device parameter prediction using graph neural networks,” in 57th

Design Automation Conference (DAC), pp. 124:1-124:6, 2020.

35

[22] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A comprehensive
survey on graph neural networks,” IEEE Transactions on Neural Networks and

Learning Systems, vol. 32, no. 1, pp. 4-24, 2021.

36

Publication List

[1] Kevin Kai-Chun Chang, Chun-Yao Chiang, Pei-Yu Lee, and Iris Hui-Ru Jiang,

“Timing Macro Modeling with Graph Neural Networks,” in Proceedings of 59th
Design Automation Conference (DAC), San Francisco, CA, USA, July 2022 (to
appear).

37

	Abstract (Chinese)
	Abstract
	List of Figures
	List of Tables
	Chapter 1. Introduction
	Chapter 2. Problem Formulation
	Chapter 3. Overview of Our Framework
	GNN and Timing Macro Modeling Problem
	Our Generic Framework

	Chapter 4. Timing Sensitivity Data Generation
	Timing Sensitivity (TS)
	Insensitive Pins Filtering

	Chapter 5. GNN-Based Timing Macro Modeling
	GNN Model Training and Prediction
	Timing Macro Model Generation
	Flexibility and Generality of Our Framework

	Chapter 6. Timing Macro Modeling for Multi-Corner Multi-Mode
	Multi-Corner Multi-Mode (MCMM) Timing Analysis
	Timing Macro Modeling Covering All Corners

	Chapter 7. Experimental Results
	Chapter 8. Conclusions
	Bibliography
	Publication List

