
國立臺灣大學電機資訊學院電機工程學系

學士班學生論文

Department of Electrical Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Bachelor’s Thesis

基於圖神經網路之通用的時序模型萃取方法

GTM: A Generic Graph-Neural-Network-Based

Timing Macro Modeling Framework

張凱鈞

Kai-Chun Chang

指導教授：江蕙如 博士

Advisor: Iris Hui-Ru Jiang, Ph.D.

 中華民國 111 年 4 月

April 2022

Acknowledgements

首先，我要感謝我的指導老師江蕙如教授。從確定研究題目、設計演算法、進行實

驗到書寫論文，老師總是花費許多心力和我討論，並提供許多富有啟發性的建議，

也因此我才能完成這個研究。除了研究外，老師也相當關心我的生涯規劃、給予我

很多機會，讓我可以逐步朝學術研究的道路邁進。

	

接著，我要感謝我的口試委員張耀文教授和林忠緯教授，他們針對研究內容和論文

寫作提供的寶貴建議，使這個研究能去蕪存菁、展現出更高的品質。	

	

我也要感謝實驗室的所有學長姐和同學，尤其是李培瑜博士和姜鈞堯學長，他們在

我研究過程中提供了很多幫助，讓我能順利完成這篇論文。	

	

再來，我要感謝我的家人們，特別是我的爸媽，他們總是盡其所能地幫助我、鼓勵

我，讓我能鼓起勇氣面對研究生涯上的種種挑戰。	

	

最後，我要感謝台大電機系，在這裡我遇到了很多厲害的同學，也從他們身上學到

很多東西；也感謝老師們的照顧和啟發。相信這個研究只是我學術路途上的起點，

期許自己未來帶著台大電機給我的養分，在學術研究的路途上持續向前邁進！	

	

	

張凱鈞�

國⽴臺灣⼤學�

2022 年 6 ⽉�

基於圖神經網路之通用的時序模型萃取方法

學生：張凱鈞 指導教授：江蕙如 博士

國立臺灣大學電機工程學系

摘要

隨著 IC 設計的複雜度快速地上升，萃取式時序模型(timing macro model)開始被廣

泛運用，以實現階層式和平行化的時序分析，進而提升時序分析的效率。萃取式時

序模型僅留下對時序分析有重大影響的電路元件接腳，影響輕微者則被捨棄，藉此

在壓縮萃取式時序模型大小的同時能夠兼顧時序分析的準確度。因此，產生萃取式

時序模型最主要的挑戰就是如何精準辨認出高影響力的電路元件接腳。然而，之前

針對萃取式時序模型的研究往往仰賴特定、非一般化的方法，或是要求使用者花費

大量心力進行參數調整。因此，本研究提出了一個基於圖神經網路(graph neural

network, GNN)的通用萃取式時序模型架構，可以適用在不同的時序延遲模型和多

重邊界案例與多重操作模式之時序分析。首先，我們設計了一個量度標準來評估每

個電路元件接腳對整體時序分析準確度造成的影響；接著，根據評估的結果，搭配

電路的架構，讓圖神經網路來學習、並藉此辨認出高影響力的電路元件接腳。實驗

結果顯示，與當前最新的研究相比，可以在保持同樣時序分析準確度的同時、進一

步縮小 10%的萃取式時序模型大小。此外，以共同路徑悲觀性移除(common path

pessimism removal, CPPR)為例，實驗結果證明我們的架構能夠適用在不同的時序

分析模式上，展現出高度的一般性。初步研究成果將於電子設計自動化領域旗艦國

際會議設計自動化會議(59th Design Automation Conference)發表。

v

關鍵詞：時序分析、階層式時序分析、萃取式時序模型、圖神經網路、共同路徑悲

觀性移除

vi

GTM: A GENERIC
GRAPH-NEURAL-NETWORK-BASED TIMING

MACRO MODELING FRAMEWORK

Student: Kai-Chun Chang Advisor: Dr. Iris Hui-Ru Jiang

Department of Electrical Engineering
National Taiwan University

Abstract

Due to rapidly growing design complexity, timing macro modeling has been

widely adopted to enable hierarchical and parallel timing analysis. The main chal-

lenge of timing macro modeling is to identify timing variant pins for achieving high

timing accuracy while keeping a compact model size. To tackle this challenge, prior

work applied ad-hoc techniques and threshold setting. In this work, we present

a novel and generic timing macro modeling approach based on graph neural net-

works (GNNs) that is available on various delay models and multi-corner multi-

mode (MCMM). A timing sensitivity metric is proposed to precisely evaluate the

influence of each pin on the timing accuracy. Based on the timing sensitivity data

and the circuit topology, the GNN model can effectively learn and capture timing

variant pins. Experimental results show that our GNN-based framework reduces

10% model sizes while preserving the same timing accuracy as the state-of-the-art.

Furthermore, taking common path pessimism removal (CPPR) as an example, the

generality and applicability of our framework are also validated empirically. The

vii

preliminary results have been accepted by the premier conference in Electronic De-

sign Automation, 59th Design Automation Conference.

Keywords: Timing analysis, hierarchical timing analysis, timing macro

modeling, interface logic model, common path pessimism removal, multi-

corner multi-mode, graph neural networks

viii

Table of Contents

Abstract (Chinese) v

Abstract vii

List of Figures xi

List of Tables xii

Chapter 1. Introduction 1

Chapter 2. Problem Formulation 5

Chapter 3. Overview of Our Framework 7

3.1 GNN and Timing Macro Modeling Problem 7

3.2 Our Generic Framework . 8

Chapter 4. Timing Sensitivity Data Generation 10

4.1 Timing Sensitivity (TS) . 10

4.2 Insensitive Pins Filtering . 11

Chapter 5. GNN-Based Timing Macro Modeling 15

5.1 GNN Model Training and Prediction . 15

5.2 Timing Macro Model Generation . 16

5.3 Flexibility and Generality of Our Framework 17

Chapter 6. Timing Macro Modeling for Multi-Corner Multi-Mode 19

6.1 Multi-Corner Multi-Mode (MCMM) Timing Analysis 19

6.2 Timing Macro Modeling Covering All Corners 20

ix

Chapter 7. Experimental Results 24

Chapter 8. Conclusions 32

Bibliography 33

Publication List 37

x

List of Figures

1.1 Hierarchical and parallel timing analysis along with timing macro
modeling. The “core” block is analyzed once, and the corresponding
timing macro model is reused to all the “core” blocks [5]. 2

2.1 Timing macro modeling and model accuracy evaluation flow. 6

3.1 The analogy between GNN aggregation and timing propagation. Tim-
ing values including slew, arrival time, and required arrival time are
propagated through edges (blue and green arrows). On the other

hand, node features of layer l, h
(l)
i , are aggregated through edges and

transformed into node features of layer l + 1, h
(l+1)
i (red arrows). . . . 8

3.2 Overview of our framework. 9

4.1 Timing sensitivity evaluation flow. 11

4.2 Timing sensitivity distribution of fft ispd. 13

4.3 Slew difference and shielding effect. 13

4.4 Timing sensitivity training data generation flow. 14

5.1 Timing macro model generation. 17

6.1 The default flow to generate timing macro models for all the corners. 20

6.2 Our framework to generate timing macro models for all the corners. . 22

6.3 An example of our timing macro modeling framework for all corners. 23

7.1 Separated TS distribution based on the insensitive pins filtering. . . . 27

xi

List of Tables

5.1 Training features. The first eight features are basic features, while
the last feature is a dedicated feature for CPPR mode. 16

7.1 Testing data statistics. 25

7.2 Experimental results on TAU 2016 [5] and TAU 2017 [1] benchmarks
with CPPR. For the avg. and the max error, we adopt the absolute
value of difference between the result of macro model and the one
of full netlist. If the results of macro model are more optimistic,
the difference is further weighted by 2. For the model file size, we
adopt the size of the library for late timing. Difference 1 and ratio
1 are compared with iTimerM [13]. Difference 2 and ratio 2 are
compared with [12]. Difference = compared result - our result. Ratio
= compared result / our result. Note that [12] is only evaluated on
TAU 2016 benchmark in their work. 28

7.3 Experimental results with and without CPPR-dedicated features. . . 29

7.4 Experimental results on TAU 2017 benchmark without CPPR. For
the avg. and the max error, we adopt the absolute value of difference
between the result of macro model and the one of full netlist. If the
results of macro model are more optimistic, the difference is further
weighted by 2. For the model file size, we adopt the size of the
library for late timing. Difference 1 and ratio 1 are compared with
iTimerM [13]. Difference 2 and ratio 2 are compared with ATM [10].
Difference = compared result - our result. Ratio = compared result /
our result. We additionally include the circuit mgc matrix mult iccad
to evaluate since ATM [10] also adopts it as one test case. 30

7.5 Validation on insensitive pins filtering. 31

xii

Chapter 1

Introduction

During the IC design flow, static timing analysis (STA) is regarded as a crucial and

essential step to achieve timing closure. As the evolution of the IC industry, the

design complexity grows rapidly, and timing analysis has thus become a bottleneck

due to its high computational cost. To improve the efficiency of timing analysis, hi-

erarchical and parallel timing analysis has been widely adopted. During hierarchical

and parallel timing analysis, a large design is partitioned into several blocks, each

block is then analyzed once, and a corresponding timing macro model is generated.

The macro model could be reused for duplicate blocks in the following analysis, thus

expediting the whole process while preserving the quality. (see Figure 1.1.)

Several timing macro modeling approaches have been proposed in literature.

Interface logic models (ILMs) and extracted timing models (ETMs) [2] are two

pioneering paradigms. ILM contains all the interface logic while eliminating register-

to-register logic, and ETM builds context-independent timing arcs between input

and output ports. The later works start from either of the two paradigms and

attempt to improve the timing accuracy or model size. ILM-based approaches aim to

preserve high timing accuracy, but they often generate larger models. On the other

hand, ETM-based approaches generate relatively smaller models at the cost of high

timing accuracy loss. Moreover, it is not trivial to extend ETM-based approaches to

handle common path pessimism removal (CPPR), which is commonly considered in

1

2

M M M M M M

M M M M M M

M

timing macro model for a “core” block

Timing Macro Modeling

M

Figure 1.1: Hierarchical and parallel timing analysis along with timing macro mod-
eling. The “core” block is analyzed once, and the corresponding timing macro model
is reused to all the “core” blocks [5].

modern design. For ILM-based approaches, LibAbs [11] and its following work [12]

perform tree-based graph reduction, preserve roots and leaves of maximal in-trees,

and construct primary output segments for output load. iTimerM [13] propagates

minimum/maximum slew values through the timing graphs, and pins with slew

range exceeding a user-defined tolerance are preserved. ATM [10] is an ETM-based

approach; it marks those pins with slew range exceeding a threshold as dirty, selects

checkpoints from dirty pins, and builds groups as well as timing arcs accordingly.

The main challenge of timing macro modeling is to identify timing variant

pins for achieving high timing accuracy while keeping a compact model size. First, to

tackle this challenge, previous work adopts some heuristic techniques during their

timing macro modeling procedure, which may cause degradation on the solution

quality. For instance, LibAbs [11, 12] applies in-tree and out-tree graph reductions

alternatively, based on the observation on the timing arc forms of cells or nets.

Second, some works need to set a threshold for variant pins identification, which re-

quires considerable engineering effort, and the same threshold may not be applicable

3

for various circuit designs. For example, iTimerM [13] uses a threshold to separate

the variant regions with the constant region, and ATM [10] uses a threshold to de-

termine which pins are dirty. Lastly, for advanced node timing analysis models or

modes such as CPPR, existing methods have to design specific algorithms for dif-

ferent timing analysis models to meet the corresponding requirements, which may

be time-consuming and limited.

Therefore, there is still room for improvement. Recently, graph-learning-

based methods have been validated to outperform the traditional heuristic-based

approaches on multiple EDA problems on graphs, such as tier partitioning in 3D

ICs [16], predictions on parasitics and device parameters [21], and multiple pattern-

ing lithography decomposition (MPLD) [15], etc. To overcome the deficiencies of

prior work on timing macro modeling, we introduce graph neural networks (GNN)

to learn the timing variant pins from the circuit topology and timing propagation

properties. In this work, we first design a timing sensitivity metric that can capture

the influence of each pin on the overall timing accuracy, and generate the training

data for GNN models accordingly. Then, due to the applicability of GNN on the

timing macro modeling problem, the timing properties of circuit pins could be learnt

effectively. Eventually, we establish a flexible and general GNN-based timing macro

modeling framework that can achieve better solution quality than previous work.

The main contributions of this work are summarized below:

• We take a brand new graph-learning-based approach to the timing macro

modeling problem, in view of the high applicability of GNN on the problem.

• We propose a timing sensitivity metric that can evaluate the timing criticality

of each circuit pin accurately. The metric is then used to generate training

data for GNN models.

4

• We propose a flexible timing macro modeling with GNN framework which

is available on general designs, as we only include small designs during our

training phase while our framework could achieve superior quality on large

designs.

• Our framework can easily be applied to different advanced node timing anal-

yses. We use CPPR as an example, while the same strategy could be ex-

tended to other analyses such as advanced on-chip-variation (AOCV), para-

metric on-chip-variation (POCV), and composite current source (CCS) model.

We demonstrate how to generalize our framework to multi-corner multi-mode

(MCMM).

As an ILM-based approach, experimental results show that our framework

achieves the best timing accuracy in comparison with state-of-the-art works. More-

over, we improve the model size by 10% than iTimerM [13], the most accurate

state-of-the-art work. Besides, our framework generates high-quality solutions no

matter whether the CPPR mode is turned on, which implies the generality and

applicability of our framework.

The remainder of this thesis is organized as follows: Chapter 2 formulates

the timing macro modeling problem. Chapter 3 introduces GNN along with its

applicability to the problem and illustrates our framework. Chapter 4 details our

timing sensitivity metric as well as the data generation flow. Chapter 5 details the

GNN model training, the timing macro model generation, along with the generality

of our framework. Chapter 6 introduces the MCMM timing analysis and how to

extend our framework for various corners. Chapter 7 shows experimental results.

Finally, Chapter 8 concludes this work.

Chapter 2

Problem Formulation

In this work, we follow the problem formulation from TAU 2016 and 2017 contests

[1,5], which is also adopted by most previous work. The timing macro modeling

problem can be defined as follows:

Given a circuit design with its gate-level netlist and net parasitics, the early

and late cell libraries, and the boundary timing information (including slew and

arrival time of primary inputs, and output load and required arrival time of primary

outputs), the goal is to generate a timing macro model that encapsulates the timing

behaviors of the design.

The generated timing macro model is evaluated by its model accuracy, model

size, model generation performance, and model usage performance, where model

accuracy is validated by comparing timing analysis results using our timing macro

model and the original flat design, as shown in Figure 2.1. We adopt iTimerM [13]

as our reference timer, and the results are also aligned with OpenTimer [6].

5

6

Netlist Parasitics Cell Libraries Boundary Timing Information

Our Timing Macro Modeling
Framework

Post-CPPR Timing Analysis

Timing Report of
Our Macro Model

Timing Report of
Flat Design

Macro
Model

PI

CLK
PO

Full
Netlist

PI

CLK
PO

Post-CPPR Timing Analysis

Model Accuracy Evaluation

Figure 2.1: Timing macro modeling and model accuracy evaluation flow.

Chapter 3

Overview of Our Framework

3.1 GNN and Timing Macro Modeling Problem

Encouraged by the success of deep learning paradigms on a variety of tasks,

graph neural networks (GNN) have been developed to apply deep learning methods

to graph data [17,22]. In a typical GNN scheme, node information is aggregated and

transformed between neighbors recursively. After several neural network layers, a

high-level representation of each node is extracted, which encapsulates the features

and structures of the node’s neighborhood [16,21].

There are several reasons that GNN is suitable for the timing macro modeling

problem. First, the evaluation of timing criticality on circuit pins is usually chal-

lenging for heuristic-based methods. Nevertheless, graph-learning-based methods

could capture implicit properties of circuit pins and thus evaluating timing impor-

tance more precisely. Second, the aggregation of node attributes in GNN is similar

to the propagation of timing values on timing graphs, as shown in Figure 3.1. Con-

sequently, the timing properties of circuit pins could be captured and learned by

GNN models smoothly. Third, due to the information exchange mechanism in GNN,

the final representations of adjacent nodes tend to become similar. This property

is desired in timing macro modeling since neighbor pins are usually of comparable

degrees of timing criticality. Lastly, it is natural to represent circuit netlists by

7

8

slew, arrival time

slew, arrival time

required arrival time

required arrival time

ℎ!
(#)

ℎ%
(#)

ℎ&
(#)

ℎ'
(#)

required arrival time

Timing value propagation

Feature aggregation

Features of l and l+1 layers, respectively

1-Hop neighbors of the target node

Target node

ℎ%
(#(!)

ℎ!
(#) ℎ%

(#&')

Figure 3.1: The analogy between GNN aggregation and timing propagation. Timing
values including slew, arrival time, and required arrival time are propagated through
edges (blue and green arrows). On the other hand, node features of layer l, h

(l)
i , are

aggregated through edges and transformed into node features of layer l + 1, h
(l+1)
i

(red arrows).

graphs, and thus GNNs could be easily embedded into the timing macro modeling

framework.

3.2 Our Generic Framework

Figure 3.2 illustrates the proposed timing macro modeling framework. In

the first stage, the timing sensitivity of each circuit pin is evaluated to reflect the

influence of each pin on the overall timing accuracy. Then, the training data is

generated accordingly. In the second stage, we adopt GNN models to learn the

properties of circuit designs and predict the timing sensitivities of testing data.

Finally, starting from the interface logic netlist (ILM), timing macro models are

generated based on our timing sensitivities prediction. Different from previous work,

9

An Arbitrary Delay Model and Mode

Timing Macro Models of Benchmark Designs,
w.r.t. the Given Delay Model and Mode

Timing Macro Modeling Framework
Timing Sensitivity Data Generation

Timing Sensitivities of Training Designs

GNN Model Training

GNN Model Prediction

Timing Sensitivities of Benchmark Designs

Timing Macro Model Generation

Figure 3.2: Overview of our framework.

which mainly focuses on non-linear delay model (NLDM), our framework could also

be applied to other advanced node timing analysis models such as CCS, AOCV, and

POCV, or different timing modes like CPPR. The generality of our framework comes

from the fact that timing sensitivities could be adaptively evaluated depending on

the given timing delay model. Moreover, the GNN models could effortlessly capture

the corresponding timing properties.

Chapter 4

Timing Sensitivity Data Generation

4.1 Timing Sensitivity (TS)

In order to generate a high-quality timing macro model, we need to precisely

evaluate the influence of each circuit pin on the timing accuracy of the whole de-

sign. Then, pins with subtle influences could be waived to reduce model size and

meanwhile the timing accuracy will not be degraded.

Figure 4.1 shows how we evaluate the timing sensitivity (TS) of each pin.

Given the input circuit graph, we first randomly generate several 1 sets of bound-

ary timing constraints. Between each set of timing constraints, incremental timing

analysis [14] is performed on the ILM and the results are stored as references. In

the timing sensitivity evaluation stage, we remove a pin from the circuit each time.

After the removal, we perform timing propagation based on each set of boundary

timing constraints generated and compute the differences between the current and

the reference timing values (including slew, arrival time (at), required arrival time

(rat), and slack) at the boundary pins. Finally, TS of a pin (for convenience, denoted

as A in the following discussion) is set as the average of timing value differences un-

der the different timing constraints. Equations (4.1) and (4.2) define the TS of pin

1We generate ten sets of boundary timing constraints in our experiments. Using more sets, e.g.
twenty, identifies extremely few extra sensitive pins. Thus, ten sets of constraints are sufficient to
cover the given operating conditions and find almost all sensitive pins.

10

11

A, where C denotes the collection of generated boundary timing constraints, and

slewc
P,before (resp. slew

c
P,after) denotes the slew value of a boundary pin P under the

timing constraint c before (resp. after) pin A’s removal. The definitions of ∆atcA,

∆ratcA, and ∆slackc
A are similar to that of ∆slewc

A (i.e., Equation (4.2)).

TSA = AV Gc∈C(AV G(∆slewc
A,∆atcA,∆ratcA,∆slackc

A)) (4.1)

∆slewc
A =

1

|PI ∪ PO|
ΣP∈PI∪PO

slewc
P,after − slewc

P,before

slewc
P,before

(4.2)

Figure 4.1: Timing sensitivity evaluation flow.

4.2 Insensitive Pins Filtering

Although the TS evaluation flow could accurately compute the influence of

each pin on the overall timing accuracy, running the flow for all the pins is time-

consuming as we need to perform timing propagation once in each iteration. To

enhance the efficiency, we first observe that the majority of the pins have extremely

small or even zero TS. It is due to the nature of timing graph that most of the

pins have subtle influences on the overall timing accuracy. For example, the TS

distribution of circuit fft ispd is shown in Figure 4.2, where 70% pins have zero

TS, while only few pins have large TS. Therefore, if we can find a rapid screening

12

method to filter the insensitive pins first, we could perform TS evaluation flow on

the potential critical pins only.

Timing value difference propagation is a suitable method for insensitive pins

filtering. At each primary input (PI) or primary output (PO) port, two timing

values, tmin and tmax, are set up. We then propagate the timing values through

the design and monitor the difference between the two timing values at each pin.

According to the shielding effect, as shown in Figure 4.3, the difference decays after

several levels, and pins with small difference tend to have subtle influence on the

overall timing accuracy. Inspired by previous works [10, 13], we choose slew to

propagate from each PI. After the propagation, the slew difference (SD) at each pin

is standardized, and pins with SD less than a threshold is filtered out. As mentioned

in Chapter 1, thresholds to distinguish crucial pins are also adopted in some previous

works, where the thresholds must be tuned delicately to obtain favorable results. In

contrast, the threshold here is not required to be precise since it only helps reduce

the number of pins to be evaluated, and thus the quality of generated timing macro

models from our framework is independent of the threshold. Actually, we have never

tuned the threshold value during our experiments. In addition, last stage pins and

pins connected to some output net are also remained for output load variant.

After the insensitive pins filtering, more than 88% pins are filtered out from

the TS evaluation flow, which implies the flow becomes almost 10 times faster. As

a result, the training data could be generated efficiently. Figure 4.4 illustrates the

whole training data generation flow.

13

𝒇𝒇𝒕_𝒊𝒔𝒑𝒅

timing sensitivity

fr
e
q
u
e

n
c
y

0.00 0.05 0.10 0.15 0.20

100

101

102

103

104

105

Figure 4.2: Timing sensitivity distribution of fft ispd.

Input slew
Slew difference

Figure 4.3: Slew difference and shielding effect.

14

Figure 4.4: Timing sensitivity training data generation flow.

Chapter 5

GNN-Based Timing Macro Modeling

5.1 GNN Model Training and Prediction

With the timing sensitivity training data, GNN models could learn and pre-

dict accordingly. In this work, we adopt GraphSAGE [4] as our main GNN engine.

For node v, it first aggregates the node features from its neighborhood N (v) through

Equation (5.1), then Equation (5.2) concatenates and encodes the representation of

node v with the aggregated vector. In the experiments, only four rounds of aggre-

gations and encodings are performed, as the timing property of a node is mostly

influenced by its neighborhood. Other existing GNN models such as GCN [9] or

even self-defined GNN models could also be embedded with our framework.

hk
N (v) ←− AGGREGATEk(h

k−1
u ,∀u ∈ N (v)) (5.1)

hk
v ←− σ(W k · CONCAT (hk−1

v , hk
N (v))) (5.2)

As we treat the GNN prediction as a classification problem for the most

part, we need to convert the training labels of pins to {0, 1}. We set the label of

a pin to 1 if and only if its TS is not zero. The conversion is reasonable because a

non-zero TS implies the corresponding pin may have some influence on the overall

timing accuracy. In addition, for CPPR mode, labels of multiple-fan-out pins of

clock networks are also set to 1, since previous works [7,14] point out that this kind

15

16

Table 5.1: Training features. The first eight features are basic features, while the
last feature is a dedicated feature for CPPR mode.

Feature Description

level from PI The minimum level from a PI to the pin
level to PO The min. level from the pin to a PO

is last stage fanout If the pin is the fanout of a last stage pin
is last stage If the pin is the last stage of the timing graph
is first stage If the pin is the first stage of the timing graph
out degree The number of output edges of the pin

is clock network If the pin belongs to clock network
is ff clock If the pin is the clock pin of a flip-flop

is CPPR If the pin is crucial for CPPR

of pins may be the common points of the clock paths of sequential elements pair,

which is essential for CPPR calculation.

The training features are listed in Table 5.1. The features are all basic circuit

properties which could be extracted within linear time. Features beginning with “is”

are of {0, 1} Boolean values. For level from PI, level to PO, and out degree, the

values are normalized to [0, 1] so that each feature have the same level of influences.

5.2 Timing Macro Model Generation

Figure 5.1 details the timing macro model generation stage. First, we capture

the interface logic netlist to construct ILM. Second, based on the predictions from

GNN models, we perform serial and parallel mergings on timing edges iteratively to

remove insensitive pins. For serial merging, the delay of a merged edge is the sum of

the original ones, while the slew inherits the last edge. For parallel merging, delay

or slew is the minimum (resp. maximum) of the original edge values in the early

(resp. late) mode. Afterward, we apply the lookup table index selection method

proposed in [13], where indices that minimize the interpolation timing error are

17

selected. Lastly, the timing macro model is generated.

Netlist Parasitics Cell libraries Operating conditions

Timing Macro Model Generation

Timing macro model

Interface Logic Capturing

Timing Graph Reduction Based on
GNN Prediction

Lookup Table Index Selection

Figure 5.1: Timing macro model generation.

5.3 Flexibility and Generality of Our Framework

As mentioned in Chapter 3, our framework can be applied to different timing

analysis models or modes. The reason is that the timing-sensitivity-based training

labels, the basic features, and the circuit netlist structure are enough to reflect the

importance of each pin, either in an explicit or implicit manner. However, to help

GNN model training, we may leverage domain knowledge for each specific timing

model or mode. Take CPPR as an example. As we know, multiple-fan-out pins of

clock networks are crucial for CPPR calculation. Thus, we could add a dedicated

training feature for CPPR to indicate this kind of pins, called is CPPR. Before

adding the special feature into GNN model training, the other features such as

out degree and is clock network along with the timing sensitivities could implicitly

indicate multiple fan-out pins of clock networks; therefore, we could already obtain

high-quality timing macro models. After including the dedicated feature to explicitly

18

identify this kind of pins, we could further enhance the results, and the training

process becomes more efficient. The technique could be applied to other timing

models as well.

In addition, our training designs are of 104 to 106 pins, while testing designs

mostly have millions of pins. However, as experimental results show, our framework

could capture the timing properties from small designs and obtain good results on

large designs. It implies that our framework could be directly used to generate

timing macro models for general designs.

Lastly, the GNN prediction in our framework could also be treated as a

regression problem, i.e., timing sensitivities are set as training labels directly, and

the framework could not only learn which pins are critical for timing accuracy, but

also capture the relative criticality between pins.

Chapter 6

Timing Macro Modeling for Multi-Corner

Multi-Mode

6.1 Multi-Corner Multi-Mode (MCMM) Timing Analysis

In today’s advanced technology, different PVT corners (a combination of pro-

cess, voltage, and temperature parameters) and operation modes (a set of timing

constraints, supplying voltage, etc.) result in divergent timing analysis results. Ide-

ally, STA should be performed under all the corners and modes to guarantee that

timing constraints are met and enhance the design quality. However, as the number

of corners and modes grows exponentially in modern processes, the exhaustive ap-

proach becomes impractical. To tackle the complexity of MCMM timing analysis,

several works [3,18–20] attempt to find the worst-delay corner or an upper bound for

all the corner delays, so that the checking of timing violations could be performed

in practical time. Recently, a learning-based approach [8] leverages the timing anal-

ysis results of known corners to predict those of unobserved corners. Thus, analysis

results of all the corners could be obtained while only a limited number of corners

and paths are required to be analyzed.

19

20

Figure 6.1: The default flow to generate timing macro models for all the corners.

6.2 Timing Macro Modeling Covering All Corners

To the best of our knowledge, however, no previous work has dealt with

MCMM for the generation of timing macro models. As described in Chapter 5,

our framework is available for various timing analysis models or modes. Thus,

intuitively, to generate timing macro models for all the corners, we could run our

framework once for each corner as shown in Figure 6.1. Similar to the exhaustive

STA, the method is impractical since timing sensitivity data generation and GNN

model training are time-consuming.

To generate macro models for all the corners efficiently, we observe that a

linear model is often assumed for the relation between delay/slew and the parameters

in previous works [3, 19] as Equation (6.1) shows, where H is the real value of

delay/slew, α0 is the nominal value of delay/slew, Xi’s are the parameters that

21

are normalized to [−1, 1], and αi’s are the sensitivities of H to the corresponding

parameters. In addition, Kahng et al. [8] point out the correlation between path

delays of different corners.

H = α0 + α1X1 + α2X2 + ...+ αnXn (6.1)

Inspired by these ideas, we propose a two-stage timing macro modeling frame-

work for all corners (see Figure 6.2). Firstly, all the corners (C) are divided into

two disjoint sets Cobs and Cunobs. Then, only the corners in Cobs are fed into the first

stage. After the timing sensitivities of benchmark designs under corners from Cobs

are extracted, we adopt deep neural networks (DNN) to predict the timing sensi-

tivities of corners from Cunobs in the second stage, in view of the linear dependence

of timing values to process parameters and the correlation between timing analysis

results of different corners. After that, timing macro models for corners in C can

be generated accordingly. Finally, the macro models are further merged into a sin-

gle timing macro model based on the similarities of timing values among different

corners.

An example is illustrated in Figure 6.3. In the first stage, only corners in

Cobs (Corners 1, 2, and 3) undergo the timing macro modeling framework, and the

timing sensitivities of pins under each corner are determined (red for sensitive pins

and white for insensitive pins). On the other hand, the sensitivities of pins under

corners in Cunobs remain unknown. In the second stage, for each pin in the timing

graph, a DNN model is trained with the generated timing sensitivities (as training

labels) and the parameters (as training features) of the observed corners. Then, the

timing sensitivities of pins under the unobserved corners could be inferred by the

DNN models and the corresponding parameters.

22

Figure 6.2: Our framework to generate timing macro models for all the corners.

23

(a) The first stage.

(b) The second stage.

Figure 6.3: An example of our timing macro modeling framework for all corners.

Chapter 7

Experimental Results

In our framework, the timing sensitivity data generation and timing macro model

generation are implemented in the C++ programming language, while the GNN

model training and prediction are implemented in Python3 programming language

with the PyTorch library. The experiments are conducted on a Linux workstation

with 3.7 GHz CPU, 192 GB RAM, and a NVIDIA RTX 3090 GPU. Our framework is

validated on the benchmark suite released by TAU 2016 and TAU 2017 contests [1,5].

Table 7.1 list the statistics of the benchmarks.

Table 7.2 shows the results on TAU 2016 [5] and TAU 2017 [1] benchmarks

considering CPPR and the comparisons with two state-of-the-art ILM-based works

iTimerM [13] and [12]. Among all the criteria, max error and model file size are

viewed as the most crucial ones. Our framework achieves extremely high timing

accuracy as all the max errors are less than 0.1ps, which is same as iTimerM [13]

and 9 times better than [12]. As for model file size, our result is about 10% smaller

than iTimerM [13] and 45% smaller than [12]. To summarize, our framework

preserves the highest timing accuracy in terms of max errors among the state-of-the-

art works, while further improving the model size by 10% than the same-accuracy-

level work. Our framework also achieve similar or even better results in terms of

model generation performance and model usage performance. The average errors of

our framework are slightly higher than those of iTimerM [13]; however, the difference

24

25

Table 7.1: Testing data statistics.

Design #Pins #Cells #Nets

mgc edit dist iccad eval 581319 224113 224101
vga lcd iccad eval 768050 286597 286498
leon3mp iccad eval 4167632 1534489 1534410
netcard iccad eval 4458141 1630171 1630161
leon2 iccad eval 5179094 1892757 1892672

mgc edit dist iccad 450354 164266 164254
vga lcd iccad 679258 259251 259152
leon3mp iccad 3376832 1248058 1247979
netcard iccad 3999174 1498565 1498555
leon2 iccad 4328255 1617069 1616984

mgc matrix mult iccad 492568 176084 174484

is only a few femtoseconds and thus can be neglected. Although the max errors of

previous works are also fractions of picosecond, timing errors may be propagated and

accumulated to a larger amount since timing macro models are often cascaded during

hierarchical and parallel timing analysis in industrial applications. As macro models

are used more frequently in larger designs, our accuracy improvement becomes more

significant.

As mentioned in Chapter 5, we could leverage the domain knowledge to help

GNN model training for different timing models or modes. We use CPPR as an

example, and the result is shown in Table 7.3. We adopt the results of iTimerM [13]

as the baseline and calculate the differences and ratios as described in Table 7.2.

Before adding the CPPR-dedicated feature (i.e., is CPPR), our framework could

already achieve the same timing accuracy as iTimerM [13] while reducing the model

size by 6%. After the is CPPR feature is included, our framework still preserves the

same timing accuracy while improving the model size by 10%. The result tells that

our framework could achieve superior quality with only the basic features, while the

dedicated features could capture the timing properties of designs more precisely.

26

Table 7.4 displays the results on the TAU 2017 [1] benchmark without CPPR.

Our results are compared with the ILM-based work iTimerM [13] and the ETM-

based work ATM [10]. In comparison with ATM [10], our framework achieves 9

times better max error and 25 times better average error, but it suffers from a

larger model size. It is as our expectation since our framework is ILM-based while

ATM [10] is ETM-based. Besides, we also achieve 17 times faster model generation

runtime than ATM [10]. As for the ILM-based work iTimerM [13], we preserve the

same timing accuracy while improving the model size by 9%. The result validates

the applicability and generality of our framework on different timing modes (CPPR

on and CPPR off), and it may be further inferred to various timing delay models

and modes.

As mentioned in Chapter 4, the goal of the insensitive pins filtering is to

exclude non-critical pins rapidly, under the premise that the timing accuracy is not

degraded. Figure 7.1 shows the timing sensitivities of pins in the training design

systemcaes. TS of pins that are filtered out are shown in the left histogram, and those

of the potential sensitive pins are shown in the right histogram. It can be seen that

a majority of filtered pins indeed have zero TS, while many remained pins have non-

zero TS. It validates the consistency between the insensitive pins filtering and the

TS evaluation, which implies the insensitive pins filtering is suitable for accelerating

the training data generation flow. To further ensure the timing accuracy is not

degraded by the insensitive pins filtering, we conduct an experiment in which the

training labels of all the remained pins after the insensitive pins filtering are set to

1. The result is shown in Table 7.5. The results of iTimerM [13] are adopted as

the baseline, and the differences and ratios are calculated as described in Table 7.2.

The results achieve the same timing accuracy as iTimerM [13] which is of the best

accuracy among the previous works. Therefore, it is validated that the insensitive

27

𝒔𝒚𝒔𝒕𝒆𝒎𝒄𝒂𝒆𝒔 𝒔𝒚𝒔𝒕𝒆𝒎𝒄𝒂𝒆𝒔

timing sensitivity timing sensitivity

fr
e
q

u
e

n
c
y

fr
e
q
u
e
n
c
y

0.000 0.002 0.004 0.006 0.008 0.010 0.000 0.002 0.004 0.006 0.008 0.010

100

101

102

103

104

100

101

102

103

Figure 7.1: Separated TS distribution based on the insensitive pins filtering.

pins filtering does not degrade the resulting timing accuracy.

Lastly, to evaluate our framework’s efficiency when we encounter new bench-

marks under the same NLDM libraries, we only need to consider the GNN model

inference runtime and the model generation runtime since our framework is available

on general designs under the NLDM. The GNN model inference time usually takes

less than 5 seconds for each design, which is much less than the model generation

time listed in the above tables. Thus, our framework spends comparable or even

better runtime than previous work for unseen test data under the NLDM. As for

other timing delay models such as AOCV, POCV, and CCS, we need to further

consider the training data generation time and the GNN model training time. The

timing sensitivity training data generation takes several minutes to several hours,

depending on the size of the design, and the GNN model training consumes about

30 minutes. However, since our framework could be directly applied to perform

timing macro modeling no matter which timing model is chosen, users do not need

to spend a great deal of time designing specific algorithms for different timing delay

models and tuning a bunch of parameters. As a consequence, our framework still

shows high applicability and efficiency on the timing macro modeling problem.

28

T
ab

le
7.
2:

E
x
p
er
im

en
ta
l
re
su
lt
s
on

T
A
U

20
16

[5
]
an

d
T
A
U

20
17

[1
]
b
en
ch
m
ar
k
s
w
it
h
C
P
P
R
.
F
or

th
e
av
g.

an
d

th
e
m
ax

er
ro
r,

w
e
ad

op
t
th
e
ab

so
lu
te

va
lu
e
of

d
iff
er
en
ce

b
et
w
ee
n
th
e
re
su
lt

of
m
ac
ro

m
o
d
el

an
d
th
e
on

e
of

fu
ll
n
et
li
st
.
If
th
e
re
su
lt
s
of

m
ac
ro

m
o
d
el

ar
e
m
or
e
op

ti
m
is
ti
c,

th
e
d
iff
er
en
ce

is
fu
rt
h
er

w
ei
gh

te
d
b
y
2.

F
or

th
e

m
o
d
el

fi
le

si
ze
,
w
e
ad

op
t
th
e
si
ze

of
th
e
li
b
ra
ry

fo
r
la
te

ti
m
in
g.

D
iff
er
en
ce

1
an

d
ra
ti
o
1
ar
e
co
m
p
ar
ed

w
it
h

iT
im

er
M

[1
3]
.
D
iff
er
en
ce

2
an

d
ra
ti
o
2
ar
e
co
m
p
ar
ed

w
it
h
[1
2]
.
D
iff
er
en
ce

=
co
m
p
ar
ed

re
su
lt

-
ou

r
re
su
lt
.

R
at
io

=
co
m
p
ar
ed

re
su
lt
/
ou

r
re
su
lt
.
N
ot
e
th
at

[1
2]

is
on

ly
ev
al
u
at
ed

on
T
A
U

20
16

b
en
ch
m
ar
k
in

th
ei
r
w
or
k
.

D
es
ig
n

A
v
g.

E
rr
or

(p
s)

M
ax

E
rr
or

(p
s)

M
o
d
el

F
il
e
S
iz
e

(M
B
)

G
en
er
at
io
n

R
u
n
ti
m
e

(s
)

G
en
er
at
io
n

M
em

or
y

(M
B
)

U
sa
ge

R
u
n
ti
m
e

(s
)

U
sa
ge

M
em

or
y

(M
B
)

O
u
rs

0.
00
00

0.
00
7

O
u
rs

56
11

10
87

8
47
5

m
gc

ed
it

d
is
t
ic
ca
d
ev
al

iT
im

er
M

0.
00
00

0.
00
7

iT
im

er
M

64
10

10
43

8
55
0

[1
2]

N
.A

.
0.
15
8

[1
2]

79
15

5
4

5
O
u
rs

0.
00
06

0.
04
0

O
u
rs

45
12

12
04

6
38
3

v
ga

lc
d
ic
ca
d
ev
al

iT
im

er
M

0.
00
06

0.
04
0

iT
im

er
M

50
13

12
08

7
40
2

[1
2]

N
.A

.
0.
25
5

[1
2]

72
24

39
9

4
5

O
u
rs

0.
00
04

0.
05
2

O
u
rs

35
50

49
08

5
32
4

le
on

3m
p
ic
ca
d
ev
al

iT
im

er
M

0.
00
04

0.
05
2

iT
im

er
M

45
58

48
07

6
39
5

[1
2]

N
.A

.
0.
22
0

[1
2]

86
78

5
5

5
O
u
rs

0.
00
00

0.
00
4

O
u
rs

21
3

89
66
09

29
17
57

n
et
ca
rd

ic
ca
d
ev
al

iT
im

er
M

0.
00
00

0.
00
4

iT
im

er
M

22
0

65
65
13

29
18
22

[1
2]

N
.A

.
0.
20
3

[1
2]

37
2

10
1

12
61
6

23
43
32

O
u
rs

0.
00
02

0.
01
6

O
u
rs

36
9

89
82
98

64
30
34

le
on

2
ic
ca
d
ev
al

iT
im

er
M

0.
00
02

0.
01
6

iT
im

er
M

37
2

82
78
65

61
30
56

[1
2]

N
.A

.
0.
24
1

[1
2]

67
6

10
5

15
29
9

38
53
15

T
A
U

2
0
1
6
A
v
e
ra

g
e

D
iff
er
en
ce

1
0.
00
00

0.
00
0

R
at
io

1
1.
11
6

0.
96
1

0.
97
5

1.
09
9

1.
09
4

D
iff
er
en
ce

2
N
.A

.
0.
19
2

R
at
io

2
1.
80
9

1.
44
8

0.
81
8

0.
73
8

0.
85
1

m
gc

ed
it

d
is
t
ic
ca
d

O
u
rs

0.
00
29

0.
05
2

O
u
rs

60
16

10
54

8
51
4

iT
im

er
M

0.
00
03

0.
05
2

iT
im

er
M

66
12

10
63

9
53
7

v
ga

lc
d
ic
ca
d

O
u
rs

0.
00
24

0.
08
0

O
u
rs

56
16

14
55

7
47
4

iT
im

er
M

0.
00
23

0.
08
0

iT
im

er
M

58
15

14
29

8
48
7

le
on

3m
p
ic
ca
d

O
u
rs

0.
00
31

0.
04
6

O
u
rs

37
68

54
07

5
33
2

iT
im

er
M

0.
00
16

0.
04
6

iT
im

er
M

46
67

52
81

6
40
6

n
et
ca
rd

ic
ca
d

O
u
rs

0.
00
13

0.
02
9

O
u
rs

23
9

10
1

78
14

35
19
38

iT
im

er
M

0.
00
03

0.
02
9

iT
im

er
M

24
8

98
75
45

33
19
93

le
on

2
ic
ca
d

O
u
rs

0.
00
27

0.
09
5

O
u
rs

43
8

12
5

81
71

62
36
13

iT
im

er
M

0.
00
13

0.
09
5

iT
im

er
M

44
0

10
9

80
49

64
36
25

T
A
U

2
0
1
7
A
v
e
ra

g
e

D
iff
er
en
ce

-0
.0
01
3

0.
00
0

R
at
io

1.
08
4

0.
90
3

0.
98
4

1.
07
0

1.
06
5

29

T
ab

le
7.
3:

E
x
p
er
im

en
ta
l
re
su
lt
s
w
it
h
an

d
w
it
h
ou

t
C
P
P
R
-d
ed
ic
at
ed

fe
at
u
re
s.

B
en
ch
m
ar
k

A
v
g.

E
rr
or

M
ax

E
rr
or

M
o
d
el

F
il
e
S
iz
e

G
en
er
at
io
n

R
u
n
ti
m
e

G
en
er
at
io
n

M
em

or
y

U
sa
ge

R
u
n
ti
m
e

U
sa
ge

M
em

or
y

T
A
U
20
16

(a
v
g.
)

D
iff
er
en
ce

B
ef
or
e

0.
00
00

0.
00
0

R
at
io

B
ef
or
e

1.
06
4

1.
05
5

0.
95
9

1.
13
3

1.
04
8

D
iff
er
en
ce

A
ft
er

0.
00
00

0.
00
0

R
at
io

A
ft
er

1.
11
6

0.
96
1

0.
97
5

1.
09
9

1.
09
4

T
A
U
20
17

(a
v
g.
)

D
iff
er
en
ce

B
ef
or
e

-0
.0
00
1

0.
00
0

R
at
io

B
ef
or
e

1.
06
0

0.
82
8

0.
99
4

1.
11
5

1.
03
7

D
iff
er
en
ce

A
ft
er

-0
.0
01
3

0.
00
0

R
at
io

A
ft
er

1.
08
4

0.
90
3

0.
98
4

1.
07
0

1.
06
5

30

T
ab

le
7.
4:

E
x
p
er
im

en
ta
l
re
su
lt
s
on

T
A
U

20
17

b
en
ch
m
ar
k
w
it
h
ou

t
C
P
P
R
.
F
or

th
e
av
g.

an
d
th
e
m
ax

er
ro
r,

w
e
ad

op
t
th
e
ab

so
lu
te

va
lu
e
of

d
iff
er
en
ce

b
et
w
ee
n
th
e
re
su
lt
of

m
ac
ro

m
o
d
el

an
d
th
e
on

e
of

fu
ll
n
et
li
st
.
If
th
e

re
su
lt
s
of

m
ac
ro

m
o
d
el

ar
e
m
or
e
op

ti
m
is
ti
c,

th
e
d
iff
er
en
ce

is
fu
rt
h
er

w
ei
gh

te
d
b
y
2.

F
or

th
e
m
o
d
el

fi
le

si
ze
,

w
e
ad

op
t
th
e
si
ze

of
th
e
li
b
ra
ry

fo
r
la
te

ti
m
in
g.

D
iff
er
en
ce

1
an

d
ra
ti
o
1
ar
e
co
m
p
ar
ed

w
it
h
iT
im

er
M

[1
3]
.

D
iff
er
en
ce

2
an

d
ra
ti
o
2
ar
e
co
m
p
ar
ed

w
it
h
A
T
M

[1
0]
.
D
iff
er
en
ce

=
co
m
p
ar
ed

re
su
lt

-
ou

r
re
su
lt
.
R
at
io

=
co
m
p
ar
ed

re
su
lt

/
ou

r
re
su
lt
.

W
e
ad

d
it
io
n
al
ly

in
cl
u
d
e
th
e
ci
rc
u
it

m
gc

m
at
ri
x
m
u
lt
ic
ca
d

to
ev
al
u
at
e
si
n
ce

A
T
M

[1
0]

al
so

ad
op

ts
it
as

on
e
te
st

ca
se
.

D
es
ig
n

A
v
g.

E
rr
or

(p
s)

M
ax

E
rr
or

(p
s)

M
o
d
el

F
il
e
S
iz
e

(M
B
)

G
en
er
at
io
n

R
u
n
ti
m
e

(s
)

G
en
er
at
io
n

M
em

or
y

(M
B
)

U
sa
ge

R
u
n
ti
m
e

(s
)

U
sa
ge

M
em

or
y

(M
B
)

O
u
rs

0.
00
33

0.
05
2

O
u
rs

59
14

10
69

9
56
3

m
gc

ed
it

d
is
t
ic
ca
d

iT
im

er
M

0.
00
07

0.
05
2

iT
im

er
M

65
13

10
62

9
52
3

A
T
M

0.
09
60

0.
40
2

A
T
M

2
83
3

N
.A

.
0.
36

N
.A

.

O
u
rs

0.
00
26

0.
08
0

O
u
rs

52
18

14
57

7
44
2

v
ga

lc
d
ic
ca
d

iT
im

er
M

0.
00
23

0.
08
0

iT
im

er
M

55
17

14
20

9
45
0

A
T
M

0.
04
00

0.
16
0

A
T
M

0.
3

85
N
.A

.
0.
06

N
.A

.

O
u
rs

0.
00
33

0.
04
6

O
u
rs

31
78

53
92

5
27
5

le
on

3m
p
ic
ca
d

iT
im

er
M

0.
00
18

0.
04
6

iT
im

er
M

31
10
2

52
57

4
28
6

A
T
M

0.
10
70

0.
46
0

A
T
M

0.
6

74
0

N
.A

.
0.
09

N
.A

.

O
u
rs

0.
00
33

0.
02
9

O
u
rs

22
6

12
4

78
04

32
17
95

n
et
ca
rd

ic
ca
d

iT
im

er
M

0.
00
05

0.
02
9

iT
im

er
M

22
9

10
4

75
39

33
18
38

A
T
M

0.
05
40

0.
24
6

A
T
M

1.
6

61
8

N
.A

.
0.
27

N
.A

.

O
u
rs

0.
00
27

0.
09
5

O
u
rs

40
8

19
3

81
56

60
33
78

le
on

2
ic
ca
d

iT
im

er
M

0.
00
13

0.
09
5

iT
im

er
M

41
0

15
2

77
82

59
33
90

A
T
M

0.
04
00

0.
24
0

A
T
M

2.
4

10
55

N
.A

.
0.
34

N
.A

.

O
u
rs

0.
00
32

0.
05
4

O
u
rs

12
4

27
11
06

18
92
4

m
gc

m
at
ri
x
m
u
lt

ic
ca
d

iT
im

er
M

0.
00
20

0.
05
4

iT
im

er
M

17
1

29
11
14

24
10
98

A
T
M

0.
13
00

0.
45
0

A
T
M

12
62
9

N
.A

.
1.
63

N
.A

.

A
ve
ra
ge

D
iff
er
en
ce

1
-0
.0
01
6

0.
00
0

R
at
io

1
1.
09
3

0.
98
0

0.
97
8

1.
08
5

1.
03
3

D
iff
er
en
ce

2
0.
07
48

0.
26
7

R
at
io

2
0.
02
8

17
.9
10

N
.A

.
0.
02
9

N
.A

.

31

Table 7.5: Validation on insensitive pins filtering.

Benchmark Avg. Error Max Error Model File Size

TAU2016 0.0000 0.000 1.040
TAU2017 0.0000 0.000 1.009

Chapter 8

Conclusions

In this thesis, we propose a generic timing macro modeling framework that is ap-

plicable on various timing analysis models and modes. In our framework, we first

evaluate the timing criticality of each pin through a timing sensitivity metric, and

generate the training data accordingly. Then, due to the analogy between the GNN

and the timing macro modeling, GNN model can capture the timing properties

effectively. Eventually, high-quality macro models could be generated. Experimen-

tal results based on TAU 2016 [5] and TAU 2017 [1] contests show our framework

achieves extremely high timing accuracy while further improving the model size than

the most accurate state-of-the-art work. Moreover, taking CPPR as an example,

the generality and applicability of our framework is also validated empirically. We

also demonstrate a generalized framework for MCMM. Future work includes timing

analysis of MCMM timing macro models in a heterogeneous integration system.

32

Bibliography

[1] S. Chen, A. Khandelwal, X. Zhao, and X. Chen, “TAU 2017 timing contest

on macro modeling,” in International Workshop on Timing Issues in the

Specification and Synthesis of Digital Systems (TAU), 2017. [Online]. Available:

https://sites.google.com/site/taucontest2017/

[2] A. J. Daga, L. Mize, S. Sripada, C. Wolff, and Q. Wu, “Automated timing

model generation,” in 39th Design Automation Conference (DAC), pp. 146–

151, 2002.

[3] L. G. e Silva, L. M. Silveira, and J. R. Phillips, “Efficient computation of

the worst-delay corner,” in Design, Automation Test in Europe Conference

Exhibition (DATE), pp. 1617–1622, 2007.

[4] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation learning

on large graphs,” in 31st Conference on Neural Information Processing Systems

(NIPS), pp. 1025–1035, 2017.

[5] J. Hu, S. Chen, X. Zhao, and X. Chen, “TAU 2016 timing contest

on macro modeling,” in International Workshop on Timing Issues in the

Specification and Synthesis of Digital Systems (TAU), 2016. [Online]. Available:

https://sites.google.com/site/taucontest2016/

[6] T.-W. Huang and M. D. F. Wong, “OpenTimer: A high-performance timing

33

https://sites.google.com/site/taucontest2017/
https://sites.google.com/site/taucontest2016/

34

analysis tool,” in International Conference on Computer-Aided Design (IC-

CAD), pp. 895–902, 2015.

[7] T.-W. Huang, P.-C. Wu, and M. D. F. Wong, “Fast path-based timing analysis

for CPPR,” in International Conference on Computer-Aided Design (ICCAD),

pp. 596–599, 2014.

[8] A. B. Kahng, U. Mallappa, L. Saul, and S. Tong, ““Unobserved corner” predic-

tion: Reducing timing analysis effort for faster design convergence in advanced-

node design,” in Design, Automation Test in Europe Conference Exhibition

(DATE), pp. 168–173, 2019.

[9] T. N. Kipf and M. Welling, “Semi-supervised classification with graph

convolutional networks,” 2016. [Online]. Available: arXiv:1609.02907

[10] K.-M. Lai, T.-W. Huang, P.-Y. Lee, and T.-Y. Ho, “ATM: A high accuracy

extracted timing model for hierarchical timing analysis,” in 26th Asia and South

Pacific Design Automation Conference (ASP-DAC), pp. 278–283, 2021.

[11] T.-Y. Lai, T.-W. Huang, and M. D. F. Wong, “LibAbs: An efficient and accu-

rate timing macro-modeling algorithm for large hierarchical designs,” in 54th

Design Automation Conference (DAC), pp. 65:1–65:6, 2017.

[12] T.-Y. Lai and M. D. F. Wong, “A highly compressed timing macro-modeling

algorithm for hierarchical and incremental timing analysis,” in 23rd Asia and

South Pacific Design Automation Conference (ASP-DAC), pp. 166–171, 2018.

[13] P.-Y. Lee and I. H.-R. Jiang, “iTimerM: A compact and accurate timing macro

model for efficient hierarchical timing analysis,” ACM Transactions on Design

Automation of Electronic Systems (TODAES), vol. 23, no. 4, pp. 48:1–48:21,

2018.

arXiv:1609.02907

35

[14] P.-Y. Lee, I. H.-R. Jiang, C.-R. Li, W.-L. Chiu, and Y.-M. Yang, “iTimerC 2.0:

Fast incremental timing and CPPR analysis,” in International Conference on

Computer-Aided Design (ICCAD), pp. 890–894, 2015.

[15] W. Li, J. Xia, Y. Ma, J. Li, Y. Lin, and B. Yu, “Adaptive layout decom-

position with graph embedding neural networks,” in 57th Design Automation

Conference (DAC), pp. 200:1–200:6, 2020.

[16] Y.-C. Lu, S. S. K. Pentapati, L. Zhu, K. Samadi, and S. K. Lim, “TP-GNN: A

graph neural network framework for tier partitioning in monolithic 3D ICs,” in

57th Design Automation Conference (DAC), pp. 64:1–64:6, 2020.

[17] Y. Ma, Z. He, W. Li, L. Zhang, and B. Yu, “Understanding graphs in EDA:

From shallow to deep learning,” in International Symposium on Physical Design

(ISPD), pp. 119–126, 2020.

[18] J.-J. Nian, S.-H. Tsai, and C.-Y. Huang, “A unified multi-corner multi-mode

static timing analysis engine,” in 15th Asia and South Pacific Design Automa-

tion Conference (ASP-DAC), pp. 669–674, 2010.

[19] S. Onaissi and F. N. Najm, “A linear-time approach for static timing analysis

covering all process corners,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 27, no. 7, pp. 1291–1304, 2008.

[20] S. Onaissi, F. Taraporevala, J. Liu, and F. Najm, “A fast approach for static

timing analysis covering all PVT corners,” in 48th Design Automation Confer-

ence (DAC), pp. 777–782, 2011.

[21] H. Ren, G. F. Kokai, W. J. Turner, and T.-S. Ku, “ParaGraph: Layout par-

asitics and device parameter prediction using graph neural networks,” in 57th

Design Automation Conference (DAC), pp. 124:1–124:6, 2020.

36

[22] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A comprehensive

survey on graph neural networks,” IEEE Transactions on Neural Networks and

Learning Systems, vol. 32, no. 1, pp. 4–24, 2021.

Publication List

[1] Kevin Kai-Chun Chang, Chun-Yao Chiang, Pei-Yu Lee, and Iris Hui-Ru Jiang,

“Timing Macro Modeling with Graph Neural Networks,” in Proceedings of 59th

Design Automation Conference (DAC), San Francisco, CA, USA, July 2022 (to

appear).

37

	Abstract (Chinese)
	Abstract
	List of Figures
	List of Tables
	Chapter 1. Introduction
	Chapter 2. Problem Formulation
	Chapter 3. Overview of Our Framework
	GNN and Timing Macro Modeling Problem
	Our Generic Framework

	Chapter 4. Timing Sensitivity Data Generation
	Timing Sensitivity (TS)
	Insensitive Pins Filtering

	Chapter 5. GNN-Based Timing Macro Modeling
	GNN Model Training and Prediction
	Timing Macro Model Generation
	Flexibility and Generality of Our Framework

	Chapter 6. Timing Macro Modeling for Multi-Corner Multi-Mode
	Multi-Corner Multi-Mode (MCMM) Timing Analysis
	Timing Macro Modeling Covering All Corners

	Chapter 7. Experimental Results
	Chapter 8. Conclusions
	Bibliography
	Publication List

