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Control of Linear Time-Varying 
Systems Using Forward Riccati 
Equation 
This paper presents a new state feedback control design for linear time-varying 
systems. In conventional control designs such as the LQ optimal control, the state 
feedback gain is calculated off-line by solving a Differential Riccati Equation (DRE) 
backwards with the boundary condition set at some future time. The apparent disad­
vantage of using a backward DRE is that future information of the system matrices 
is required to find the .state feedback gain at every time instant. In this paper, an 
inversion state transformation is applied to the .system so that the DRE associated 
with the transformed system becomes forward in the sen.se that its boundary condition 
is .set at the initial time of operation (t = to). As a result, the forward DRE can be 
calculated on-line without using future information of the .sy.stem matrices. 

1 Introduction 
There are essentially two approaches to the state feedback 

control design of Linear Time-Varying (LTV) systems. In the 
first approach, one assumes knowledge of future information 
on the system matrices, and uses such information to synthesize 
the state feedback gain. A well-known example is the LQ con­
trol (Kalman, 1964; Kwakernaak and Sivan, 1972), in which 
the control Riccati equation is solved backwards starting from 
some future time to the present time. Another example can be 
found in linear system text books (Callier and Desoer, 1992; 
Rugh, 1993), where the state feedback gain involves a weighted 
controllability grammian defined over some future time interval. 
In both examples, future information of the system matrices is 
required to calculate the state feedback gain at any present 
time instant. However, such a requirement is rarely met since 
prediction of how system matrices vary in the future can be very 
difficult in most practical applications. The second approach to 
the state feedback control design of LTV systems is the pole-
placement-like control (Wolovich, 1968; Valasek and Olgac, 
1993), or the model matching control (Arvanitis and Paraskev-
opoulos, 1992). In this approach, one must differentiate the 
system matrices with respect to time consecutively up to the 
order of the system dimension. In practice, information of the 
system matrices is often obtained through sensor measurement. 
Such measurement inevitably introduces noise that can easily 
destroy the fidelity of the required information in a time-differ­
entiation process. Hence, it is generally not advisable to calcu­
late the state feedback gain by differentiating a noise-con'upted 
system matrix. 

The goal of this paper is to devise a control design that avoids 
the shortcomings of the above approaches. In other words, the 
control design should require neither time differentiation of the 
system matrices nor prediction of future information of the 
system matrices. The calculation of the control law should be 
based soly on past and present information of the system matri­
ces. In this paper, it will first be shown that by the introduction 
of an inversion .state transformation, the problem of stabilizing 
the system state is converted into that of destabilizing the trans­
formed system. Second, it is shown that the differential Riccati 
equation for destabilizing the transformed state becomes & for­
ward Riccati equation with the boundary condition set at the 
initial time of operation instead of at some future time, similar 

to the differential Riccati equation used in the Kalman filter 
design. The requirement of future information on the system 
matrices can thus be avoided. 

This paper is arranged so follows. The observer design for 
LTV systems is reviewed in Section 2. The purpose of this 
review is not only for the completeness of an observer-based 
control design, but also for reviewing an important property of 
the forward observer Riccati equation, which will be utilized 
in the proposed new control design. The new control design is 
presented in Section 3, and conclusions are given in Section 4. 

2 Observer Design 
Consider the observer design for a multivariable linear time-

varying system 

.t{t) = A(t)x{t) + B(t)u(t), x(0) = xo 

yit) = C{t)x(t), (1) 

where x(t) G R" is the system state, y(t) e R'' is the system 
output, M ( 0 e R'" is the control input, and A(r) G R"^", B{t) 
G R"^'", C(t) G R''^" are matrices whose elements are bounded 
continuous or piecewise continuous functions of time. The sys­
tem (1) is assumed to be uniformly observable (Rugh, 1993). 

Definition I: The pair (A(;), C{t)) is uniformly observable 
if there exist a constant A and another constant a depending 
on A such that the observability grammian J(t — A, /) satisfies 

J{t - A, t) ( T , t)C'''(T)C(T)'^J'(T, t)dr 

al > 0, 

where \I/(T, ;) is the state transition matrix of the free system 
(1), and is defined by 

d'J'iT, t) 
= A(r)>I'(T,/), yl'it,t) = l, 
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* ( T , t) = * " ' ( ? , T ) . 

In order to obtain an estimate of the system state x{t) from 
the system output y(t), one can construct a Luenberger-type 
observer: 

.Kit) = A(t)x(t) + B(t)u{t) + L(t)(y ~ Cit)x(t)), 

x ( 0 ) = X o , (2) 
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where L(t) £ R'"^'' is the observer feedback gain. Subtracting 
Eq. (2) from Eq. (1) yields the state estimation error dynamics 

x(t) = [A(t) - L(t)C(t)]x(t), (3) 

where x{t) - x{t) - x(t) is the state estimation error. The 
objective is to find the observer feedback gain L{t) such that 
x(t) in Eq. (3) decays to zero exponentially; in other words, 
x{t) approaches A:(f) exponentially. One such design is the well-
known Kalman filter design (Kalman and Bucy, 1961), in 
which the observer feedback gain L{t) is chosen as 

L(t)^Q(t)C\t)V2'(t), (4) 

where Q(t) satisfies a forward differential Riccati equation 

Q(t) = A{t)Q(t) + G(OA'(f) + Vdt) 

- Q(t)C^(t)V2'(t)Cit)Q{t), 

2(0) = So > 0, (5) 

in which V,(t) > 0, ¥2(1) > 0, and V,(0, V2U), VT'(t), 
¥2^1) are all uniformly bounded. 

The solution of the difltrential Riccati Equation (5) satisfies 
the following important property, which will be utilized again 
in the new state feedback control design in the next Section. 

Lemma I: If the pair {A{t), C{t)) is uniformly observable 
as defined in Definition 1, there exist positive constants p, and 
P2 such that 

l3JsQ(t):-:/32f, V o O . 

Proof: See (Wonham, 1968) and (Anderson and Moore, 
1968). 

The following theorem proves the exponential stability for 
the Kalman filter design in Eqs. (2) , (4) , and (5). 

Throrem 1: Consider the system (1) and the observer (2) 
and (4). If (A(t), C{t)) is uniformly observable, the state 
estimation errorx(t) in Eq. (3) converges to zero exponentially. 

Proof: The proof can be done by choosing a Lyapunov 
function candidate V(r, x) = x^(t)Q~'{t)x{t) for the system 
(3), where Q(t) is the solution of Eq. (5). By checking its 
time derivative, it can be shown that V(t, x) decays to zero 
exponentially, and, by the definition of V(t, x) and Lemma 1, 
so does x(t). The details are omitted. Q.E.D. 

Notice that the observer Riccati equation (5) runs forwards 
starting from r = 0. Therefore, at any time instant t, the matrix 
Q{t) and hence the observer feedback gain L(t) in Eq. (4) 
depend only on past information of the system matrices A(T) 
and C(T), T €. [0, t]. In other words, in the observer design 
for a linear time-varying system, there is no need to predict 
future information of the system matrices. In the next Section, 
a similar forn'ard differential Riccati equation as Eq. (5) will 
be utilizd to synthesize a stabilizing state feedback gain for the 
system (1), discarding the usual backward differential Riccati 
equation used in the optimal control theory. 

3 State Feedback Control Design 
This Section discusses the state feedback control design for 

the system (1). It is assumed that the system (1) is uniformly 
controllable (Rugh, 1993). 

Definition 2: The pair (A(t), B(t)) is uniformly controlla­
ble if there exist a constant A and another constant a depending 
on A such that the controllabifity grammian I{t - A, r) satisfies 

I(t-A,t) = 1 *(f, T)B(T)B'^(T)<l>'''(t, T)dT ^aI>Q, 

where '^{t, T) is the state transition matrix of the free system 
in Eq. (1). 

The goal is to find a state feedback gain K{t, x) such that 
the control input 

u{t) = K{t, x)x{t) (6) 

stabilizes the closed-loop system exponentially. Note here that 
the state feedback gain is allowed to be state-dependent. Most 
previous studies solve this control problem under the assump­
tion that future information of the time-varying system matrices 
is known (recall that in the LQ control, the differential Riccati 
equation is solved backwards starting from some future time). 
However, such an assumption is unrealistic in many practical 
applications. The objective of this Section is then to find a 
stabilizing feedback gain K{t, x) whose determination requires 
onXy past and present information of the system matrices. 

The proposed control design is based on the construction of 
an inversion state transformation 

'"' = ^ ^ ' ^^^^^"'-

It follows from this definition that 

\W)\\ 
1 

lk(OII 

(7) 

(8) 

By differentiating Eq. (7) along the trajectory (1) , one obtains 

at) /-24^^^|A(m(0 
x'{t)x{t) 

,^24^^^^W)"^'^ 
x'{t)x{t) \\x{t) 

= nx)A(t)z{t) + T(x)B{t)v{t), (9) 

where 11(f) is the transformed input defined by 

u(t) 
v(t) 

\\x(t)\\' 
(10) 

and T(x) is a Householder transformation (Chen, 1984) 

x(t)x'''(t) 
T{x) = 1-1 

x'^{t)x{t) 

It is important to note that T(x) is symmetric and remains 
uniformly bounded for any x(t) =/= 0 since 

r(^)ii = i. (11) 

Equation (11) can be verified by checking that 

T\x) = I. 

Another consequence of the above equation is that T(x) is 
invertible for any nonzero x(t): 

T-'(x) = T(x). (12) 

One can also verify that T(x)z{t) = -~z(t); hence, z{t) = 
~-T'^(x)z{t). Substituting this relationship into the right-hand 
side of Eq. (9) yields 

z{t) = A(t)zit) + B(t)v{t), 

A(t) = -T(x)A{t)T-'(x), 

B(t) = T(x)B{t). 

(13) 

(14) 

(15) 

Here, both A(t) and B(t) are functions of x(t); however, the 
argument x is omitted for the sake of brevity. 

Equation (8) suggests that stabilization of the original system 
state xO) is achieved if one can find a transformed input v(t) 
in Eq. (13) to destabilize the transformed system (13). It will 
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be shown in the sequel that such a destabilizing control input 
is given by 

v(t) = R2'(t)B''(t)P(t)z(t), (16) 

where P(t) satisfies the forward differential Riccati equation 

P(t) = --A'^WPit) - P(t)A{t) + R,{t) 

- P{t)B{t)R-,\t)B\t)P{t), 

P{0) = Po > 0, (17) 

in which A(0 , B{t) are defined in Eqs. (14) and (15), R,(t) 
> 0, R2(t) > 0, and R,(t), RiU), R:'(t), i?2"'(0 are all 
uniformly bounded. It follows from Eqs. (16), (7), and (10) 
that the actual control input «(f) is given by 

u(t) = R2\t)B''(t)P{t)x{t). (18) 

In other words, the proposed state feedback gain in Eq. (6) is 

K{t,x) = RT'it)B'^it)P(t), 

where P(t) is the solution of the forward differential Riccati 
equation (17). 

Observe from Eq. (17) that P(t), and hence the state feed­
back gain K(t, x), depend only on past information of the 
system matrices A(T) and B{T), and the past state X(T), where 
T e [0, ?]. In other words, the proposed control (18) is in fact 
a nonlinear dynamic state feedback control. The advantage of 
this nonlinear control design is that only past information of 
the system matrices is required, while future information of 
system matrices is required in the conventional linear optimal 
control design. 

Since A(f) and B{t) in Eq. (17) depend on the system state 
x(t) (see Eqs. (14) and (15)), the existence of solutions of 
the differential Riccati equation (17) is yet to be investigated. 
However, note from the definitions of A{t) and B(t) in Eqs. 
(14) and (15), and from the properties (11) and (12) of the 
Householder transformation T(x), one can conclude that both 
A(t) and B(t) are uniformly bounded even though they are 
functions of possibly unbounded x(t). Hence, the coefficients 
appearing in the differential equation (17) are all uniformly 
bounded as in the linear time-varying LQ control. Proving the 
existence of solutions for Eq. (17) is thus promising, and will 
be a future research topic. Under the assumption of existence 
of solutions, the computation of P(f) is directly based on an 
on-line integration of the forward differential Riccati equation 
(17) starting at / = 0. This is quite different from the computa­
tion of the backward differential Riccati equation appearing in 
the time-varying LQ control, where the integration has to be 
done off-line, starting from some future time. The stability of 

2.0 3.0 
Time (second) 

Fig. 1 Time liistory of the system state 

2.0 3.0 
Time (second) 

Fig. 2 Time history of the control inputs 

the proposed forward differential Riccati equation is guaranteed 
by Lemma 4 below (P(t) < 72/). 

Before the analysis of the closed-loop system stability under 
the proposed control (18), one needs the following lemmas 
regarding the properties of the transformed system matrices A(t) 
and B(t). The first lemma shows that (A(t), B(t)) is ''uniformly 
controllable" in the sense that its "controllability grammian" 
as defined in Definition 2 is uniformly strictly positive definite. 

Lemma 2: If the pair (A(r), B{t)) in Eq. (1) is uniformly 
controllable, the pair (A(r), B{t)) in Eq. (13) is also uniformly 
controllable in the sense of Definition 2. 

Proof: See Appendix. 
The second lemma, whose proof is omitted, is an immediate 

consequence of Lemma 2 and Duality (Callier and Desoer, 
1992). 

Lemma 3: Under the Hypothesis of Lemma 2, the pair 
(-A^(t), B^(t)) is uniformly observable in the sense of Defi­
nition 1. 

Observe that the differential Riccati Equation (17) can be 
re-written as 

Pit) = {-A\t))P(t) + P{t){~A\t)Y 

+ R,{t) - P{t){B\t)YR-2\t){B\t))P{t), (19) 

which has exactly the same form as the observer Riccati Equa­
tion (5) in Section 2. Therefore, based on Lemma 3, one can 
follow the procedure in proving Lemma 1 to show that P{t) in 
Eq. (17) is uniformly bounded above and below. 

Lemma 4: Under the Hypothesis of Lemma 2, there exist 
positive constants yj and 72 such that the solution P(f) of the 
Riccati Eq. (17) satisfies 

7 i / r a P{t) < 72/, Vr > 0. 

One can now state the main theorem of this paper, which 
shows that the proposed control (18) is globally stabilizing for 
the system (1). 

Theorem 2: Consider the system (1) and the state feedback 
control (18) and (17). If the system (1) is uniformly controlla­
ble, the closed-loop system is globally exponentially stable. 

Proof: In this proof, one first shows that the transformed 
input v (0 in Eq. (16) drives the tran,sformed state z(f) to infin­
ity exponentially. Choose a function V{t, z) = z^(t)P(t)z(t). 
It follows from Lemma 4 that 

yMt)f^V{t,z):syMt)V- (20) 
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Fig. 3 Singular values of P(0 

Calculating the time derivative of V(t, z) along the solutions 
of Eqs. (13), (16), and (17) yields 

V = z'iA'' + K'B'^)Pz + z''P(A + BK)z 

+ z''(-A''P - PA + R2- PSR;'B'^P)Z 

= z'R^z + z^PBR^'B^'Pz a z'RtZ. (21) 

Assuming that R[(t) > al for some positive constant a, one 
obtains 

V(t,z) s a\\zO)fs. — V(t,z), 

where Eq. (20) is used to obtain the second inequality, which 
suggests that V(t, z) approaches infinity exponentially. It then 
follows from Eq. (20) that z(t) also approaches infinity expo­
nentially. Finally, one concludes from Eq. (8) that x(t) ap­
proaches zero exponentially. Q.E.D. 

To verify the effectiveness of the proposed state feedback 
control, a simulation example is given below. 

Example: Consider a multivariable time-varying system 
(1) with 

A(t) = 

-1-I-1.5 cos^f 1 - 1.5 sinf cos; 

- 1 - l .Ssinrcosr - l + 1.5sin^f 

0 -sin t 

1 

-5 -f sin ? 

5(0 = 
1 2 

3 1 

0 1 

The initial condition of the system isx'^(O) = [3, 3, 3] . From 
simulation studies, it is found that the open-loop system is 
unstable. The proposed control (18) is then applied to the sys­
tem with the following design parameters P(0) = /, Riit) = / 
and R2(t) = / in Eq. (17). Figure 1 shows the time history of 
the system state, which converges to zero as guaranteed by 
Theorem 2, and Fig. 2 shows the time history of the control 
inputs. In this simulation, the P(t) matrix is calculated by on­
line integrating the forward differential equation (17) starting 
from t = 0. The integration is performed by using a finite 
difference approximation for the differential operator with a 
time step At = 0.01 second. The calculated singular values 
of P{t) are plotted in Fig. 3. One interesting question is the 
relationship between the state convergence rate and the design 
matrices R\(t) and RzU) in Eq. (17). It may appear from Eq. 
(21) that a larger Ri{t) and a smaller R2(t) will result in a 
faster divergent rate of V{t, z), and hence a faster convergent 

rate of the system state x(t). However, the exact relationship 
is to be further studied in the future. 

4 Conclusions 

A new design is proposed in this paper for the state feedback 
control of multivariable linear time-varying systems. The new 
design is based on an inversion state transformation and a for­
ward differential Riccati equation. Such a new design results 
in a time-varying nonlinear dynamic state feedback control law 
with the control input depending only on past and present infor­
mation of the system matrices. In conventional time-varying 
LQ control, where a backward differential Riccati equation is 
used, the control input depends on future information of the 
time-varying system matrices, which is difficult to predict in 
most practical situations. 
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A P P E N D I X 

Proof of Lemma 2: The purpose is to prove that there exists 
a positive constant a such that the "controllability grammian" 
of (A(r), B(t)) satisfies the lower bound: 

Tit) = $ ( ? , T ) B ( T ) 5 ' ' ( T ) $ ^ ( f , T)dT > a / > 0, 

where $(f, r ) is defined by 

'"'^''^^^Aitmur) 
at 

^(T,T) = I 

$ ( T , 0 = $-'(r, r ) . 

Vf > 0, (Al ) 

(A2) 

(A3) 

• (A4) 

in which A{t) and B{t) are given in Eqs. (14) and (15). 
By direction differentiation, it can be verified that any z(t) 

satisfying the following integral equation also satisfies the dif­
ferential Eq. (13) 

Z ( r ) = $ ( f , ?o)z( fo) + I Ht,T)B(T)v(T)dT, ( A 5 ) 
' ' ' 0 

where $(r, r ) is defined by Eqs. (A2), (A3), and (A4). 
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From the Hypothesis of the Lemma, the original system (1) 
is uniformly controllable. It then follows from the definition of 
uniform controllable (Callier and Desoer, 1992) that for the 
system (1), given any bounded and nonzero Xo, X/and any time 
instant t, there exist a constant A > 0 with A independent of 
t, and a bounded control input M* defined on the time interval 
[t - A, t], such that u* drives the system (1) from x{t - A) 
= Xo tox(t) = Xf. Next observe that the inversion transformation 
from X to z in Eq. (7) and that from « to u in Eq. (10) are 
injective for all x * 0; hence, the same statement can be said 
about the transformed system (13); that is, given any bounded 
and nonzero zo, Z; and any time instant t, there exist a constant 
A > 0 with A independent of t, and a bounded transformed 
control input v* defined on the time interval [f - A, ?], such 
that D* drives the transformed system (13) from z(t — A) = 
Zo to z(f) = Z/. 

One can now prove Eq. (Al) by a contradiction argument 
using the above statement and Eq. (A5). Assume that Equation 
(Al ) does not hold; in other words, there exist sequences of 
time instants f;'s, positive constants a, 's and unit vectors h\s 
e /?", with lim,-oo ti = «> and 

lim a, = 0, (A6) 

such that 

hjl(t,)h, = a,.. 

Denote hj^(ti, T)B(T) = FJ{T). The above equation becames 

hjKti)hi (T)Fi(T)dT = « ; . 

Since FjF, is always non-negative, one concludes from Eq. 
(A6) that 

lim FJ(T) = lim hj$(ti, T)B{T) = 0, 
('-•CO i^xa 

Vr G [r, - A, ; , ] . (A7) 

Following the last statement in the previous paragraph, there 
exists a bounded transformed control input vf that drives z(f, 
- A) = $(f, - A, t,)hi/2 to z(ti) = /!,-. The integral Eq. (A5) 
(with t = ti and to = ti - A) thus becomes 

hi/2 £ $(f,, T)B{T)V*(T)dT. (A8) 

Since vf drives the transformed system (13) from z(f/ ~ A) 
= $(f/ - A, f,)/j,/2 to z(f,) = hi, it follows from Eqs. (7) 
and (10) that there exists uf that drives the original system (1) 
from 

x(ti-A) = 
$(A-A, f , ) / ! , / 2 

to x{ti) • 
hi 

(A9) 
\mti-A,ti)hi/2r ii»,-ii 

Since the differential equation (A2) for $( ; , T ) is linear with 
bounded coefficients (recall that A(t) is uniformly bounded as 
long as x * 0), it is easy to show that there exist two positive 
constants m\ and m2 so that 

0 < m, =s (Tj[$(A - A, f,)] s: mj, V/, (AlO) 

where aj denotes the singular value of a matrix. Equation (AlO) 
then suggests that both \\x(ti - A)| | and ||x(f,)|| in Eq. (A9) 
are uniformly bounded, and they are also uniformly bounded 
away from zero. Consequently, the control input uf that drives 
the system from x(ti - A) to x(f,) is also uniformly bounded 
with respect to / (see Eq. (C-1) in Appendix C of Chen, 1984). 
Without loss of generality, assuming that \\x(t)\\ > e for some 
small number e > 0 during the motion when it is transfered 
from x(ti - A) to x(f,). It then follows from Eq. (10) that the 
transformed input vf, which transfers z(f, - A) to z(f,), is 
also uniformly bounded with respect to i\ i.e., 

\\vf(T)\\:sM<^, VT G [f, - A, f,], and Vi, ( A l l ) 

Now, multiplying both sides of Eq. (AS) by hj gives 

hJh,/2= \ hJ^(ti,T)B(x,T)vf(T)dT. 
J I;- A 

{̂; Fj(T)vf(T)dT. 

However, according to Eqs. (A7) and ( A l l ) , the right-hand 
side of the equation approaches zero as ( approaches infinity, 
meaning that 

lim||/!,||V2 = 1 / 2 = 0. 

The above contradiction proves that /(f) in Eq. (Al ) will not 
approach singular asymptotically, and therefore remains uni­
formly positive definite. Q.E.D. 
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