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A theoretical study is presented for the dynamic electrophoretic response of a charged spherical particle
in an unbounded electrolyte solution to a step change in the applied electric field. The electric double layer
surrounding the particle may have an arbitrary thickness relative to the particle radius. The transient
Stokes equations modified with the electrostatic effect which govern the fluid velocity field are linearized
by assuming that the system is only slightly distorted from equilibrium. Semianalytical results for the
transient electrophoretic mobility of the particle are obtained as a function of relevant parameters by using
the Debye-Huckel approximation. The results demonstrate that the electrophoretic mobility of a particle
with a constant relative mass density at a specified dimensionless time normalized by its steady-state
quantity decreases monotonically with a decrease in the parameter κa, where κ-1 is the Debye screening
length and a is the particle radius. For a given value of κa, a heavier particle lags behind a lighter one
in the development of the electrophoretic mobility. In the limits of κa f ∞ and κa ) 0, our results reduce
to the corresponding analytical solutions available in the literature. The electrophoretic acceleration of
the particle is a monotonic decreasing function of the time for any fixed value ofκa. In practical applications,
the effect of the relaxation time for the transient electrophoresis is negligible, regardless of the value of
κa or the relative mass density of the particle.

1. Introduction

When a charged particle suspended in an electrolyte
solution is subjected to an external electric field, the
particle begins to move. This motion is termed electro-
phoresis and has been one of the most widely applied
experimental methods for the characterization and sepa-
ration of colloidal particles. Although the basic relation-
ships involved in electrophoretic phenomena were derived
mainly for the steady state,1-11 the transient behavior of
these phenomena is perhaps as important as their steady-
state behavior insofar as an evaluation of their usefulness
or an efficient design of the relevant equipment is
concerned. When a colloidal particle moves through a
constant but nonuniform electric field, the field measured
in the frame of the particle is unsteady. In several
applications, the use of alternating electric fields has been
proposed for measurements of the electrophoretic mobility
of suspended particles.12,13 Knowledge of the dynamic

response of charged particles to a time-variant electric
field can be used to interpret experimental observations
or to develop new separation technologies.

Through the use of the “ad hoc” assumption that the
fluid in the electric double layer surrounding the particle
attains its full electroosmotic velocity instantaneously
when the constant electric field is imposed, Morrison
obtained exact solutions for the transient electrophoresis
of a dielectric sphere14 and of an arbitrarily oriented long
cylinder15 for the limit of vanishingly thin double layers
(κa f ∞, where κ-1 is the Debye screening length defined
by eq 8 and a is the particle radius). Later, Ivory16 made
a correction to Morrison’s solution for the electrophoresis
of a sphere by applying the interfacial boundary condition
derived from the integral form of the momentum equation
governing the fluid motion in the double layer, but this
model failed to predict the transient response of the
particle mobility as a function of the parameter κa.
Recently, the transient electrophoresis due to a sudden
application of a constant electric field has been analyzed
approximately for the case of a dielectric sphere with a
thin but finite double layer (say, κa > 10) by taking the
effect of the dynamic response of the electroosmotic flow
in the double layer into account.17 In that work, exact
expressions for the time-dependent electrophoretic mobil-
ity of a spherical particle with a very thick double layer
(κa f 0) were also obtained in closed forms.

In most real situations of electrophoresis of small
charged particles, the thickness of the electric double layer
can be comparable to their size and the dependence of the
dynamic response of an electrophoretic particle on κa in
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a broad range must be considered. In this paper, we present
a theoretical investigation for the transient electrophoresis
due to a sudden application of a constant electric field for
the case of a dielectric sphere with an arbitrary thickness
of its double layer. The zeta potential (or surface charge
density) of the particle is assumed to be uniform and small.
The transient response of the electrophoretic mobility of
the particle to a step change in the applied electric field
as a function of the relevant parameters such as κa is
obtained semianalytically.

2. Analysis

We consider the transient electrophoretic motion of a
charged spherical particle of radius a in an unbounded
liquid solution containing M ionic species. At the time t
) 0, the uniform electric field is imposed in the positive
z direction and maintains a constant strength E∞ through-
out the system. The origin of the spherical coordinate
system (r, θ, φ) is taken at the center of the particle and
the polar axis θ ) 0 points toward the positive z direction.
Gravitationaleffectsontheparticleare ignored.Obviously,
the problem is axially symmetric about the z axis.

Because the Reynolds number of electrokinetic flows is
small, the velocity field u of the incompressible Newtonian
fluid at time t is governed by the transient Stokes equations
modified with the electrostatic effect

Here, nm and zm are the concentration (number density)
distribution and valence, respectively, of species m, p is
the hydrodynamic pressure distribution, ψ is the elec-
trostatic potential distribution, F and η are the mass
density and viscosity, respectively, of the fluid, and e is
the elementary electric charge.

It is assumed that the magnitude of the particle velocity
is not large and hence that the electric double layer
surrounding the particle is only slightly distorted from
the equilibrium state, where there is no applied electric
field and the particle and fluid are at rest. Therefore, nm,
ψ, and p can be expressed as

where nm
(eq), ψ(eq), and p(eq) are the equilibrium distribu-

tions of the concentration of species m, the electrostatic
potential, and the pressure, respectively, and δnm, δψ,
and δp are the corresponding small deviations from the
equilibrium state. The equilibrium concentration of each
ionic species is related to the equilibrium potential by the
Boltzmann distribution.

Substituting eq 3 into eq 1, canceling their equilibrium
components, using Poisson’s equation, and neglecting the

products of the small perturbed quantities δnm and δψ,
one obtains

where ν ) η/F is the kinematic viscosity of the fluid, and
ε ) 4πε0εr, where εr is the relative permittivity of the
electrolyte solution and ε0 is the permittivity of a vacuum.

When the zeta potential ú [) ψ(eq)(r ) a)] of the particle
is small (say, |ú|e/kT e2, where k is the Boltzmann constant
and T is the absolute temperature), eq 4 can be further
linearized (correct to the first order of ú, known as the
Debye-Huckel approximation) as

where18

which is the Debye screening parameter, and σ is the
surface charge density of the particle, which is related to
ú by

Note that the perturbed potential given by eq 7 satisfies
the Laplace equation ∇2ψ0 ) 0. We have assumed that
there are no transients of any kind in the electrostatic
potential; that is, the potential is assumed to develop
immediately upon application of the external electric field
and is unaffected by the particle motion. Evidently, this
assumption is valid in most practical situations of elec-
trophoresis.

Since the flow field is axially symmetric, it is convenient
to introduce the Stokes stream function Ψ(r,θ,t) which
satisfies eq 2 and is related to the velocity components in
the spherical coordinate system by

Taking the curl of eq 5 and applying eq 10 give a fourth-
order linear partial differential equation for Ψ

where the axisymmetric Stokes operator ES
2 is given by

(18) Ding, J. M.; Keh, H. J. J. Colloid Interface Sci. 2001, 236, 180.

- F
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The initial and boundary conditions for the fluid velocity
field around the particle are

where U is the time-dependent electrophoretic velocity of
the particle to be determined. Clearly, U(t ) 0) ) 0 and

which is the steady-state particle velocity obtained by
Henry1 and

It is well understood that the steady electrophoretic
mobility given by eq 16 is a monotonic increasing function
of the electrokinetic parameter κa for a charged sphere
with a constant surface potential and is a monotonic
decreasing function of κa for a particle with a constant
surface charge density.11 Inspection of eqs 10-15 shows
that the stream function must be of the form

The Laplace transform, which is defined by an over-bar
for a function of time f(t) as

and

with i ) x-1, will be used to solve for the flow field and
particle velocity. Then, the transform of eq 11 with the
substitution of eq 18 becomes

where

The general solution of eq 20 in the form of Ψh (r,θ,s) defined
by eqs 18 and 19 can be expressed as

with the particular solution

The coefficients C1, C2, C3, and C4 in eq 22 are to be
determined from the boundary conditions given by eqs 14
and 15, with the result

With the solution of the stream function given by eqs 22-
24, the fluid velocity components can be determined using
eq 10.

The total force exerted on a charged spherical particle
undergoing electrophoresis in an electrolyte solution can
be expressed as the sum of the electric force and the
hydrodynamic drag force. The electric force acting on the
charged sphere can be represented by the integral of the
electrostatic force density over the fluid volume outside
the particle. Due to the fact that the net electric force
acting on the particle at the equilibrium state is zero, the
electric force in the Debye-Huckel approximation is given
by

where ez is the unit vector in the positive z direction.
Substituting eqs 6 and 7 into eq 25, we obtain

which is time-independent.
The transient hydrodynamic drag force acting on the

sphere is given by the general expression19

After the application of eqs 3c and 5 knowing that the
equilibrium hydrodynamic pressure is not a function of

(19) Happel, J.; Brenner, H. Low Reynolds Number Hydrodynamics;
Martinus Nijhoff: Dordrecht, The Netherlands, 1983.
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θ to get rid of the pressure term, the previous expression
becomes

The substitution of eqs 6 and 7 into eq 28 yields

The total force is equal to the rate of change of the particle
momentum with respect to time

where Fs is the mass density of the particle. Evidently,
there are two key factors that govern the transients in
this system: the first is the transient involved in the
development of the velocity profile around the particle
and the second is the transient associated with the inertial
acceleration of the particle. When t is small, the second
factor is more important, but when t is relative large, the
first factor becomes more important.

After taking the Laplace transform of eqs 26, 29, and
30 and using eqs 22-24 and 10b, we obtain the general
equation of motion of an electrophoretic sphere in response
to the application of a step-function electric field

where

and

are the dimensionless time and its Laplace-transform
variable, respectively, and

The time-dependent electrophoretic velocity U of the
dielectric sphere in response to the application of a step-
function electric field can be obtained by the numerical
inverse transform of eq 31. The result, which will be
presented in the next section, indicates that the transient
electrophoretic velocity is not only a function of the
dimensionless time T but also a function of the parameters
κa and Fs/F. In the limits of κa f ∞ and κa f 0, the inverse
transform of eq 31 can be performed analytically, and the
results reduce to the corresponding closed-form formulas

given in the literature.14,17 Note that the relaxation
(polarization) effect of the diffuse ions in the electric double
layer surrounding the particle is not included in eq 31,
and its validity demands that the diffusion time scale for
the ions across the double layer is much shorter than the
viscous time scale.

3. Results and Discussion

When a spherical dielectric particle of radius a in an
electrolyte solution is subjected to an applied electric field
of a constant strength E∞ from the time t ) 0, the transient
electrophoretic velocity U can be obtained by the numerical
inverse transform of eq 31. In Figures 1-4, this time-
dependent particle velocity normalized by its steady-state
quantity U∞ given by eq 16 is plotted versus the dimen-
sionless time νt/a2, the mass density ratio Fs/F, and the
electrokinetic parameter κa. As expected, the electro-
phoretic mobility of the particle increases monotonically
with the time from zero at t ) 0 to its steady-state

Fh ) π∫0

π [ηr4sin θ ∂
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dU
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T ) νt/a2 (32a)

S ) a2s/ν (32b)

Uh *(S) ) Uh (s)ν/a2 (33)

Figure 1. Plots of the normalized electrophoretic mobilityU/U∞
versus the dimensionless time νt/a2 with Fs/F as a parameter:
(a) κa ) 0.1; (b) κa ) 10.
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magnitude as t f ∞ for any specified value of κa and finite
value of Fs/F.

For constant values of κa and νt/a2, as shown in Figures
1, 3a, and 4, the normalized electrophoretic mobility of
the dielectric sphere is a monotonic decreasing function
of Fs/F, meaning that a heavier particle lags behind a lighter
one in the development of the electrophoretic velocity. In
the limiting case of Fs/F f ∞, the particle mobility vanishes
regardless of the values of κa and νt/a2. For fixed values
of Fs/F and νt/a2, as illustrated in Figures 2, 3, and 4a,
U/U∞ decreases monotonically with a decrease in κa,
indicating that a particle with a thicker double layer is
trailing behind the same particle with a thinner double
layer in the development of the normalized electrophoretic
mobility (although the actual mobility U/E∞ of the particle
might still increase with a decrease in κa for the case of
constant surface charge density, because the steady
mobility in this case is higher at thicker double layer).
This behavior is expected knowing that the transient

electroosmotic velocity of an electrolyte solution adjacent
to a charged solid surface relative to its steady quantity
becomes smaller when the thickness of the double layer
increases, regardless whether the surface potential or the
surface charge density is constant.20

Figures 5 and 6 show plots of the dimensionless
acceleration (a2/νU∞) dU/dt of a spherical particle under-
going transient electrophoresis versus the dimensionless
time νt/a2 with Fs/F and κa as parameters. As expected,
the acceleration is a monotonic decreasing function of the
time from a maximum at t ) 0 to zero as t f ∞ for any
fixed value of κa and finite value of Fs/F. For a given value
of κa, as exhibited in Figure 5, the dimensionless ac-
celeration first (say, as νt/a2 < 0.05) decreases with an
increase in Fs/F but later may become an increasing
function of Fs/F. For a specified value of Fs/F, as shown in
Figure 6, the dimensionless acceleration first decreases
with a decrease in κa but later may increase with a
decrease in κa. For the limiting case of κa f ∞, the
acceleration is infinite at the instant the electric field is

(20) Keh, H. J.; Tseng, H. C. J. Colloid Interface Sci. 2001, 242, 450.

Figure 2. Plots of the normalized electrophoretic mobilityU/U∞
versus the dimensionless time νt/a2 with κa as a parameter:
(a) Fs/F ) 1; (b) Fs/F ) 10.

Figure 3. Plots of the normalized electrophoretic mobilityU/U∞
versus the parameter κa: (a) νt/a2 ) 0.1; (b) Fs/F ) 2.
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imposed, and this singular result is due to the finiteel-
ectroosmotic slip velocity at the particle surface, which
drives the electrophoretic movement of the particle, evenat
the time t ) 0. For the limiting case of κa ) 0, the initial
dimensionless acceleration is a finite value equal to 9/(1
+ 2Fs/F), which can be derived from the available analytical
solution for the relevant transient electrophoretic mobil-
ity.17 As νt/a2 > 0.5, in general, the inertial acceleration
of the particle given by the right-hand side of eq 30 is
negligible and the instantaneous particle velocity could
be evaluated by simply setting the sum of the force acting
on the particle equal to zero.

As a typical example, we now consider the situation of
a neutrally buoyant spherical particle (with Fs/F ) 1) shown
in Figure 2a. The instantaneous electrophoretic mobility
of the particle reaches 95% of its terminal value in the
dimensionless time νt/a2 equal to about 1.2 and 127 for
the limiting cases of a thin double layer (κaf∞) and of a
thick double layer (κaf0), respectively (a particle of thicker
double layer tails one with a thinner double layer in the

development of the normalized mobility U/U∞), which can
also be predicted from the relevant analytical solutions,17

independent of the applied electric field and the zeta
potential of the particle. When the particle is suspended
in an aqueous solution (with ν of the order 10-6 m2/s) and
has a radius of the order 1 µm (for the case of a thin double
layer) or 0.1 µm (for the case of a thick double layer), these
relaxation responses correspond to time scales on the order
of microseconds. For a particle with a greater value of
Fs/F, the relaxation time for transient electrophoresis can
be an order of magnitude longer, but this response time
is still negligible in practical applications. Consequently,
the electrophoretic velocity of a dielectric sphere will
closely follow the Henry equation (eq 16) with the
instantaneous applied electric field.

4. Concluding Remarks

In thispaper,ananalysisof the transientelectrophoresis
of a spherical dielectric particle with a low zeta potential
suspended in an electrolyte solution with an arbitrary
value of κa in response to a step change in the applied
electric field is presented. Solving the linearized unsteady

Figure 4. Plots of the normalized electrophoretic mobilityU/U∞
versus the parameter Fs/F: (a) νt/a2 ) 0.1; (b) κa ) 1.

Figure 5. Plots of the normalized electrophoretic acceleration
(a2/νU∞)dU/dt versus the dimensionless time νt/a2 with Fs/F as
a parameter: (a) κa ) 0.1; (b) κa ) 10.
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equation of motion applicable to the system, we have
obtained semianalytical solutions for the dynamic re-

sponse of the flow field of the suspending fluid and
theelectrophoretic mobility of the particle as a function of
the relevant parameters. These results show that the
particle mobility decreases monotonically with a decrease
in the electrokinetic particle radius κa for fixed values of
the mass density ratio Fs/F and the dimensionless time
νt/a2. The acceleration of the particle decreases monotoni-
cally with the time and vanishes in the limit νt/a2 f ∞.
Our results, which provide useful insight into the actual
phenomena regarding the transient response of a charged
particle to a sudden application of a constant electric field,
indicate that the effect of the relaxation time for transient
electrophoresis in general is negligible, irrespective of the
applied electric field, the zeta potential, and the value of
κa.

It is worth repeating that the above-mentioned
semianalytical solutions are obtained on the basis
of the Debye-Huckel approximation. This means
that these results are satisfactory only when used for
low values of ψ(eq). Comparing with the numerical
results for the steady-state electrophoretic mobility
of a charged sphere in a KCl solution obtained by
O’Brien and White6 valid for an arbitrary value of
zeta potential; however, one can find that eq 16 for
the mobility of a charged sphere with a low zeta
potential in an electrolyte solution is quite accurate for
reasonably high zeta potentials (with errors less than 4%
for |ú|e/kT e2). Therefore, our results might be used
tentatively for the situation of reasonably high electric
potential. To see whether our approximate solution can
be extended to the general case with higher values of the
electric potential, a numerical solution to the unsteady
electrokinetic differential equations with no assumption
on the magnitude of electric potential, allowing the
polarization effect of the mobile ions in the double layer,
would be needed to compare it with the approximate
solution.
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Figure 6. Plots of the normalized electrophoretic acceleration
(a2/νU∞)dU/dt versus the dimensionless time νt/a2 with κa as
a parameter: (a) Fs/F ) 1; (b) Fs/F ) 10.
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