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Demand and cost forecast error sensitivity

analyses in aggregate production planning by

possibilistic linear programming models
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A production management system contains many imprecise natures. The conventional deterministic

and/or stochastic model in a computer integrated production management system (CIPMS) may not

capture the imprecise natures well. This study examines how the imprecise natures in the CIPMS

affect the planning results. Possibilistic linear programming models are also proposed for the

aggregate production planning problem with imprecise natures. The proposed model can adequately

describe the imprecise natures in a production system and, in doing so, the CIPMS can adapt to a

variety of non-crisp properties in an actual system. For comparison, the classic aggregate production

planning problem given by Holt, Modigliani, and Simon (HMS) is solved using the proposed

possibilistic model and the crisp model of Hanssmann and Hess (HH). Perturbing the cost

coef®cients and the demand allows one to simulate the imprecise natures of a real world and evaluate

the effect of the imprecise natures to production plans by both the possibilistic and the crisp HH

approaches. Experimental results indicate that the possibilistic model does provide better plans that

can tolerate a higher spectrum of imprecise properties than those obtained by the crisp HH model.

Keywords: Possibilistic linear programming, aggregate production planning, computer integrated

production management system, imprecise properties, sensitivity study

1. Introduction

Communication within a production system must

quickly react to ¯uctuations in market demand.

Therefore, the computer integrated production man-

agement system (CIPMS) has gradually replaced the

manual production management method. Although a

highly effective tool for production management and

control, CIPMS has several limitations before

practical applications. For instance, many managers

interested in implementing CIPMS are unable to

achieve the expected performance, particularly for the

aggregate production planning problem, because they

must input many tasks, material resources and a

considerable amount of time. This unsatisfactory

performance is largely owing to that many fuzzy

and/or imprecise natures are in the CIPMS environ-

ment, which the conventional approach cannot

adequately describe.

Any plan affecting the outcomes of production rate

and work force appear to be either a good or poor

decision, depending on the market demand and/or

product cost after the product is made and/or sold. A

plan is not good or bad in itself, but only relative to the

global economy during the period in which the

in¯uence of the plan is felt. Obviously, the global

economy cannot be precisely known, necessitating

that the plan be made under imprecise conditions.

An aggregate production planning problem, similar

to many other real life problems, has many imprecise

properties. This problem was set forth and solved by

quadratic programming by Holt, Modigliani, and

Simon [HMS] (1955), and Holt, Modigliani, and

Muth (1956). Later, Hanssmann and Hess [HH]

(1960) remodeled the problem by using a linear

programming approach. Since then, the linear

programming (LP) technique has been extensively

applied to solve related problems. A standard LP
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model for the aggregate production-planning problem

was also developed. At that time, ¯uctuations within a

production system were much slower and, therefore,

the imprecise natures did not signi®cantly affect the

LP planning results. Thus, the LP model was

satisfactory for existing production systems. In

addition to accelerating enterprise growth, advances

in computer technology have also increased the

imprecise natures of a production environment.

Therefore, increasing inadequacy in the ability of

the LP model to describe a system is re¯ected by its

less satisfactory results.

The stochastic approach has been applied to study

the imprecise nature of decision models since the late

1950s in which input data were given probability

function distributions (Dantzig, 1955; Beale, 1955;

Charnes, Cooper and Symonds, 1958; Charnes and

Cooper, 1959). Since then, investigators are still

solving aggregate production-planning problems by

using stochastic control models (Wets, 1989). Love

and Turner (1993) and Shen (1994) applied stochastic

control models to solve the HMS problem. Bellman

and Zadeh (1970) tacitly dealt the imprecise nature of

an aggregate production planning problem by using

equivalent randomness. However, the imprecise

nature may be associated with classes in which a

sharp transition from membership to non-membership

does not exist. This circumstance does not re¯ect a

real problem. In addition, applying random theory to

certain optimization problem solving reduces compu-

tational ef®ciency. After the pioneering work of

Zadeh (1978), possibility theory has found gradual

acceptance in this type of research. Moreover,

possibilistic decision-making models play an increas-

ingly important role in resolving many related

problems.

Possibilistic linear programming models possess

many advantages over other stochastic linear pro-

gramming models with respect to computational

ef®ciency and ¯exible doctrines. Possibility theory

focuses primarily on imprecision, which is intrinsic

in natural languages and generally assumed to be

possibilistic than probabilistic. Therefore, the term

variable is frequently used in a more linguistic sense

than in a strictly mathematical one. Possibilistic

decision-making models have played a vital role in

resolving practical decision-making problems.

Yazenin (1987) and Buckley (1990) compared

fuzzy/possibilistic and stochastic programming.

Tanaka, Ichihashi and Asai (1984) formulated fuzzy

linear programming problem based on the weighted

average of the upper and lower limits and, in doing

so, treated this average as a new objective function.

Using the objective function as a triangular possibi-

lity distribution, Tanaks and Asai (1984) considered

this objective function for a fuzzy constraint. Later,

Rommelfanger, Hanuscheck and Wolf (1989) used

gb-level sets and established membership functions

of the upper and lower bounds for each b-level set.

This problem became Multiple Objective Linear

Programming (MOLP) with 26g objectives, if

nested types of membership function are considered.

Rommelfanger (1989) also provided another aux-

iliary crisp satisfactory model with initially given

fuzzy goals. Luhandjula (1987) adopted the b-level

set concept and obtained a single objective semi-

in®nite linear programming problem. That investiga-

tion also proposed a cutting plane method to execute

this semi-in®nite program. Delgado, Verdegay and

Vila (1987) considered a convex set with extreme

points de®ned by the lower or upper bounds of the n
b-level sets of the fuzzy coef®cients. That investiga-

tion also obtained an auxiliary MOLP with 2n

objectives. Lai and Hwang (1992) maximized the

possibility of obtaining a higher pro®t and minimized

the risk of obtaining a lower pro®t for the MOLP

problem with imprecise objective and/or constraint

coef®cients.

Although possibilistic models have been widely

applied to modeling, performance evaluations have

seldom been performed on these models as compared

to the outcomes of crisp models. Hanssmann and Hess

(1960) indicated that although their approach did not

exactly minimize the expected cost when the Di's

have unbiased forecasts, the deviations from exact

solutions are insigni®cant for any reasonably accurate

forecast. Although such deviations might not have

been signi®cant previously, the deviations could

possibly cause serious problems in the CIPMS.

In light of above discussion, this study examines

how the previously neglected imprecise properties

affect today's planning outcome in CIPMS. The

possibility theory is also employed herein to establish

a possibilistic MOLP model for solving problems

involving imprecise demands and costs in aggregate

production planning. In addition, the possibilistic

model and the HH crisp model are used to model the

classical HMS paint factory problem for a compara-

tive study. By perturbing the cost coef®cient and

demand, the real world imprecise nature is simulated
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and the actual production cost for the plans obtained

by the possibilistic model and the HH crisp model are

estimated, respectively. Also studied herein is the

extent to which the possibilistic model can absorb the

imprecise nature of the real world.

2. Possibilistic multiple objective linear
programming

In Zimmermann (1991), the classic model of linear

programming can be stated as

min z � cx

s:t: Ax � b

x � 0 �1�
The ``possibilistic'' version of the above linear

programming model is given as

~cx � z

~Ax� ~b

x � 0 �2�
By substituting c

A

ÿ � � B and z
b

ÿ � � d into the above

equation, it can be rewritten as

~Bx � ~d

x � 0 �3�
Each of the �m� 1� rows in Equation (3) shall be

represented by a possibilistic set. The membership

functions, pi�x�, and the possibilistic linear program-

ming model are given as

max minfpi�x�g � max
x� 0

p ~D�x� �4�

where

pi�x� �
1 if Bix � di

1ÿ Bixÿ di

pi
if di5Bix � di � pi

i � 1; . . . ; m� 1

0 if Bix > di � pi

8><>:
Introducing the variable l to resemble p ~D, one can

obtain

max l s.t: lpi � Bix � di � pi i � 1; . . . ;m� 1

x � 0 �5�
If the optimal solution of Equation (5) is the vector

�l; x0�, x0 is the maximum solution of Equation (4)

for the model Equation (2).

2.1. Imprecise constraints

By considering the objective function as a crisp one,

Ax � ~b as a set of possibilistic constraints, and adding

another set of crisp constraints Dx � b
0

into the

system, the aforementioned linear programming

model becomes (Zimmermann, 1991):

min f �x� � cTx � z

s.t. Ax � ~b

Dx � b
0

x � 0 �6�
Since ~bi is an imprecise value, it can be simply

represented by a triangular possibility distribution

function. In other words, ~bi can be de®ned geome-

trically by three corner points including ��bm
i �T ; 1�,

��bp
i �T ; 0� and ��bo

i �T ; 0�. Obviously, in this distribu-

tion function bm
i is the most possible value ( possiblity-

1 if normalized). bp
i (the most pessimistic value) and

bo
i (the most optimistic value) are both the least

possible values. The membership functions of the

possibilistic constraints (Kaufmann and Gupta, 1985)

are de®ned as

pbi�x� �

0 if Aix � bp
i

Aixÿ bp
i

bm
i ÿ bp

i
if bp

i 5Aix � bm
i

bo
i ÿAix

bo
i ÿ bm

i
if bm

i 5Aix � bo
i

0 if bo
i 5Aix

8>>><>>>: �7�

where pbi�x� can be interpreted as the degree to which

x ful®lls (satis®es) the fuzziness unequally to

Aix � bi.

2.2. Imprecise objective coef®cients

A linear programming model with imprecise objective

coef®cients can be stated as

min f �x� � ~cTx �
Xn

i� 1

~cixi

s.t. Ax � b and x � 0 �8�
where ~ci � �cm

i ; c
p
i ; c

o
i � are the imprecise cost coef®-

cients which can be represented by triangular

possibility distributions. c m
i is the most possible

value ( possibility of value one if normalized).

c p
i (the most pessimistic value) and c o

i (the

most optimistic value) are both the least possible

values.
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The possibility distribution functions, pi, can be

expressed in terms of the occurrence frequency of

an event and can be taken as the analogous to the

probability distribution functions. Thus, the objective

function becomes

min
x [X

Xn

iÿ 1

��cm�Tx; �cp�Tx; �co�Tx� �9�

where cm � �cm
1 ; c

m
2 ; . . . ; cm

n �T , cp � �cp
1; c

p
2; . . . ; cp

n�T
and co � �co

1; c
o
2; � � � ; co

n�T . This turns out to be a

MOLP problem. Therefore, Equation (9) can be

expressed as

min z1 � �cp�Tx

min z2 � �cm�Tx

min z3 � �co�Tx

s.t. Ax � b and x � 0

x [X �10�

To solve the above equations, both the fuzzy

programming method (Zimmermann, 1991) and the

normalization procedure (Lai and Hwang, 1992) are

proposed for use. Positive and negative ideal solutions

(PIS and NIS) of three objective functions (Hwang

and Yoon, 1981) are constructed and given as

zPIS
1 � min�cp�Tx zNIS

1 � max�cp�Tx; �11�

zPIS
2 � min�cm�Tx zNIS

2 � max�cm�Tx; �12�

zPIS
3 � min�co�Tx zNIS

3 � max�co�Tx; �13�
The linear membership function of these objective

functions can be computed as

pz1 �
1 if z15zPIS

1
zNIS

1
ÿ z1

zNIS
1
ÿ zPIS

1

if zPIS
1 � z1 � zNIS

1

0 if z1 > zNIS
1

8><>: �14�

pz2 �
1 if z2 > zPIS

2
z2 ÿ zNIS

2

zPIS
2
ÿ zNIS

2

if zPIS
2 � z2 � zNIS

2

0 if z25zNIS
2

8><>: �15�

pz3 �
1 if z3 > zPIS

3
z3 ÿ zNIS

3

zPIS
3
ÿ zNIS

3

if zPIS
3 � z3 � zNIS

3

0 if z35zNIS
3

8><>: �16�

Introducing the variable l, we obtain the following

model:

max l

s.t. pZi�x� � l; i � 1; 2; 3

Ax � b and x � 0 �17�
If the optimal solution of Equation (17) is the vector

�l; x0�, x0 is the minimum solution of the model

Equation (8).

2.3. Imprecise objective coef®cients and constraints

As stated above, an arbitrary possibilistic model of

linear programming can be stated as

max f �x� � ~c Tx

s.t. Ax � ~b

Dx � b
0

x � 0 �18�
Equations (7) and (14)±(16) can specify the member-

ship functions of objective functions and the

constraints respectively. By employing Equations (5)

and (17), (18) can be expressed by an equivalent

single-objective linear programming model as

max l

s.t. pzi � l; i � 1; 2; 3

pbi � l; i � 1; 2; . . .

Dx � b
0

x � 0

x [X �19�

3. Possibilistic MOLP model of HMS problem

To model the HMS problem, the problem is restated

again. Given monthly forecast demands for the

product manufactured by a paint factory, of relevant

interest is the monthly production rate and the work

force level that minimizes the total cost of regular

payroll, overtime, hiring, layoffs, inventory and

backorders incurred during a given planning interval

of several months.

Hanssmann and Hess (1960) proposed a linear

programming model to solve the HMS problem. After

introducing variables of hiring, layoff, regular man-
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power, overtime manpower, and backorder, the model

can be expressed as

min
XT

t� 1

CIIt � CHHt � CFFt � COOt

� CBBt � CPPt

s.t. Rt � Itÿ1 ÿ Btÿ1 ÿ It � Bt � Dt;

kRt � Pt � Ot;

Pt ÿ Ptÿ 1 � Ht ÿ Ft;

It;Ht;Ft;Ot;Bt;Pt;Rt;Dt � 0;

t � 1; . . . ; T �20�

Notation used in this representation including vari-

ables, parameters, and constants are listed below for

reference.

(1) model variables

Pt� regular work force of month t,
Ht� hiring work force of month t,
Ft� layoff work force of month t,
Ot� overtime work force of month t,
Dt� demand of month t,
It� inventory level of month t,

Bt� backorder quantity of month t (in gallon/

month),

Rt� production quantity of month t (in gallon/

month),

(2) parameters and constants

CP� regular labour cost per man month,

CH � hiring cost per man,

CF� layoff cost per man,

CO� overtime labor cost per man month,

CI � inventory cost per product,

CB� backorder cost per gallon,

T� planning time periods (in months)

k � Rt=�Pt � Ot�, oxtransformation constant

from production quantity to labor required.

Coef®cients in objective functions and constraints

in the above model must be constants or precise

numbers. In a real system, however, this is generally

not the case. The above linear programming model

does not exactly minimize the expected cost if

demands have unbiased forecasts. If these cost

coef®cients in objective functions and product

demands are taken as triangular possibility distribu-

tion functions, the possibilistic linear programming

model can be established and presented as

min
XT

t� 1

~CIIt � ~CHHt � ~CFFt � ~COOt � ~CBBt � ~CPPt

s.t. Rt � Itÿ 1 ÿ Btÿ 1 ÿ It � Bt � ~Dt;

kRt � Pt � Ot;

Pt ÿ Ptÿ 1 � Ht ÿ Ft;

It;Ht;Ft;Ot;Bt;Pt;Rt;Dt � 0;

t � 1; . . . ; T �21�

where

~CI � �Cm
I ;C

p
I ;C

o
I � ~CH � �Cm

H;C
p
H;C

o
H�;

~CF � �Cm
F ;C

p
F;C

o
F� ~CO � �Cm

O;C
p
O;C

o
O�;

~CB � �Cm
B ;C

p
B;C

o
B� ~CP � �Cm

P ;C
p
P;C

o
P�;

~Dt � �Dm
t ;D

p
t ;D

o
t �

By using the notion in Equations (1)±(19), the above

model can be rewritten as

max l

s.t.
XT

t� 1

�Cm
I ÿ Cp

I �It � �Cm
H ÿ Cp

H�Ht

� �Cm
F ÿ Cp

F�Ft � �Cm
O ÿ Cp

O�Ot � �Cm
B ÿ Cp

B�Bt

� �Cm
P ÿ Cp

P�Pt � �ZNIS
1 ÿ ZPIS

1 �l � ZNIS
1 ;XT

t� 1

Cm
I It � Cm

HHt � Cm
F Ft � Cm

OOt � Cm
B Bt

� Cm
P Pt � �ZNIS

2 ÿ ZPIS
2 �l � ZNIS

2 ;XT

t� 1

�Co
I ÿ Cm

I �It � �Co
H ÿ Cm

H�Ht

� �Co
F ÿ Cm

F �Ft � �Co
O ÿ Cm

O�Ot � �Co
B ÿ Cm

B �Bt

� �Co
P ÿ Cm

P �Pt� � �ZNIS
3 ÿ ZPIS

3 �l � ZNIS
3 ;

Rt � Itÿ 1 ÿ Btÿ 1 ÿ It � Bt ÿ �Dm
t ÿ Dp

t �l � Dp
t ;

Rt � Itÿ 1 ÿ Btÿ 1 ÿ It � Bt � �Do
t ÿ Dm

t �l � Do
t ;

kRt � Pt � Ot;

Pt ÿ Ptÿ1 � Ht ÿ Ft

It;Ht;Ft;Ot;Bt;Pt;Rt;D
o
t ;D

m
t ;D

p
t � 0;

t � 1; . . . ; T �22�

Surprisingly, the resulting possibilistic model is a

purely linear model. A linear programming package

LINDO (Linear INteractive and Discrete Optimizer;

Schrage, 1989) can, therefore, be used to solve the

problem.
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4. Sensitivity analyses

Having successfully presented the possibilistic linear

programming model for solving the HMS problem in

the above section, next relevant task is to assess the

effectiveness of this model in accommodating the

imprecise variations of a real system. Assume that the

triangular possibility distributions of the cost coef®-

cients are within +bCCm and the distributions of the

demands are within +bDDm
t , where bC and bD are any

arbitrary numbers between 0 and 0.5. Tables 1 and 2

list the monthly forecast demands obtained from

Mellichamp and Love (1978) and cost coef®cients

approximated by Kolenda (Barman and Tersine,

1991) for the crisp linear model, respectively. The

initial conditions are given as Bt� 0 � 57 and

Pt� 0 � 81. The planning time period, T, is set to 12

months. Both imprecise demands and imprecise unit

cost are used for sensitivity analysis. The results are

presented below.

4.1. Sensitivity analysis of imprecise demands

Numerical experiments were performed by using the

demand forecast errors of 0%, 5%, 10%, 15%, 20%,

25%, 30%, 35%, and 40%, respectively. Actual

twelve-month demands are generated following the

given steps. Table 3 summarizes those results.

Step 1: Estimation of the mean, m̂D, of monthly

demands.

m̂D �
XT

t� 1

Dt

�
T

where T is the length of the planning periods, and Dt,

t � 1; . . . ; T, is the forecast demand of month t.

Step 2: Estimation of the standard deviation, ŝD, of

e% forecast error in monthly demand

ŝD � e%6m̂D

Step 3: Generation of actual demand, St, of month t,

St � Dt � ZtŝD

where Zt is a random number from a standard normal

distribution.

For comparison purpose, we solve the HH crisp model

(bC � 0 and bD � 0) and the possibilistic model with

bC � 0:1 and bD � 0:05 by LINDO, and tabulate the

planned regular work force and regular production

capacity for the two models in Table 4. The cost

analyses for these two approaches at both 0% and 5%

demand forecast error conditions are then tabulated in

Table 5.

We assume that the given cost coef®cients re¯ect

the real one. In other words, we assume that the

estimation errors of cost coef®cients are 0%. By

setting bC � 0:1 and letting bD to vary from 0 to 0.50

in the increment of 0.025, the aggregate production

plans for different bD's are evaluated by LINDO. For

planned regular production capacity, the real produc-

tion cost can be estimated by adjusting monthly

overtime work force, inventory level and backorder

quantity. The effects of various b D values (0 to 0.5)

and percentages of demand forecast errors (0% to

40%) on production cost are estimated and plotted in

Fig. 1.

Based on the above numerical results, we conclude

the following:

(1) The production cost of a possibilistic plan is

somewhat higher than that of the HH crisp plan when

the demand forecast errors are not involved.

Table 1. Most likely monthly demand �Dm
t � for the planning period (Mellichamp and Love, 1978)

Month 1 2 3 4 5 6 7 8 9 10 11 12

Demand 430 447 440 316 397 375 292 458 400 350 284 400

Table 2. Most possible cost coef®cients �Cm
t � for the planning period

Cost coeff. CI CF CH CO CB CP K

Value 5.51 208.9 208.9 630 5.51 340 5.67
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(2) When the demand forecast errors are relatively

small (0% and 5%), the HH crisp model can generally

provide a good plan.

(3) When the demand forecast errors are median

(10% to 20%), the possibilistic model with a reason-

able bD value (0.1 to 0.3) can provide a good plan.

(4) When the demand forecast errors are relatively

large (more than 25%), the possibilistic model with

largest bD value (0.5) can provide a good plan.

(5) In practice, a possibilistic model has a higher

capacity to accommodate the imprecise nature of

demands than that of the HH crisp model.

4.2. Sensitivity analysis of imprecise cost
coef®cients

To characterize the contribution of each cost item

with respect to overall production cost, one speci®c

cost item is selected to generate its actual cost

coef®cient with (% forecast error, and the remaining

cost items are treated as no forecast errors involved.

Real cost coef®cients are generated by the following

steps:

(1) Estimation of forecast cost coef®cients, CX,

here X could be I, H, F, O, B or P.

(2) Estimation of the standard deviation, ŝCX, of

e% forecast error for the cost coef®cient

ŝCX � e%6CX

(3) Generation of the real cost coef®cient, C
0
Xt, of

month t,

C
0
Xt � CX � ZtŝC

where Zt is a random number from a standard normal

distribution.

Table 3. Generated actual demands

Demand forecast error
Month

5% 10% 15% 20% 25% 30% 35% 40%

1 434 438 442 446 450 454 458 462

2 419 391 363 335 307 279 251 223

3 415 390 365 340 315 290 265 240

4 299 282 265 248 231 214 197 180

5 454 511 568 625 682 739 796 853

6 386 397 408 419 430 441 452 463

7 275 258 241 224 207 190 173 156

8 459 460 461 462 463 464 465 466

9 397 394 391 388 385 382 379 376

10 338 326 314 302 290 278 266 254

11 293 302 311 320 329 338 347 356

12 402 404 406 408 410 412 414 416

Table 4. Planned regular work force and production capacity using the HH crisp and possibilistic models for bC � 0:1 and

bD � 0:05

Month 1 2 3 4 5 6 7 8 9 10 11 12

HH crisp Work force 81 81 74 66 66 66 66 66 61 61 61 61

Production capacity 459 459 419 375 375 375 375 375 344 344 344 344

Possibilistic Work force 81 80 70 64 64 64 64 64 64 64 64 64

Production capacity 459 455 399 364 364 364 364 364 364 364 364 364
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Numerical experiments are performed for the

following cases including

(1) 20% of demand-forecast error, (2) bD � 0:2,

and (3) bC � 0:05; 0:1; 0:15; 0:2; 0:25; 0:3; 0:35;
0:4; 0:45; 0:5, and (4) cost coef®cient forecast

error � 5% to 30%, respectively. Numerical results

in Figs. 2±5, indicate that the effects of various values

of bC and different degrees of labor, layoff, inventory,

and backorder cost coef®cient forecast errors (from

5% to 30%) on production cost are insigni®cant.

Herein, these two items are neglected since overtime

and hiring work forces are unnecessary for these

analyses.

From above numerical results, we conclude that the

forecast errors of cost coef®cient do not affect the

production cost as signi®cantly as those of the forecast

errors of demand. This ®nding also indicates that the

imprecise nature of the cost coef®cients does not

affect the plans obtained from the possibilistic MOLP.

5. Summary

Numerical results in this study demonstrate that a plan

obtained by using a possibilistic approach tolerates a

wider range of imprecise demands and also offers a

lower production cost than the results obtained by

using the HH crisp approach. In that respect, we can

infer that the possibilistic approach can more

effectively handle imprecise demands encountered

in real world than the conventional approach. The

imprecise cost coef®cient, however, does not sig-

ni®cantly affect the production cost at least in the

HMS problem. This ®nding is possibly owing to that

the effect from a single cost item is too small to be

observed. More experiments should be performed for

perturbing more than one cost item at one time.

Barman and Tersine (1991) performed sensitivity

study on imprecise cost coef®cients of the same

problem. According to their results, only two cost

Table 5. Cost analyses using the HH crisp and possibilistic models for 0% and 5% demand forecast errors

Cost Items 0% Demand forecast error 5% Demand forecast error

HH crisp Possibilistic HH crisp Possibilistic

Regular labor cost 275,236 275,226 275,236 275,226

Overtime labor cost 0 0 0 0

Hiring/layoff cost 4234 3509 4234 3509

Inventory cost 1989 3366 2160 2762

Backorder cost 0 0 0 0

Total cost 281,454 282,102 281,631 281,498

Fig. 1. Effects of various bD and demand forecast errors on production cost.
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parameters appear to be crucial to the production cost:

(1) the production capacity per employee, and (2) the

ideal level of ending inventory. The ®rst one is taken

as a ®xed value of 5.67 (K value) in this study here.

The second one is related to the demands. These

results are correlate well with our modeling results.

6. Conclusions

CIPMS focus mainly on ef®cient management/

administration to gain maximum pro®t. However,

today's enterprise environment is full of fuzzy/

imprecise natures. The performance of CIPMS is

thus unsatisfactory by conventional approach. This

study largely concentrates on the imprecise properties

in the aggregate production planning and, in doing so,

presents a possibilistic MOLP model to adapt to

today's fast changes. The optimal production plan-

ning can therefore be obtained at the moment that the

actual demand or the real cost is uncertain. For

comparison, the proposed model and the HH crisp

model are used to solve the HMS problem,

respectively. Results in this study demonstrate that

the possibilistic MOLP model provides better plans

that can tolerate a higher spectrum of imprecise

properties than the crisp model. Therefore, the

proposed model enhances the ability of CIPMS.
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