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摘要

自旋軌道力磁性隨機存取記憶體（SOT-MRAM）近來在記憶體行業中受到

廣泛關注。最近研究指出使用帶有額外重金屬覆蓋層的重金屬（HM）/鐵磁體

（FM）雙層結構，能決定性地切換 SOT-MRAM的磁化量。本文利用微磁學模擬

與漂移擴散自旋傳輸模型相結合，研究了利用此結構的 SOT-MRAM的位元切換

行為，指出該翻轉機制歸因於來自 HM底部界面的自旋累積的不可忽略之負 z分

量，該自旋累積源於 HM覆蓋層邊緣的自旋累積。此外，研究最後也指出器件參

數對決定性切換和低功耗的重要性。本研究提供了關於使用額外 HM覆蓋層的

SOT-MRAM之決定性位元切換的基本原理討論，證明該結構未來有十足地潛力被

推廣至實際應用中。

關鍵字： SOT-MRAM、決定性位元切換、微磁學模擬、漂移擴散自旋傳輸模型
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Abstract

Spin-orbit torque magnetic random-access memory (SOT-MRAM) has received ex-

tensive interest in the memory industry. Recent efforts have focused on a heavy metal

(HM)/ferromagnet (FM) bilayer with an additional HM capping strip to deterministically

switch the magnetization. This paper investigates the switching behaviors of SOT-MRAM

utilizing this structure with micromagnetic simulations coupled to the drift-diffusion spin

transport model. The mechanism is attributed to the non-negligible negative z-component

from spin accumulation on the bottom HM interface, which originates from the associ-

ated accumulation at the edges of the HM capping strip. Moreover, device parameters are

shown as crucial for deterministic switching and lower power consumption. This study

provides fundamental insights into deterministic switching for SOT-MRAM with an ad-

ditional HM capping strip, which can be readily adopted into practical applications.

Keywords: SOT-MRAM, deterministic switching,micromagnetic simulation, drift-diffusion

spin transport model
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Chapter 1 Introduction

1.1 Current development of SOT-MRAM

Rapid progress in the field of artificial intelligence and in-memory computing has

heightened the demand for low power consumption and highly efficient devices.[2, 3]

Magnetic random access memory (MRAM) has become a promising candidate among

emerging memory technologies due to its non-volatility, low power consumption, fast

read/write operations, and high endurance over other competing memory devices.[4, 5]

MRAM is based on the magnetic tunnel junction (MTJ), which consists of two ferromag-

netic layers and a thin insulator in the middle. The parallel and anti-parallel arrangements

of the magnetization in ferromagnetic layers correspond to the low- and high-resistance

states. Over the past decade, spin transfer torque magnetic random-access memory (STT-

MRAM) has been among the most promising emerging memory technologies.[6] How-

ever, the writing speed, power consumption, and endurance of STT-MRAM still need fur-

ther improvements. Researchers have recently demonstrated that spin-orbit torque (SOT)

can induce magnetization switching in heavy-metal (HM)/ferromagnet (FM) bilayer sys-

tems, which may mitigate these issues in STT-MRAM.[7–11] In the SOT-driven mag-

netization switching, the current flows through the SOT channel and generates spin ac-

cumulation from the spin Hall effect (SHE)[12, 13] or the interfacial Rashba spin-orbit
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coupling.[14] Spin accumulation under the ferromagnet exerts a torque via spin-orbit in-

teractions to flip themagnetization. Compared to STT-MRAM, SOT-MRAMcould switch

the free layer (FL) magnetization faster with a lower power consumption.[15–17] MRAM

with perpendicular magnetic tunnel junctions (p-MTJs) has received significant attention

due to its high thermal stability and higher storage density these years.[18–20] However,

SOT-MRAM based on p-MTJs cannot switch the magnetization deterministically because

the current flow in the x-direction induces polarized spin along the y-direction in the HM

layer. Accordingly, its stochastic nature is a major hindrance to its utilization in practical

devices. To realize deterministic switching of a p-MTJ, an external magnetic field along

the current direction is typically required to break the symmetry.[21, 22] However, the ap-

plied external magnetic field inevitably increases the difficulty of device manufacturing.

Therefore, searching for a practical solution to deterministic switching in SOT-MRAM

based on p-MTJ is vital for modern spintronics technologies.[23, 24] Several promising

approaches have been developed, such as interface exchange coupling,[25, 26] tilted mag-

netic anisotropy,[27, 28] using a combination of STT and SOT,[29–32] lateral structural

asymmetry,[1, 33–37] or gradient spin current.[1, 38–40]

1.2 Deterministic switching of SOT-MRAM based on p-

MTJs

The deterministic switching utilizing lateral structural asymmetry relies on an addi-

tional out-of-plane effective magnetic field.[24, 33] It could be realized by using a wedge-

shaped ferromagnet,[37] insertion of an asymmetric layer,[34–36] or utilizing an asym-

metric Ta layer after oxidation.[33] Recent experiments have revealed that SOT devices
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with additional HM capping strips could also enable deterministic switching.[1] Such spin

logic devices have the potential to create a field-free perpendicular SOT-MRAM structure.

The design keeps the homogeneity of the magnetic property in the FM and has a simple

structure without incorporating any additional layers. A schematic illustration of this pro-

posed SOT-MRAM structure is shown in Fig. 1(a). However, the microscopic creation

of the additional out-of-plane effective magnetic field and quantitative understanding of

the switching behaviors need clarification for practical memory device applications. This

study helps understand how anHM capping strip achieves deterministic switching in SOT-

MRAM through micromagnetic simulations coupled to a self-consistent drift-diffusion

spin transport solver. The three-dimensional spin transport solver self-consistently cal-

culates the charge currents, spin currents, and spin accumulations for arbitrary geome-

tries and multi-layer structures without importing a computed current density.[41–43] The

strength of spin torques can be calculated from the given spin transport parameters.[41–43]

The model has also been shown to be superior to incorporating analytical representations

of different spin torques in the Landau–Lifshitz–Gilbert (LLG) equation for non-uniform

charge and spin currents, and when various spin torques are present.[41–43] Therefore,

self-consistent spin torque is a more accurate approach to handle the non-uniform spin

current and asymmetric geometry in the HM capping strip method. We show that the spin

accumulation from the edges of the HM capping strip causes various distributions of spin

accumulation on the bottom HM interface, which leads to deterministic switching. More-

over, the switching characteristics for different device parameters was also investigated.

3



(a) (b) (c)

Diameter = 20 nm

15 nm15 nm CoFeB

Tungsten

Figure 1.1: (a) Schematic illustration of the SOT-MRAM structure utilizing the HM cap-
ping strip method,[1] (b) schematic diagram of the simulated SOT cell from this study,
and (c) side view of the simulated SOT cell from this study.
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Chapter 2 Research Methodology

2.1 Micromagnetic simulations coupled to the drift-diffusion

spin transport model

To understand magnetic dynamics with gradient spin current, we perform micromag-

netic simulations using Boris Computational Spintronics,[44] which is a high-performance

magnetic and spin transport modeling software. In the simulations, the magnetization

switching dynamics are modeled using the LLG equation containing the total spin torque:

∂m
∂t

= −γm×Heff + αm× ∂m
∂t

+
Ts

Ms

, (2.1)

where γ = µ0 |γe|, γe = −gµB/h̄ is the electron gyromagnetic ratio, m is the unit vector

along the magnetization of FL,Ms is the saturation magnetization, α is the damping con-

stant, Ts is the total spin torque, and the effective fieldHeff contains all the magnetic field

contributions, including the Oersted field, demagnetization field, uniaxial magnetocrys-

talline anisotropy, and exchange interaction. The total spin torque includes contributions

from the STT, SOT, and interfacial spin-transfer toque (ISTT), which can be computed

self-consistently using the drift-diffusionmodel.[42, 45–47]Within the drift-diffusion spin

transport solver, the spin accumulation is solved each time step to self-consistently com-
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pute the spin torque. The equation of motion for spin accumulation is modeled by:

∂S
∂t

= −∇ · JS −De

(
S
λ2
sf

+
S×m
λ2
J

+
m× (S×m)

λ2
ϕ

)
, (2.2)

where S is the spin accumulation, JS is the spin polarization current density, De is the

electron diffusion constant, λsf is the spin-flip length, λJ is the exchange rotation length,

and λϕ is the spin dephasing length. Interfacial spin torques may be computed as:

Ti
s =

gµB

edF

[
Re
{
G↑↓}m× (m×∆Vs) + Im

{
G↑↓}m×∆Vs

]
, (2.3)

whereG↑↓ is the spin-mixing conductance, dF is the ferromagnetic layer thickness, andVs

is the spin chemical potential drop across theHM/FM interface, whereVs = (De/σ)(e/µB)S

and σ is the electrical conductivity. Bulk spin torques are obtained from the spin accumu-

lation as:

Tb
s = −De

λ2
J

m× S− De

λ2
ϕ

m× (m× S) . (2.4)

This work uses a simpleW/CoFeB/MgO structure to realize deterministic switching based

on the HM capping strip method, which can be readily adopted in magnetic tunnel junc-

tions.[48–50] The parameters utilized in the simulations are listed in Table 1. The LLG

equation is computed with a mesh size of 1 nm x 1 nm x 1 nm. For spin transport calcula-

tions, the spin accumulation is computed with a mesh size of 1 nm x 1 nm x 0.1 nm. The

discussion presented herein focuses on the properties of MTJs with a diameter of 20 nm

and thickness of 1 nm as these are the dimensions most likely used in real applications.

6



Parameters Numerical values Description

A 2× 10−11 J/m Exchange constant

Ms 1× 106 A/m Saturation magnetization

K 8.50× 105 J/m3 Magnetic anisotropy [19, 28, 31, 51]

temp 0 K Absolute temperature

α 0.02 Damping constant

σCoFeB 3.03× 105 S/m Conductivity of CoFeB [48]

σW 2.70× 105 S/m Conductivity of tungsten [48]

DCoFeB 0.001 m/s2 Diffusion constant of CoFeB [48]

DW 0.0002 m/s2 Diffusion constant of tungsten [52]

λsf,W 2.5 nm Spin-flip length of tungsten [48]

λsf,CoFeB 10 nm Spin-flip length of CoFeB

λJ,CoFeB 2 nm Exchange rotation length of CoFeB

λϕ,CoFeB 4 nm Spin dephasing length of CoFeB

P 0.52 Spin polarization of CoFeB[53]

θSH 0.3 Spin Hall angle of tungsten [54]

G↑↓ 0.39 + i0.13 PS/m2 Spin mixing conductance[48]
Table 2.1: Input parameters used in the simulations.

2.2 Simulation of our focused system

This work uses a simple W/CoFeB/MgO structure to realize deterministic switching

based on the HM capping strip method, which can be readily adopted in magnetic tunnel

junctions.[48–50] The parameters utilized in the simulations are listed in Table 1. The

LLG equation is computed with a mesh size of 1 nm x 1 nm x 1 nm. For spin transport

7



calculations, the spin accumulation is computed with a mesh size of 1 nm x 1 nm x 0.1 nm.

The discussion presented herein focuses on the properties of MTJs with a diameter of 20

nm and thickness of 1 nm as these are the dimensions most likely used in real applications.
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Chapter 3 Results

3.1 Deterministic switching of our device

Figures 1(b) and 1(c) show the simulated structure. The HM capping strip has a vari-

able width of w and a thickness of d1 nm. The bottom HM layer under has a width of 50

nm and a thickness of d2 nm. Both HM layers have lengths of 50 nm along the x-direction.

Figure 2 illustrates the simulated temporal evolutions of the average magnetization com-

ponents (Mx,y,z/Ms) for w = 25 nm, d1 = 2 nm, and d2 = 3 nm. In the simulations, the

FL magnetization starts from an initial state of Mz/Ms = +1. The pulse current density

J is injected into the HM along the negative x-direction with a duration of 2 ns, which is

imposed from t = 0 to 2 ns. After 2 ns, J is turned off, and the magnetization switches

to the negative z-axis through the relaxation process. In a conventional HM/FM, there is

no additional HM capping strip. The Mz/Ms approaches 0 and My/Ms approaches +1

after the current pulse, which leads to a non-deterministic state when the current is re-

moved. However, Mz/Ms crosses over 0 and reaches a negative remnant value mr. We

define the remnant valuemr as theMz/Ms when the magnetization reaches a steady state

during the current pulse duration. After removing the current, Mz/Ms proceeds toward

Mz/Ms = −1 and causes deterministic switching.
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Figure 3.1: Magnetization switching of the FL with w = 25 nm under a write pulse of
J = 8 × 1012 A/m2 for 2 ns. The deterministic switching is realized through the HM
capping strip method.

3.2 Investigation of the mechanism behind the determin-

istic switching

We also investigate the mechanism behind the HM-capping-strip-induced determin-

istic switching. The spin accumulation distribution on the bottom HM interface is at the

heart of understanding deterministic switching. Figure 3(a) shows the magnetization tem-

poral evolution of a conventional HM/FM (w = 50 nm) during the same considered du-

ration. Figure 3(b) shows the spin accumulation components (Sx,y,z) along the y-axis on

the bottom HM interface at x = 25 nm at t = 0, where the cartesian coordinate system

is defined in Fig. 1(a). The polarized spin accumulation above the FL is directed along

the positive y-direction and contributes to a large spin torque that drags the magnetiza-

tion toward the positive y-axis. The same simulation with a larger current pushes the

magnetization to an equilibrium state withMz/Ms closer to zero andMy/Ms closer to 1.
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However, the magnetization does not switch to a negativeMz/Ms. Instead, with an HM

strip capping on the HM layer, the spin accumulation distribution on the bottom HM in-

terface varies, leading to different magnetization switching behaviors. Figure 3(c) shows

the magnetization temporal evolution of the HM/FM with an additional HM capping strip

(w = 25 nm) during the considered current duration. Figure 3(d) shows Sx,y,z along the

y-axis on the bottom HM interface at x = 25 nm at t = 0. In contrast to the conventional

HM/FM, some non-negligible negative Sz is observed near the center y position, which

is immediately above the FL. This negative Sz induces an additional negative z-direction

spin torque whenMx/Ms = 0,My/Ms = +1, andMz/Ms = 0 is reached. Therefore, a

negativemr is observed under sufficiently large J . This is the critical factor of determin-

istic switching for the proposed structure. To understand the origin of this non-negligible

Sz on the bottom HM interface, Figs. 4(a) and 4(b) show the origination from the negative

z-direction spin on the edge of the HM capping strip. By characterizing the system with

an accurate spin-flip length λsf of tungsten, the drift-diffusion spin transport solver with

a negative z spin on the edge of the HM capping strip leads to a non-negligible negative

Sz on the bottom HM interface. Further, Figs. 4(c) and 4(d) show that the spin accumula-

tion along the y-axis on the bottom HM interface has an opposing polarity when applying

the opposite direction of J . Thus, the magnetization switches from Mz/Ms = −1 to

Mz/Ms = 1 by changing the polarity of the current.

3.3 Current dependence of the switching behavior

Additional detailed information can be obtained from the time evolution ofMz/Ms

under various J . As seen in Fig. 5(a) and 5(b),Mz/Ms reaches differentmr under various

J . For J less than 7×1012Am−2,mr is positive, andMz/Ms returns to the positive z-axis

11



Figure 3.2: (a) Temporal evolution of the magnetization for a conventional HM/FM (w =
50 nm) during the current pulse. (b) The spin accumulation on the bottom HM interface
along the y-axis. (c) The temporal evolution of the magnetization for an HM/FM with
an additional HM capping strip (w = 25 nm) during the current pulse. (d) The spin
accumulation on the bottom HM interface along the y-axis.
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Figure 3.3: (a) The spin accumulation in the HM, when J is injected along the negative
x-direction. (b) The spin accumulation on the bottom interface along the y-axis in (a). (c)
The spin accumulation in the HM when J is injected along the positive x-direction. (d)
The spin accumulation on the bottom interface along the y-axis in (c).
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after the current pulse ends. As the magnitude of J increases,mr pushes toward negative

values, where the critical current density (Jc) is between 6×1012Am−2 and 8×1012Am−2.

Once J reaches 8× 1012Am−2, a large negative value formr is observed. As J increases

more,mr pushes back toward smaller negative values instead of becoming more negative.

Figure 5(c) shows theSy andSz distribution along the y-axis with an increasing J . When J

is smaller than Jc, the spin torque originates from the spin accumulation and competes with

the anisotropy field, which gives different mr values. As J reaches Jc, abrupt variations

of mr occur because the negative z-direction torque that originates from the negative Sz

dragsMz/Ms toward negative values whenMy/Ms = +1 is reached. OnceMz/Ms < 0,

the negative z-direction anisotropy field has a strong effect on the magnetization. Thus,

Mz/Ms reaches a large negativemr with almost the same absolute value. As J increases

further,mr pushes back toward smaller negative values due to the strong effect of Sy at the

HM/FM interface, just as what it used to be in the conventional HM/FM bilayer without

an HM capping strip.

Figure 5(d) summarizes mr under different currents during the pulse duration. The

mr depends strongly on the current direction and magnitude, which indicates that deter-

ministic bipolar switching can be achieved by changing the polarity of the current. Af-

ter the current pulse stops, Mz/Ms eventually relaxes toward the positive or negative

z-directions. A larger mr results in improved switching behaviors because mr prevents

the magnetization from stochastically switching under the interference of thermal fluctua-

tions. Furthermore, Fig. 5(a) indicates that a largermr induces a faster relaxation process

when the current is removed, which gives a faster operating speed for the MRAM cell.

Therefore, a larger current does not guarantee a higher switching speed. Instead, J with a

magnitude slightly larger than Jc gives the ideal results.

13



Figure 3.4: (a) The complete magnetization switching under different J , (b) the magneti-
zation switching in one nanosecond under different J , (c) spin accumulation distribution
on the bottom HM interface under different J , and (d)mr dependence on J .

3.4 Device parameters dependence on the deterministic

switching

We define mr at J = Jc as the critical mr (mrc). The Figure 6(a) summarizes the

Jc and mrc dependence on w when switching from Mz/Ms = +1 to Mz/Ms = −1 and

vice versa. The absolute values ofmrc are relatively large from w = 20 nm to w = 35 nm

but quickly reduce when w < 20 nm or w > 35 nm. The relationships are explained by

the Sy,z distribution along the y-axis at the HM bottom interface under constant current in

Fig. 6(b). The FL lies between y = 15 nm and y = 35 nm. Upon the negative z-direction

spin being out of range, the absolute values of mr decrease quickly toward zero, and the

deterministic switching no longer sustains. The Jc dependence onw is explained by the Sy

value, which is the main source of the in-plane field. Larger w results in a higher average

value of Sy under the same J . Therefore, the Jc reduces with a larger w. In conclusion, w
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Figure 3.5: (a) Jc and mrc dependence on w, (b) Sy,z distributions along the y-axis at
the HM bottom interface of different w, (c) Jc and mrc dependence on d1, and (d) Sy,z

distributions along the y-axis at the HM bottom interface of different d1.

can be designed larger to lower Jc but should not be designed too large to keep the absolute

value of mrc large enough for deterministic switching. The Figure 6(c) summarizes the

Jc and mrc dependence on d1 under the condition d1 + d2 = 5 nm when switching from

Mz/Ms = +1 to Mz/Ms = −1 and vice versa. The absolute value of mrc positively

correlates with d1. However, it quickly reduces to zero when d1 approaches zero due

to the vanishing of the negative z-direction spin. The relationships are explained by the

Sy,z distribution along the y-axis at the HM bottom interface under constant current in

Fig. 6(d). Similarly, the Jc dependence on d1 can be understood from the relative strength

of the average Sy value. With a larger d1, the negative Sz on the HM bottom interface

amplifies significantly. The combination effect of Sy and Sz then leads to the result in

Fig. 6(c).
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Chapter 4 Results

4.1 Deterministic switching of our device

Figures 1(b) and 1(c) show the simulated structure. The HM capping strip has a vari-

able width of w and a thickness of d1 nm. The bottom HM layer under has a width of 50

nm and a thickness of d2 nm. Both HM layers have lengths of 50 nm along the x-direction.

Figure 2 illustrates the simulated temporal evolutions of the average magnetization com-

ponents (Mx,y,z/Ms) for w = 25 nm, d1 = 2 nm, and d2 = 3 nm. In the simulations, the

FL magnetization starts from an initial state of Mz/Ms = +1. The pulse current density

J is injected into the HM along the negative x-direction with a duration of 2 ns, which is

imposed from t = 0 to 2 ns. After 2 ns, J is turned off, and the magnetization switches

to the negative z-axis through the relaxation process. In a conventional HM/FM, there is

no additional HM capping strip. The Mz/Ms approaches 0 and My/Ms approaches +1

after the current pulse, which leads to a non-deterministic state when the current is re-

moved. However, Mz/Ms crosses over 0 and reaches a negative remnant value mr. We

define the remnant valuemr as theMz/Ms when the magnetization reaches a steady state

during the current pulse duration. After removing the current, Mz/Ms proceeds toward

Mz/Ms = −1 and causes deterministic switching.
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Figure 4.1: Magnetization switching of the FL with w = 25 nm under a write pulse of
J = 8 × 1012 A/m2 for 2 ns. The deterministic switching is realized through the HM
capping strip method.

4.2 Investigation of the mechanism behind the determin-

istic switching

We also investigate the mechanism behind the HM-capping-strip-induced determin-

istic switching. The spin accumulation distribution on the bottom HM interface is at the

heart of understanding deterministic switching. Figure 3(a) shows the magnetization tem-

poral evolution of a conventional HM/FM (w = 50 nm) during the same considered du-

ration. Figure 3(b) shows the spin accumulation components (Sx,y,z) along the y-axis on

the bottom HM interface at x = 25 nm at t = 0, where the cartesian coordinate system

is defined in Fig. 1(a). The polarized spin accumulation above the FL is directed along

the positive y-direction and contributes to a large spin torque that drags the magnetiza-

tion toward the positive y-axis. The same simulation with a larger current pushes the

magnetization to an equilibrium state withMz/Ms closer to zero andMy/Ms closer to 1.
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However, the magnetization does not switch to a negativeMz/Ms. Instead, with an HM

strip capping on the HM layer, the spin accumulation distribution on the bottom HM in-

terface varies, leading to different magnetization switching behaviors. Figure 3(c) shows

the magnetization temporal evolution of the HM/FM with an additional HM capping strip

(w = 25 nm) during the considered current duration. Figure 3(d) shows Sx,y,z along the

y-axis on the bottom HM interface at x = 25 nm at t = 0. In contrast to the conventional

HM/FM, some non-negligible negative Sz is observed near the center y position, which

is immediately above the FL. This negative Sz induces an additional negative z-direction

spin torque whenMx/Ms = 0,My/Ms = +1, andMz/Ms = 0 is reached. Therefore, a

negativemr is observed under sufficiently large J . This is the critical factor of determin-

istic switching for the proposed structure. To understand the origin of this non-negligible

Sz on the bottom HM interface, Figs. 4(a) and 4(b) show the origination from the negative

z-direction spin on the edge of the HM capping strip. By characterizing the system with

an accurate spin-flip length λsf of tungsten, the drift-diffusion spin transport solver with

a negative z spin on the edge of the HM capping strip leads to a non-negligible negative

Sz on the bottom HM interface. Further, Figs. 4(c) and 4(d) show that the spin accumula-

tion along the y-axis on the bottom HM interface has an opposing polarity when applying

the opposite direction of J . Thus, the magnetization switches from Mz/Ms = −1 to

Mz/Ms = 1 by changing the polarity of the current.

4.3 Current dependence of the switching behavior

Additional detailed information can be obtained from the time evolution ofMz/Ms

under various J . As seen in Fig. 5(a) and 5(b),Mz/Ms reaches differentmr under various

J . For J less than 7×1012Am−2,mr is positive, andMz/Ms returns to the positive z-axis
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Figure 4.2: (a) Temporal evolution of the magnetization for a conventional HM/FM (w =
50 nm) during the current pulse. (b) The spin accumulation on the bottom HM interface
along the y-axis. (c) The temporal evolution of the magnetization for an HM/FM with
an additional HM capping strip (w = 25 nm) during the current pulse. (d) The spin
accumulation on the bottom HM interface along the y-axis.
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Figure 4.3: (a) The spin accumulation in the HM, when J is injected along the negative
x-direction. (b) The spin accumulation on the bottom interface along the y-axis in (a). (c)
The spin accumulation in the HM when J is injected along the positive x-direction. (d)
The spin accumulation on the bottom interface along the y-axis in (c).
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after the current pulse ends. As the magnitude of J increases,mr pushes toward negative

values, where the critical current density (Jc) is between 6×1012Am−2 and 8×1012Am−2.

Once J reaches 8× 1012Am−2, a large negative value formr is observed. As J increases

more,mr pushes back toward smaller negative values instead of becoming more negative.

Figure 5(c) shows theSy andSz distribution along the y-axis with an increasing J . When J

is smaller than Jc, the spin torque originates from the spin accumulation and competes with

the anisotropy field, which gives different mr values. As J reaches Jc, abrupt variations

of mr occur because the negative z-direction torque that originates from the negative Sz

dragsMz/Ms toward negative values whenMy/Ms = +1 is reached. OnceMz/Ms < 0,

the negative z-direction anisotropy field has a strong effect on the magnetization. Thus,

Mz/Ms reaches a large negativemr with almost the same absolute value. As J increases

further,mr pushes back toward smaller negative values due to the strong effect of Sy at the

HM/FM interface, just as what it used to be in the conventional HM/FM bilayer without

an HM capping strip.

Figure 5(d) summarizes mr under different currents during the pulse duration. The

mr depends strongly on the current direction and magnitude, which indicates that deter-

ministic bipolar switching can be achieved by changing the polarity of the current. Af-

ter the current pulse stops, Mz/Ms eventually relaxes toward the positive or negative

z-directions. A larger mr results in improved switching behaviors because mr prevents

the magnetization from stochastically switching under the interference of thermal fluctua-

tions. Furthermore, Fig. 5(a) indicates that a largermr induces a faster relaxation process

when the current is removed, which gives a faster operating speed for the MRAM cell.

Therefore, a larger current does not guarantee a higher switching speed. Instead, J with a

magnitude slightly larger than Jc gives the ideal results.
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Figure 4.4: (a) The complete magnetization switching under different J , (b) the magneti-
zation switching in one nanosecond under different J , (c) spin accumulation distribution
on the bottom HM interface under different J , and (d)mr dependence on J .

4.4 Device parameters dependence on the deterministic

switching

We define mr at J = Jc as the critical mr (mrc). The Figure 6(a) summarizes the

Jc and mrc dependence on w when switching from Mz/Ms = +1 to Mz/Ms = −1 and

vice versa. The absolute values ofmrc are relatively large from w = 20 nm to w = 35 nm

but quickly reduce when w < 20 nm or w > 35 nm. The relationships are explained by

the Sy,z distribution along the y-axis at the HM bottom interface under constant current in

Fig. 6(b). The FL lies between y = 15 nm and y = 35 nm. Upon the negative z-direction

spin being out of range, the absolute values of mr decrease quickly toward zero, and the

deterministic switching no longer sustains. The Jc dependence onw is explained by the Sy

value, which is the main source of the in-plane field. Larger w results in a higher average

value of Sy under the same J . Therefore, the Jc reduces with a larger w. In conclusion, w
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Figure 4.5: (a) Jc and mrc dependence on w, (b) Sy,z distributions along the y-axis at
the HM bottom interface of different w, (c) Jc and mrc dependence on d1, and (d) Sy,z

distributions along the y-axis at the HM bottom interface of different d1.

can be designed larger to lower Jc but should not be designed too large to keep the absolute

value of mrc large enough for deterministic switching. The Figure 6(c) summarizes the

Jc and mrc dependence on d1 under the condition d1 + d2 = 5 nm when switching from

Mz/Ms = +1 to Mz/Ms = −1 and vice versa. The absolute value of mrc positively

correlates with d1. However, it quickly reduces to zero when d1 approaches zero due

to the vanishing of the negative z-direction spin. The relationships are explained by the

Sy,z distribution along the y-axis at the HM bottom interface under constant current in

Fig. 6(d). Similarly, the Jc dependence on d1 can be understood from the relative strength

of the average Sy value. With a larger d1, the negative Sz on the HM bottom interface

amplifies significantly. The combination effect of Sy and Sz then leads to the result in

Fig. 6(c).
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Chapter 5 Conclusion

We investigate the switching behaviors for W/CoFeB/MgO through micromagnetic

simulations coupled with a self-consistent spin transport solver. The underlying mecha-

nism of the deterministic switching is clarified, which is well understood from the spin

accumulation distribution on the bottom HM interface along the gradient direction. A

non-negligible Sz on the bottom HM interface is crucial for bipolar switching, and the

sign ofmr determines the final magnetization state. Moreover,mrc and Jc dependence at

various device parameters are obtained and well-understood. The SOT-MRAM based on

an additional HM capping strip provides a new way to achieve magnetic memory opera-

tions. These findings could help guide the practical application of SOT-driven determin-

istic switching without external fields.
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