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A Simple Multiloop Tuning Method for PID Controllers with No
Proportional Kick

I-Lung Chien*

Department of Chemical Engineering, National Taiwan University of Science and Technology,
Taipei, Taiwan 106, Republic of China

Hsiao-Ping Huang and Jen-Chien Yang

Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan 106, Republic of China

A simple tuning method for multiloop PID controllers will be presented in this article. The method
is suited for PID algorithms with no proportional and derivative kick. This tuning method is
derived from a controller synthesis method with a control performance specification of 5%
overshoot on servo response. Depending on the interaction natures of the multiloop systems,
tuning based on the diagonal elements of the model or further detuning may be necessary. For
systems with a relative gain array [RGA(λii)] < 1, a detuning factor based on this information
is proposed. The information needed for controller tuning purposes is the dynamic model
parameters of the diagonal elements and the process gain information of the off-diagonal
elements. The tuning method procedure is very simple and straightforward, utilizing only nth
identification tests with n as the number of the interacting control loops. The tuning method
can easily be applied to various industrial situations with almost no need for a priori process
knowledge.

1. Introduction

Although many advanced control concepts have been
introduced within the last 20 years, the vast majority
of the controllers in industry are still of the PID type.
For this reason, the proper tuning of the PID controllers
so that they can perform to their expectation is an
important factor for successful plant operation. There
are many controller tuning methods proposed in the
literature, but most of them only consider simpler SISO
(single-input, single-output) systems. When loop inter-
actions exist among the control loops, the otherwise
acceptable control performance of SISO environments
may quite often deteriorate to even unstable situations.

That is why, for multivariable systems, the tuning of
a multiloop PID controller has to bring loop interactions
into consideration. A common way to handle this
problem is to introduce a detuning factor to the SISO
tuning constants to stabilize the multivariable closed-
loop system. If the process model of the multivariable
system is available, a systematic procedure to find this
detuning factor is suggested in the literature for mul-
tiloop PI tuning by Luyben.1 Friman and Waller2

suggested the use of autotuning by a relay feedback
method to establish a multivariable process model and
the use of a trial-and-error procedure to determine the
detuning factor. Shen and Yu3 utilized sequential relay
feedback identification to obtain the frequency response
information of a multivariable system and to use de-
tuned Ziegler-Nichols tuning rules to handle the loop
interactions. Loh et al.4 used a sequential identification
method similar to that of Shen and Yu3 but proposed
the use of a modified PID algorithm with an additional

â parameter to decrease the interactions among control
loops. Palmor et al.5 and Halevi et al.6 proposed not to
use a sequential relay identification method but instead
used simultaneous relays on all of the control loops
during the identification stage. They obtained the
desired critical point information from their experiment
after several iterations and then used regular or modi-
fied Ziegler-Nichols tuning rules for control.

All of the tuning methods mentioned above had to
obtain the process model or the frequency response
information in “several rather long” experiments. In this
paper, an alternative, very simple multiloop PID Tuning
method is proposed. The method is suited for a PID
algorithm with no proportional and derivative “kicks”.
This tuning method is derived from a controller syn-
thesis method with a control performance specification
of 5% overshoot of the servo response. Depending on the
interaction natures of the multiloop systems, controller
tuning based on the diagonal elements of the model or
further detuning may be necessary. For systems with
a relative gain array [RGA(λii)] < 1, a detuning factor
based on this information is proposed. The information
needed for controller tuning purposes includes the
dynamic model parameters of the diagonal elements and
the process gain information of the off-diagonal ele-
ments. The tuning method procedure is very simple and
straightforward, utilizing only nth identification tests
with n as the number of the interacting control loops.
The tuning method can easily be applied to various
industrial situations with almost no need for a priori
process knowledge.

Various distillation dual-point control examples with
RGA(λii) > 1 and two other examples, including an
industrial reactor control example with RGA(λii) < 1 and
one 3 × 3 example, will be used to demonstrate the
superior performance of this tuning method. Both set-
point and load disturbance response will be examined.
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2. The Tuning Method
In a standard PID controller, because the proportional

mode is acting on the error signal, there will be a large
kick of the controller output during setpoint changes.
If the multiloop control system has large interactions
among the loops, the large controller action on one loop
will be a large load disturbance to the other loops. To
reject this large load disturbance, the corrective action
by the controllers in other loops will also be large,
causing disturbance back to the loop with setpoint
changes. The disturbance effect will go back and forth
among the control loops, causing control problems.

For this reason, an obvious solution is to not let the
control action have the kick at the time of the setpoint
changes. This calls for a PID form with no proportional
kick, which simply means having the proportional mode
acting on the negative sign of the controlled variable
alone. The Laplace transform representation of this
control is

In the PID form above, it is customary to have the
derivative mode also acting on the negative sign of the
controlled variable to prevent a derivative kick. Also
note that this PID form can be found in almost every
industrial distributed control systems, thus no special
control implementation is needed.

This PID form in eq 1, on one hand, will not have an
initial proportional kick, but on the other hand, the
closed-loop servo response will be sluggish if the same
PID tuning constants derived from a standard PID form
is used. For this reason, the PID tuning rules need to
be modified for this particular PID form. We will use
controller synthesis method to derive the PID controller
tuning parameters. In the following, the derivation of
the tuning rules will be divided into two parts by
obtaining PI tuning rules and PID tuning rules. For
controlled variables with noisy signals, PI tuning rules
with no derivative action can be selected.

2.1. PI Tuning Rules. We will start our discussions
by considering a single-loop control system. For a closed-
loop system with a PID controller with no proportional
kick (see Figure 1), the relationship between the con-
trolled variable (y) and the setpoint (r) is as follows
(dropping the Laplace transform variable s for simplicity
reason):

Gp is the model of the process for controller tuning
purposes. We will classify the processes into two cat-
egories.

2.1.1. Time Constant Dominant Processes. Most
of the difficult control loops in the chemical industry
are of this type with the dominant time constant of the
system greater than 5 times the process deadtime. If
this holds, the proper process model for controller tuning
purposes will have the following integrating plus dead-
time form:

where R is the slope of the initial unit step response of
the controlled variable and L is the process apparent
deadtime. If a first-order plus deadtime model is ob-
tained from some model identification steps with Kp as
the process gain, τ as the process time constant, and L
as the process deadtime, for (L/τ) < 0.2, the approxima-
tion of calculating R to be equal to (Kp/τ) will be used.

In order to derive PI tuning parameters, the deadtime
term in eq 3 needs to be approximated using a first-
order Taylor series, thus

Substituting eq 4 into eq 2 and simplifying, we obtain

The closed-loop servo response is a second-order re-
sponse. Let’s assume our desired closed-loop servo
response to be an underdamped system with a damping
coefficient (ú) of 0.707. This corresponds to a closed-loop
system with about 5% overshoot. The desired closed-
loop servo response is

where τcl is a user-specified closed-loop effective time
constant. Equating eqs 5 and 6, we can obtain the PI
tuning rules as

2.1.2. Deadtime Important Processes. For pro-
cesses with a deadtime greater than 1/5 of the process
time constant, it is better for controller tuning purpose
to model the processes as a first-order plus deadtime
model. With the same Taylor approximation, the process
model becomes

Substituting eq 9 into eq 2 and simplifying, we obtain

Figure 1. Block diagram of PID control loop with no proportional
kick.
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Again, it is a second-order response. With the same
desired closed-loop servo response as previously eq 6,
we can obtain the PI tuning rules as

Normally, we would specify τcl to be smaller than the
open-loop time constant, τ; thus, the negative terms in
eqs 11 and 12 will not create any problems in changing
the signs of Kc and τi.

2.2. PID Tuning Rules. The derivation of the PID
tuning parameters is similar to the above PI derivation
except that the deadtime approximation is a little more
accurate because of the use of the first-order Padé
approximation. In this case, then, the apparent dead-
time terms in integrating plus deadtime or first-order
plus deadtime models can be approximated to be

We will use the same classification of the process model
and the same closed-loop specification as in the above
PI tuning rule derivation. The resulting PID tuning
rules with detail derivation can be found in the Ap-
pendix.

3. Multiloop Considerations

In the above sections, we have developed the PI/PID
tuning rules on the basis of a controller synthesis
method. We have also assumed that by using PI/PID
form with no proportional kick the interactions among
the control loops will be considerably reduced. For a
multiloop situation, the relationship between yi and ui
is not simply the diagonal element of the process model
matrix. Let’s take a 2 × 2 system as an illustrating
example. For a 2 × 2 closed-loop control system, the
process transfer function between y1 and u1 while loop
2 is on manual is

On the other hand, the relationship between y1 and u1
while loop 2 is on automatic mode is (cf., Shen and Yu3)

where κ is the Rijnsdorp interaction measure7 and h2
is the complementary sensitivity function for loop 2. The
κ and h2 are defined as

and

The above relationship in eq 15 holds also for PID
controller with the form of no proportional kick.

Assuming that the controller tuning parameters are
chosen so that the complementary sensitivity function
(h2) is a stable system with unity gain, then by calculat-
ing the high- and low-frequency asymptotes of eq 15 we
can have some idea of how the loop interactions affect
the open-loop transfer function. For individual process
transfer function to be assumed as a first-order plus
deadtime model, at high frequency, this model is ap-
proaching integrating plus deadtime form as in eq 3 and
at low frequency this model is approaching a pure gain
model. The following results are obtained:

because for controller design or tuning purposes, the
process open-loop initial response (or high-frequency)
behavior is the most important (as pointed by others;
see: Skogestad and Moraris,8,9 Chien and Fruehauf,10

and Chien and Ogunnaike11). In addition, from fre-
quency asymptote analysis, the initial response of a
particular control loop with the other loop in manual
or automatic is known to be very similar in nature (from
eqs 14 and 18). For these reasons, multiloop controller
tuning based on the process model parameters in the
main loop should provide satisfactory closed-loop re-
sults.

For systems with RGA(λii) < 1, special consideration
should be taken to avoid having overly aggressive
controller action. From eq 19, the process transfer
function is adjusted by multiplying a factor with values
greater than one [reciprocal of RGA(λii)] at low frequen-
cies. Using the tuning rules based on the open-loop
transfer function, Gii, will be too aggressive at low-
frequency ranges. To obtain PID controller tuning
parameters which will not be too aggressive in all
frequency ranges, a reasonable choice is to introduce an
extra detuning factor with the value of RGA(λii) to
detune Kc as well as τi, and τd parameters in the
following matter:

From the definition of RGA(λii), we can also see that
further detuning is necessary for systems with RGA-
(λii) < 1. The RGA(λii) is defined as12

Thus, if RGA(λii) < 1, this means that the effective
process gain of the main loop will be increased if the
other loops are closed. Therefore, any controller tuning
methods only based on the information of model pa-
rameters in the main loop will be too aggressive. This
calls for an extra detuning factor. The value of the
detuning factor should be related to the closeness of the
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open-loop process gain to the process gain when the
other loops are closed. For this reason, the detuning
rules in eqs 20-22 are justified.

The choosing of the user-specified closed-loop effective
time constant, τcl, is a matter of trading off between
control loop performance and robustness. If τcl is chosen
to be smaller, then the controller performance is faster,
but the control action is more vigorous, and the model
mismatch tolerance is worse. On the other hand, if τcl
is chosen to be larger, the controller performance is more
sluggish, but the control action will be smoother, and
the model mismatch tolerance is better. With many
multiloop system simulations, the following selection of
τcl in Figure 2 was determined empirically, which gave
satisfactory closed-loop response under both nominal
and reasonable model mismatch conditions.

The reason for choosing τcl to be smaller for first-order
plus deadtime model when L/τ > 0.5 is because for dead-
time dominant processes with large L values selecting
τcl ) nL with n as number of interacting control loops
will give overly sluggish closed-loop responses. For L/τ
> 1.0, a PID controller will be sluggish anyhow. In this
circumstance, a deadtime compensation scheme such as
the Smith predictor will be more beneficial.

The resulting PI tuning rules for a 2 × 2 system can
be found in Table 1. From the process model information
obtained from model identification steps, the PI tuning
parameters can easily be calculated. For a 3 × 3 or 4 ×
4 system, the PI tuning parameters can be calculated
in a manner similar to that of Table 1 by selecting τcl
as in Figure 2 and using eqs 7, 8, 11, and 12 to calculate
Kc and τi. Similarly, the PID tuning parameters for a 2
× 2 system can easily be calculated with the selection
of τcl as in Figure 2. The results can be seen in Table 2
once the model parameters are known. For a 3 × 3 or 4
× 4 system, the PID tuning parameters can be calcu-
lated in a similar matter.

In calculating the controller tuning parameters, any
suitable model identification schemes such as the
biased-relay method proposed by Huang et al.13 can be
used to obtain the necessary information by just using
nth relay feedback test with n as the number of the
interacting control loops. For systems with RGA(λii) >
1, the PI/PID tuning rules can directly be calculated by
using the model parameters (R, L, Kp, and τ) in the main

loops. As for systems with RGA(λii) < 1, additional
information of the process gains in the off-diagonal
elements are also needed. The biased-relay method
proposed by Huang et al.13 is suitable for calculating
the process gains because these values can be obtained
by calculating the ratio of two integrals in yi(t) and uj-
(t) for each cycle of the test result and then taking the
average of several cycles.

Table 1. PI Tuning Rules for PID Controller with No Proportional Kick (2 × 2 system)a

(L/τ) < 0.2 0.2 < (L/τ) < 0.5 (L/τ) > 0.5

Kc 1/2.045RL
1

Kp

(1.414m + 1) - m2 (L/τ)

(m2 + 1.414m + 1)(L/τ)
1

Kp

2.414 - (L/τ)
3.414(L/τ)

τi 3.828L τ
(1.414m + 1)(L/τ) - m2(L/τ)2

1 + (L/τ)
τ

2.414(L/τ) - (L/τ)2

1 + (L/τ)
a For the cases when 0.2 < (L/τ) < 0.5, m ) 2 - [(L/τ) - 0.2]/0.3 is used.

Table 2. PID Tuning Rules for PID Controller with No Proportional Kick (2 × 2 system)a

(L/τ) < 0.2 0.2 < (L/τ) < 0.5 (L/τ) > 0.5

Kc 1/1.48RL
1

Kp

(0.25 - m2)(L/τ) + (1.414m + 1)

(m2 + 0.707m + 0.25)(L/τ)
1

Kp

2.414 - 0.75(L/τ)
1.957(L/τ)

τi 3.828L τ
(0.25 - m2)(L/τ)2 + (1.414m + 1)(L/τ)

1 + 0.5(L/τ)
τ

2.414(L/τ) - 0.75(L/τ)2

1 + 0.5(L/τ)

τd 0.435L τ
(0.707m + 0.25)(L/τ) - 0.5m2(L/τ)2

(0.25 - m2)(L/τ) + (1.414m + 1)
τ

0.957(L/τ) - 0.5(L/τ)2

2.414 - 0.75(L/τ)

a For the cases when 0.2 < (L/τ) < 0.5, m ) 2 - [L/τ - 0.2]/0.3 is used.

Figure 2. Selection of τcl in multiloop control system.
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The overall tuning procedure is summarized in the
following:

1. With all loops in manual mode, one can apply
identification tests on loop 1 and collect dynamic data
on u1 versus y1 and u1 versus yi,i*1.

2. By using any suitable identification method, one
can obtain first-order plus deadtime model parameters
for G11 and process gain information, Kpi1, i*1.

3. Similar test apply to other loops and give first-order
plus deadtime model parameters for all of the diagonal
elements in the process model matrix and gain informa-
tion for all of the off-diagonal elements.

4. If RGA(λii) > 1, only model parameters in Gii will
be used in the tuning rules.

5. With RGA(λii) > 1, one can calculate L/τ for each
loop. For the cases with (L/τ) < 0.2, R () Kp/τ) can be
calculated in each loop. For each L/τ range, PI/PID
tuning parameters can be calculated from appropriate
columns in the tables mentioned in this section.

6. If RGA(λii) < 1, a detuning factor equal to
RGA(λii) can be calculated from the model param-
eters.

7. With RGA(λii) < 1, the controller tuning parameters
can be further detuned via eqs 20-22.

Figure 3. (a) Closed-loop response for example 1 with y1 setpoint change. (b) Manipulated variables of a.
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8. With the tuning parameters calculated, a PI/PID
controller can be implemented with no proportional and
derivative kick in your plant.

This proposed tuning method is suitable for all normal
multiloop control applications. For the situation when
a multiloop control system has RGA(λii) < 0, the
recommendation is to switch the pairings so that RGA-
(λii) will become greater than 0. From the definition of
RGA in eq 23, the sign of the controller action will be
reversed when the other loops are in automatic or in
manual in the situation when RGA(λii) < 0. This means
that even if the multiloop control system is tuned
properly to be stable in the automatic mode, any failure
in the loops in the system which causes the loops to
enter a manual mode will destabilize the overall control
system. The control integrity is unacceptable for a RGA-
(λii) < 0 system.

4. Simulation Results

Many 2 × 2 systems and several 3 × 3 systems have
been used to test the closed-loop performance of the
proposed tuning method above. All give very satisfactory
responses. In the following, we will present the results
on a simulated column control system with RGA(λii) >
1 and one reactor control example with RGA(λii) < 1 as
well as a 3 × 3 example.

Example 1. Wood and Berry Column.14 The trans-
fer function model shown below is a pilot-scale distil-
lation column model separating a mixture of methanol
and water. This model has been discussed in a number

of other 2 × 2 loop tuning studies, including those by
Luyben,1 Loh et al.,4 Shen and Yu,3 and Palmor et al.5
Wood and Berry14 reported the following empirical
transfer function model:

The first step of the controller tuning procedure is to
do two bias-relay feedback tests on loops 1 and 2. From
the model identification results and from the fact that
this system has the characteristics of RGA(λii) > 1, no
detuning is necessary. The PI or PID tuning parameters
can be calculated from Tables 1 or 2 respectively. The
closed-loop setpoint and load responses using this
proposed tuning method will be compared to the tuning
methods by Luyben,1 Shen and Yu,3 Palmor et al.,5 and
Loh et al.4 The PI tuning parameters used in the above
tuning methods are tabulated in Table 3.

The closed-loop response for a setpoint change in y1
is shown in Figure 3a with the manipulated variable
changes in Figure 3b. It is clearly shown in these two
figures that controller tunings using PI controllers with
no proportional kick (our proposed method and the one
by Loh et al.4) provide better closed-loop performance
than the ones using standard PI controllers (Luyben,1
Shen and Yu,3 and Palmor et al.5). Although the
performance of Loh et al.4 is satisfactory, the y2 response
is more sluggish. In addition, the method of Loh et al.
uses the more time-consuming “sequential” identifica-
tion procedure for obtaining its tuning constants. The

Figure 4. Closed-loop response for example 1 with y2 setpoint change.

Table 3. PI Tuning Parameters for Wood and Berry
Column

Kc1 τi1 Kc2 τi2

Luyben 0.375 8.29 -0.075 23.6
Shen and Yu 0.540 7.92 -0.072 26.7
Palmor et al. 0.183 10.7 -0.119 10.7
Loh et al. 0.868 3.25 -0.087 10.4
proposed 0.637 3.84 -0.096 7.40 [y1(s)

y2(s) ]) [ 12.8e-s

16.7s + 1
-18.9e-3s

21.0s + 1

6.6e-7s

10.9s + 1
-19.4e-3s

14.4s + 1
][u1(s)

u2(s) ]+

[ 3.8e-8.1s

14.9s + 1

4.9e-3.4s

13.2s + 1
][d(s)] (24)
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manipulated variables of our proposed method are quite
smooth, which is favorable in industrial applications.

Closed-loop responses for changes in setpoint of y2 and
the load response with the disturbance, d, from 0 to 1
at t ) 1 can be found in Figures 4 and 5, respectively.
Again, our proposed method reaches the setpoint the
fastest in these two changes and is superior in com-
parison to other tuning methods.

The comparison of the controller robustness property
can be carried out by assuming the plant with an input

uncertainty ∆ to describe modeling errors. The closed-
loop system is stable if and only if (cf., Morari and
Zafiriou15)

where σj(‚) is the maximum singular value of (‚) and H
is the complementary sensitivity function of the entire
closed-loop system. By plotting σj[H(iω)] versus ω for the

Figure 5. Closed-loop response for example 1 with load change.

Figure 6. Plot of σj[H(iω)] vs ω for example 1.

σj[H(iω)] < 1
σj[∆(iω)]

∀ω (25)
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five tuning rules listed in Table 3, we can compare the
robust stability of these five tuning rules. The tuning
method will be more robust if the value of σj[H(iω)] is
smaller in all frequency ranges.

Figure 6 is a plot of σj[H(iω)] versus ω for this system.
From this figure, we see that the proposed tuning
method is more robust than the method by Loh et al.4
for most frequencies but is less robust than the other
three tuning methods for high frequencies. Even though
the robust stability property of the methods by Luyben,1

Shen and Yu,3 and Palmor et al.5 are favorable, the
nominal performances of these three tuning methods
are considerably more sluggish, as shown in above
Figures 3-5.

One of the criticisms of using σj[H(iω)] in robust
stability analysis is that the stability criterion may be
too conservative. As an independent check, closed-loop
results using the tuning constants as in Table 3 but with
process parameters mismatch of +30% in diagonal gains
and deadtime elements are simulated. Figure 7 shows

Figure 7. Model mismatch run for example 1 with y1 setpoint change.

Figure 8. PID vs PI response for example 1 with y1 setpoint change.
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the setpoint change in y1 under model mismatch condi-
tion. The proposed method still provides excellent
closed-loop performance with this severe model mis-
match condition. The methods of Luyben,1 Shen and
Yu,3 and Palmor et al.5 are still stable because their
controller actions are too sluggish during nominal
condition. The method by Loh et al.,4 although the
nominal response is satisfactory, is much too oscillatory
under this model mismatch condition. Considering the

trade-off between loop performance and robustness, the
proposed tuning method is the most favorable.

In order to further improve the closed-loop response,
a controller with an additional derivative mode can be
considered if the process variable measurements are not
very noisy. The PID tuning parameters for this column
can be calculated from Table 2 to be Kc1 ) 0.881, τi1 )
3.84, τd1 ) 0.436, Kc2 ) -0.136, τi2 ) 8.24, and τd2 ) 1.23.
The closed-loop response of the PID controller with no

Figure 9. Closed-loop response for example 2 with y1 setpoint change.

Figure 10. Closed-loop response for example 2 with y2 setpoint change.
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proportional kick using the proposed tuning method is
comparing to the response of a PI controller in Figure
8 for a setpoint change in y1. The closed-loop perfor-
mance of PID controller is further improved.

Example 2. A Reactor Control Problem. The
second example is an industrial-scale polymerization
reactor control problem. In order to improve the product
quality consistency, a control improvement project is
initiated for which the first phase of the project is to do
automatic reactor condition control. The manipulated
variables of this control tier are the setpoints of various
reactor feed flow control loops. The control hierarchy
proposed is similar to Figure 30.25 in Ogunnaike and
Ray.16 The future higher tier product quality control
loops will be setting the setpoints of the reactor condi-
tion control loops.

For proprietary reasons, we will not describe in detail
this reactor control system. The process model for the
reactor condition control loops is obtained from model
identification to be

The time scales are in hours, so the process dynamic
response is quite slow. The two controlled variables are
two measurements representing the reactor condition,
and the two manipulated variables are the setpoints of
two reactor feed flow loops with load disturbance as the
purge flow of the reactor.

Notice that in this case the interactions is such that
RGA(λii) < 1 thus further detuning is necessary. When

the tuning procedure in the above section is followed,
the detuning factor for this system is 0.709. The
resulting PI tuning parameters together with the tuning
parameters calculated using other tuning methods are
tabulated in Table 4.

Figures 9-11 show the closed-loop responses for this
system under setpoint change of y1, setpoint change of
y2, and load disturbance changes, respectively. Again,
the proposed method provides satisfactory closed-loop
performance with the minimum identification tests
needed.

Various other 2 × 2 systems have been used to test
the adequacy of this proposed method. They are

For RGA(λii) > 1 systems, TS, VL, and WW models
in Luyben,1 and a column model in Taiwo.17

For RGA(λii) < 1 systems, a process model in Nied-
erlinski18 with higher order process model.

Our proposed tuning method performs all quite
satisfactory.

Example 3. A 3 × 3 System. A 3 × 3 example
originated in Ogunnaike and Ray19 and later studied
by Luyben1 and Halevi et al.6 will be used here to test

Figure 11. Closed-loop response for example 2 with load change.

[y1(s)

y2(s) ]) [22.89e-0.2s

4.572s + 1
-11.64e-0.4s

1.807s + 1

4.689e-0.2s

2.174s + 1
5.80e-0.4s

1.801s + 1
][u1(s)

u2(s) ]+

[-4.243e-0.4s

3.445s + 1

-0.601e-0.4s

1.982s + 1
][d(s)] (26)

Table 4. PI Tuning Parameters for Reactor Control
Problem

Kc1 τi1 Kc2 τi2

Luyben 0.210 2.26 0.175 4.25
Shen and Yu 0.459 1.50 0.183 4.45
Palmor et al. 0.0978 1.60 0.375 1.60
Loh et al. 0.620 0.60 0.247 1.78
proposed 0.263 1.42 0.163 1.77

Table 5. PI Tuning Parameters for ex 3

Kc1 τi1 Kc2 τi2 Kc3 τi3

Luyben 1.51 16.4 -0.295 18.0 2.63 6.61
Shen and Yu 2.55 16.5 -0.235 26.1 3.39 7.39
Halevi et al. 1.25 10.5 -0.339 10.5 0.923 10.5
proposed 1.08 4.25 -0.233 3.32 2.78 5.24
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the performance of the proposed method for systems
with control loops greater than two. The process model
is

This 3 × 3 system has RGA(λii) elements all greater
than one; thus, no further detuning is necessary. By

application of the bias-relay tests to obtain the model
parameters of the three diagonal elements of the
process, the PI tuning parameters can be calculated
using the procedure outlined in Section 3. The resulting
PI tuning parameters together with the tuning param-
eters reported in the literatures for other tuning meth-
ods are tabulated in Table 5.

Figure 12 illustrates the closed-loop response for this
system under load disturbance. The closed-loop perfor-
mance of the proposed method is excellent. Similar good
performance can be found for setpoint changes in all
three controlled variables.

5. Conclusions

In this paper, a very simple PID tuning method is
proposed for multiloop control systems. The tuning
method is based on the PID controller implementation
with the form of no proportional kick. With this con-
troller form, the interactions between the control loop
can be minimized, and the desired closed-loop perfor-
mance can still be specified by controller synthesis
method. Depending on the interaction natures of the
multiloop systems, controller tuning based on the
diagonal elements of the model or further detuning may
be necessary. For systems with RGA(λii) < 1, a detuning

Figure 12. Closed-loop response for example 3 with load change.

[y1

y2

y3
])

[0.66e-2.6s

6.7s + 1
-0.61e-3.5s

8.64s + 1
-0.0049e-s

9.06s + 1

1.11e-6.5s

3.25s + 1
-2.36e-3s

5s + 1
-0.01e-1.2s

7.09s + 1

-34.68e-9.2s

8.15s + 1
46.2e-9.4s

10.9s + 1
0.87(11.61s + 1)e-s

(3.89s + 1)(18.8s + 1)
] ×

[u1

u2

u3
]+ [ 0.14e-12s

(19.2s + 1)2

0.53e-10.5s

6.9s + 1

-11.54e-0.6s

7.01s + 1
][d] (27)
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factor based on the value of RGA(λii) is proposed. One
of the biggest advantage of the proposed tuning method
is that because the tuning method only requires dy-
namic model parameters of the diagonal elements and
the process gain information of the off-diagonal elements
only nth identification tests (with n as the number of
the interacting control loops) are needed to determined
the PID tuning parameters as opposed to other tuning
methods which require more iterative tests. Because
less interference of process operation is always prefer-
able for industrial situations, this tuning method has
the potential to be widely applicable in industry. Many
simulation tests have confirmed the performance of this
proposed tuning method. Its closed-loop servo and load
responses are all very satisfactory.
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Appendix: Derivation of PID Tuning Rules

The closed-loop transfer function between controlled
variable (y) and setpoint (r) is

For time constant dominant processes, the process
model, Gp, can be approximated using Padé approxima-
tion as

Substituting eq A.2 into A.1 and simplifying, we get

Let us assume our desired closed-loop servo response
to be a underdamped system with damping coefficient
of 0.707. This corresponds to a closed-loop system with
about 5% overshoot. The desired closed-loop servo
response is

where τcl is an user-specified closed-loop effective time
constant. Equating eqs A.3 and A.4 and doing some
algebraic manipulation, we can solve for the PID tuning
parameters as

For processes with deadtime greater than 1/5 of the
process time constant, it is better for controller tuning
purposes to model the processes as a first-order-plus
deadtime model. With the same Padé approximation as

Substituting eq A.8 into A.1 and simplifying, we obtain

Again, equating eqs A.9 and A.4 and doing some
algebraic manipulation, we can solve for the PID tuning
parameters as

By selecting τcl as in Figure 2, the negative terms in
eqs A.10-A.12 will not cause any problem in changing
the signs of the PID tuning parameters. With the τcl
selection as in Figure 2, combining with eqs A.5-A.7
and A.10-A.12, the final PID tuning rules in Table 2
can be obtained.
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