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ABSTRACT

Image reconstruction from limited-angle data is an impor-

tant issue in diffraction tomography. The limitation of angu-

lar coverage usually occurs due to the physical constraints

in measurement systems. Insufficient information will de-

teriorate the quality of reconstructed images. In our exper-

imental setup, the angular range of the data scanning is lim-

ited. Here, we applied the iterative algorithm of total variation

(TV) minimization to reconstruct the three-dimensional dis-

tribution of an object’s refractive index from measured phase

data. TV-minimization is an edge-preserving technique com-

monly used in image processing. It can smooth away the

noisy textures while retaining sharp edges. Despite a full

range of illumination is lacking, we have successfully recon-

structed the refractive index distribution of objects numeri-

cally and experimentally by use of the TV-minimization al-

gorithm.

Index Terms— Diffraction tomography, image recon-

struction, limited-angle, TV-minimization, edge-preserving

1. INTRODUCTION

Diffraction tomography (DT) is an image technique that ex-

plores the wave property of electromagnetic wavefield and

aims to produce the object’s refractive index distribution. X-

ray computed tomography (CT) can be viewed as a limiting

case of DT. Unlike CT that uses X-ray as the incident source,

DT is suitable for acoustic waves or electromagnetic waves

with longer wavelengths. The principle of diffraction tomog-

raphy is described by Fourier diffraction theorem, which was

first proposed by Wolf in 1969 [1]. He demonstrated that the

three-dimensional (3D) structure of weakly scattering objects

can be reconstructed from multiple two-dimensional (2D)

scattered field measurements.

Based on the Fourier diffraction theorem, the reconstruc-

tion methods in DT can be divided into two main categories

of analytic and iterative methods. Filtered-backpropagation

(FBPP) [2] and Fourier mapping are the most widely used
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analytic solutions in DT. FBPP algorithm is generally consid-

ered more accurate than Fourier mapping. However, FBPP

algorithm is much more time-consuming than Fourier map-

ping [3]. Therefore, the Fourier mapping method is adopted

more than FBPP due to its low computational cost.

The data truncation can significantly affect the results of

reconstruction. Therefore, an image reconstruction method

that can mitigate such adverse effects and improve the re-

constructed image quality is of great importance in practi-

cal applications. Sung et al. applied an iterative constraint

method to reduce the effects of missing projections to obtain

a quantitative 3D mapping of refractive index in live biolog-

ical cells [4]. The positivity constraint in the iterative con-

straint method helps the reconstructed image recover its edge.

However, the images they obtained show a strong oscillation

across the central line of the object [5]. LaRoque et al. ap-

plied TV-minimization algorithm to obtain accurate 2D image

reconstruction from few-view and limited-angle data [6] us-

ing simulated data.

In our preliminary study, the concept of limited-angle DT

reconstruction was applied to simple latex spheres to demon-

strate the efficacy of this method in real data application. Sub-

sequently, we will extend our studies to tissue imaging to in-

vestigate the usefulness and limitation of DT under limited-

angle conditions.

2. METHODS

In this work, we used (i) the Fourier mapping method to re-

construct the refractive index distribution of 3D objects, and

(ii) applied TV-minimization algorithm with positivity con-

straint to improve the quality of reconstructed images.

2.1. Imaging physics of diffraction tomography

Consider that a monochromatic plane wave propagates along

the zr-axis and irradiates on an object. The rotated coordi-

nate is related to the reference coordinates as zr = z cos θ +
x sin θ, with θ denoting the tomographic view angle measured

from positive y-axis. The incident wavefield can be written as

u0(�r) = ejφ, where φ is the phase of the wavefield. The char-

acteristics of the object can be represented by its scattering
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potential f(�r),

f(�r) = k20

[
n(�r)

2 − n2
0

]
, (1)

where k0 = 2π/λ is the wavenumber of the medium; λ is the

wavelength of the incident wave; n(�r) and n0 are the complex

refractive index of the object and medium, respectively.

According to Fourier diffraction theorem [1], the Fourier

transform of the scattered field of an object yields its Fourier

transform over a semicircular arc when illuminated by a plane

wave. In other words, the 3D Fourier transform of the object’s

scattering potential can be obtained from the scattered field

detected at different angles.

2.2. Imaging system

In our measurement system, the phase measurements are ac-

quired by rotating the light source while keeping the detector

and object fixed (Fig. 1). Similar to the derivation in Ref. [1],

the formulations for our measurement system are given by

F̃ (Kx,Ky,Kz) =
jω

π
e−jωzŨs (kx, ky) , (2)

where the angular frequency components kx and ky of the

detector are related to the frequency components of the scat-

tering potential as⎧⎨
⎩

Kx = kx − k0 sin θ
Ky = ky

Kz = ω − k0 cos θ,
(3)

and ω =
√

(n0k0)
2 − k2x − k2y . Here, F̃ and Ũs are the 3D

and 2D Fourier transforms of the scattering potential f(�r) and

the detected scattered field us(�r), respectively. Here, we as-

sume the incident plane wave is homogeneous and therefore,

k2x + k2y ≤ k20 [1].

Fig. 1. The imaging geometry of the measurement system.

The light source rotates whereas the detector and the object

are fixed.

After collecting phase images φs(�r) at different angles,

we applied Eq. (2) to get the 3D Fourier transform of the

scattering potential along semicircular arcs F̃ (Kx,Ky,Kz).
Since the phase shift of the incident field in our measurement

system is larger than π, we can use the measured phase φs(�r)
to estimate the scattered field uB(�r) in a simple relationship

[7]

φs(�r) =
uB(�r)

u0(�r)
, (4)

where uB(�r) is the scattered field estimated by the Born ap-

proximation. Here, we assume the incident wave u0(�r) = 1.

By the Fourier mapping method, the scattered field f(�r) can

be obtained directly from taking the inverse Fourier trans-

form of this frequency distribution, F̃ (Kx,Ky,Kz), which

is mapped into uniform grids through interpolation.

2.3. TV-minimization algorithm

The iterative reconstruction algorithm we applied is divided

into two main parts: (i) data consistency step and (ii) TV min-

imization step. The objective of the data consistency step is

to ensure that the L2 norm between the estimated data and

measured data is smaller than the tolerance value, namely∣∣∣F̃ − F̃0

∣∣∣ ≤ ε. F̃ and F̃0 correspond to the discrete Fourier

transform (DFT) of the current estimated and measured data,

respectively. ε is the tolerance chosen according to the noise

level. In the TV-minimization step, the steepest descent algo-

rithm was applied to yield a solution that satisfies

f∗ = argmin
∥∥∥�f

∥∥∥
TV

such that
∣∣∣F̃ − F̃0

∣∣∣ ≤ ε. (5)

In the data consistency step, we employed projection onto

convex sets (POCS) by copying a fraction of the frequency

information of measured data into the estimated data to main-

tain the data consistency (Eq. (6)), i.e.,

(1− β) · F̃ + β · F̃0, (6)

where β is the relaxation parameter decreasing steadily along

with the iterative process from 1 to 0 [6]. Before doing the

POCS step, we set the missing projections to zero value.

Then, the Fourier mapping method was applied to fill the

current data into the 3D frequency domain. Here, the initial

guess image is set as a zero matrix. Followed by the appli-

cation of inverse DFT, an intermediate image is obtained.

Next, the positivity constraint was applied to ensure that the

reconstructed refractive index is not smaller than that of the

medium, i.e.,

fi,j,k ≥ 0 ∀i, j, k, (7)

where i, j, k are integer-valued indices of the scattering po-

tential in the discrete form fi,j,k.

The purpose of the steepest descent algorithm is to imple-

ment the TV minimization. In the field of image processing,

the edge-preserving technique is to restore the destroyed im-

age. It has the advantage of denoising and deblurring without
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smearing sharp edges [9]. TV-minimization is a kind of meth-

ods used for edge-preserving. It has been applied in diffrac-

tion tomography for 2D simulation to obtain accurate image

reconstruction of numerical results [6]. Here, the TV of an

3D object is defined as

∥∥∥�f
∥∥∥
TV

=

∫
|∇f | dxdydz =

∫ √
f2
x + f2

y + f2
z dxdydz,

(8)

where ∇f is the gradient of the image and fx, fy and fz rep-

resent the partial derivative in each dimension; namely, fx =
∂f/∂x, fy = ∂f/∂y, and fz = ∂f/∂z. Interested readers

can refer to Ref. [11] for the discrete form of ∂‖�f‖TV /∂fi,j,k.

The details of the TV-minimization algorithm is described in

Ref. [10].

Each iteration alternately enforce the data consistency and

TV-minimization steps till the stopping criteria is met.

3. NUMERICAL STUDIES

In numerical studies, we applied the TV-minimization algo-

rithm with positivity constraint to reconstruct the refractive

index distribution of an tissue-like object. The object space is

discretized to a 128×128×128 matrix. The detector is set to

cover from −60◦ to 60◦, and the total number of scan is 180

views. The reconstruction results are displayed in Fig. 2. The

underestimation inside the reconstructed object (Fig. 2(b)) by

the Fourier mapping method is caused by insufficient low-

frequency data. From the reconstructed results (Fig. 2(d)), the

image quality has improved due to the application of the TV-

minimization algorithm with positivity constraint. It means

this method can successfully reconstruct the 3D objects from

virtual data under limited-angle situations.

4. EXPERIMENTAL STUDIES

In this section, we applied the TV-minimization algorithm

with positivity constraint to reconstruct a 10 μm polystyrene

bead from experimental data.

4.1. Experimental setting

The measurement system is one kind of the tomographic

phase microscopy. A 10 μm polystyrene bead (n= 1.6210)

was immersed in oil (n = 1.5899). The wavelength of light

source is 404.7 nm. The laser beam was rotated to cover

from −64◦ ∼ 64◦ with the detector fixed. 789 phase images

were acquired. Therefore, this can be seen as the limited-

angle case. The magnification is 140X, and detector is an

512 × 512 array with the linear dimension of each detector

element equal to 12 μm.

 

 

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

(a)

 

 

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

(b)

 

 

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

(c)

20 40 60 80 100 120
0.9

1

1.1

1.2

1.3

1.4

1.5

(d)

Fig. 2. (a) A slice of the tissue-like object’s phantom at the

plane z = 0, and the reconstructed results by use of (b) the

Fourier mapping method, and (c) TV-minimization algorithm

with positivity constraint. (d) The profile along x-axis at y =
0 and z = 0. The solid, dashed and red curves represent the

phantom, the images obtained by use of the Fourier mapping

and TV-minimization algorithm, respectively.

4.2. Experimental results

Fig. 3 shows the phase image of the polystyrene bead mea-

sured at zero degree illumination. We have applied the

TV-minimization algorithm with positivity constraint to re-

construct the refractive index map of a three-dimensional

polystyrene bead. The diameter of the bead is 10 μm. The

refractive index of the bead and medium are respectively

1.6210 and 1.5899 at 404.7 nm wavelength.

The measured data were used to reconstruct an image vol-

ume of 512×512×512 voxels. The reconstruction results are

displayed in Fig. 4. In the image reconstructed using Fourier

mapping method, the refractive value of the bead is under-

estimated (Fig. 4(b)). The underestimation is caused by in-

complete angular data, which leads to the insufficient data in

the frequency domain. After applying the TV-minimization

algorithm with positivity constraint (Fig. 4(c)), the result was

improved and shows closer resemblance to the true value. The

improvement provided by use of TV-minimization algorithm

can be seen by comparing Figs. 4(b) and 4(c).

5. CONCLUSION

Previously, TV-minimization algorithm has been applied to

2D diffraction tomography in numerical studies. In this
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Fig. 3. Quantitative phase image of a 10 μm polystyrene bead

taken at zero degree illumination. The color bar indicates the

values of phase in radians.

research, we applied the TV-minimization algorithm with

positivity constraint to reconstruct the 3D refractive index

map of polystyrene bead from experimental data. Besides,

this algorithm is tested to reconstruct ellipsoids from virtual

data. The positivity constraint in the iterative process can

make the index outside the bead larger than or equal to that

of the medium. Reducing the TV of the image can recover

the edge and preserve the information inside the object. The

results prove that this algorithm can be applied successfully

to polystyrene beads from experimental data and tissue-like

objects in numerical simulation. The reconstruction of bio-

logical cells is not included in this research, and this is an

important area to study in the future.
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