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Abstract

The steady diffusioosmotic flow of a fluid solution of an uncharged solute in the fibrous porous medium constructed

by a homogeneous array of parallel circular cylinders is analytically studied. The imposed solute concentration gradient

is constant and can be oriented arbitrarily with respect to the axes of the cylinders. The range of the interaction between

the solute molecules and the cylinder surfaces is assumed to be small relative to the radius of the cylinders and to the gap

thickness between two neighboring cylinders, but the effect of polarization of the mobile solute in the thin diffuse layer

surrounding each cylinder caused by the strong adsorption of the solute is taken into account. Through the use of a unit

cell model, the appropriate equations of conservation of mass and momentum are solved for each cell, in which a

cylinder is envisaged to be surrounded by a coaxial shell of the fluid solution. Analytical expressions for the

diffusioosmotic velocity of the bulk fluid as functions of the porosity of the ordered array of cylinders are obtained for

various cases. Comparisons of the results of the cell model with different conditions at the outer boundary of the cell are

made. In the limit of maximum porosity, these results can be interpreted as the diffusiophoretic velocity of an isolated

circular cylinder caused by the imposed solute concentration gradient.
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1. Introduction

The flow behavior of fluids in porous media is of

much fundamental and practical interest. In gen-

eral, driving forces for the fluid transport through

micropores include dynamic pressure differences

between the two ends of the pores (convection),

concentration differences of a solute between the

two bulk solutions outside the pores which do not

permit the passage of the solute or permit its

passage but exerts more resistance on it than on

the solvent molecules (osmosis), and tangential

electric fields that interact with the electric double

layer adjacent to a charged pore wall (electro-

osmosis). Problems of fluid flow induced by these

well-known driving forces were treated extensively

in the past.

Another driving force for the flow of fluid

solutions in micropores, which has commanded
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less attention, involves tangential concentration
gradients of a solute that is freely penetrable

through the pore and interacts with the pore

wall. The fluid motion associated with this me-

chanism, which is termed ‘diffusioosmosis’, has

been discussed for solutions of either ionic or

nonionic solutes near a plane wall [1�/3] and inside

a straight capillary [4�/7]. For an electrolyte

solution in contact with a charged wall, the
solute-wall interaction is electrostatic in nature.

On the other hand, in a solution of uncharged

solute, the solute molecules interact with the wall

through the van der Waals/dipole forces. For a

solution of nonionic solute with a constant con-

centration gradient 9n� along a plane wall, the

diffusioosmotic velocity outside the solute-wall

interaction layer (diffuse layer) can be expressed
as [2]

V ��
kT

h
L+K9n�: (1)

Here, L* is a positive characteristic length for the

solute-wall interaction (of order 1 nm), K is the

Gibbs adsorption length characterizing the

strength of the adsorption of the molecular solute
(K and L* are defined by Eqs. (6c) and (6d), and

K is positive if the interaction force between the

solute and the wall is attractive), h is the fluid

viscosity, k is Boltzmann’s constant, and T is the

absolute temperature. The negative sign in Eq. (1)

implies that the fluid solution flows toward the

side of low solute concentration when the solute-

wall interaction force is attractive.
The analytical solution for the diffusioosmotic

velocity of a bulk fluid solution parallel to a plane

wall given by Eq. (1) can also be applied to the

corresponding flow in straight capillaries when the

thickness of the diffuse layer adjacent to the

capillary wall is small compared with the capillary

radius. However, the capillary model of porous

media is not a realistic model for either granular or
fibrous systems, for it does not allow for the

convergence and divergence of flow channels. For

diffusioosmotic flow within beds of particles, fiber

matrices, or microporous membranes, it is usually

necessary to account for the effects of pore

geometry, tortuosity, etc. To avoid the difficulty

of the complex geometry appearing in beds of

particles, unit cell models were often employed to

predict these effects on the relative motions

between a granular bed and the bulk fluid. These

models involve the concept that a bed of identical

particles can be divided into a number of identical

cells, one particle occupying each cell at its center.

The boundary value problem for multiple particles

is thus reduced to the consideration of the

behavior of a single particle and its bounding

envelope. The most acceptable of these models

with various boundary conditions at the outer

(virtual) surface of a cell are the ‘free-surface’

model of Happel [8,9] and ‘zero-vorticity’ model of

Kuwabara [10]. In the past, the unit cell models

were used by many researchers to predict various

transport properties such as the mean sedimenta-

tion rate [11�/13] and electrophoretic mobility [14�/

21] in a suspension of charged spherical particles

as well as the electroosmotic mobility of an

electrolyte solution in a fibrous porous medium

[22�/25]. Recently, using the cell models, the

present authors derived analytical expressions for

the mean diffusiophoretic velocity of a swarm of

colloidal spheres [26], which can also apply for the

diffusioosmotic velocity within a fixed bed of

spherical particles.

In this work, the Happel and Kuwabara cell

models are used to obtain analytical expressions

for the diffusioosmotic velocity of a solution of

uncharged solute with a uniformly prescribed and

arbitrarily oriented concentration gradient within

a homogeneous array of parallel circular cylinders.

The thickness of the solute-wall interaction layers

is assumed to be small relative to the radius of

cylinders and to the gap width between two

neighboring cylinders, but the polarization effect

of the mobile solute in the thin diffuse layers

caused by the strong adsorption of the solute is

allowed. The analytical solutions in closed form

obtained with the cell models enable the diffu-

sioosmotic velocity of the bulk fluid to be pre-

dicted as functions of the porosity of the fiber

matrix for various cases. The information pro-

vided by this work may prove relevant in under-

standing the chemotactic flow of fluids and

transport of particles in physiological media.
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2. Analysis

We consider the diffusioosmosis of a fluid

solution of a nonionic solute through a uniform

array of parallel, identical, long circular cylinders

at the steady state. The solute molecules can

diffuse freely in this fibrous porous medium, so

there exists no regular osmotic flow of the solvent.

The thin diffuse layers (solute-wall interaction
layers) surrounding the cylinders can be polarized,

but they do not overlap with one another. The

uniformly imposed solute concentration gradient

9n� (which is the concentration gradient existing

in the absence of the cylinders) can be regarded as

a combination of the transversal and longitudinal

components with respect to the orientation of the

cylinders,

9n��Etex�Elez; (2)

where ex and ez are the unit vectors in the

directions perpendicular and parallel, respectively,

to the axes of the cylinders. Then, the problem can

be divided into two due to the linearity and they
will be separately solved. The total diffusioosmotic

velocity of the bulk fluid can be obtained by the

vectorial addition of the two-component results.

First, we consider the diffusioosmotic motion of

the fluid solution due to the transverse component

of the solute gradient. The bulk diffusioosmotic

velocity of the solution generated by the gradient

Etex can be written as �/Utex (which is the velocity
of the uniform flow in the bulk fluid beyond the

fibrous mat). As shown in Fig. 1, we employ a unit
cell model in which each cylinder of radius a is

surrounded by a coaxial circular cylindrical shell

of the fluid solution having an outer radius of b

such that the fluid/cell volume ratio is equal to the

porosity 1�/8 of the fiber matrix; viz., 8�/(a /b )2.

The origin of the polar coordinate system (r , f ) is

taken at the axis of the cylinder and the polar axis

f�/0 points toward the positive x direction.
Obviously, the two-dimensional problem for each

cell is symmetric about the x axis. Our objective is

to determine the bulk velocity of the solution

induced by the diffusioosmotic driving force.

The Peclet number (Ua /D0, where D0 is the

diffusion coefficient of the solute molecules in the

fluid) of this problem is assumed to be small.

Hence, the equation of continuity governing the
solute concentration distribution n(r , f ) for the

fluid solution is the Laplace equation

92n�0: (3)

The boundary condition for the solute concentra-

tion at the cylinder surface (or, more precisely, at

the outer limit of the thin polarized interfacial

layer) requires that [27�/29]

r�a:
@n

@r
��b

1

r2

@2n

@f2
; (4)

where the relaxation coefficient

b�(1�nPe)K ; (5)

with

Pe�
kT

hD0

L+Kn0; (6a)

n�(L+K2)�1g
�

0

�
g

�

y

�
exp

�
�F(y)

kT

�

�1

�
dy

�2

dy; (6b)

K�g
�

0

�
exp

�
�F(y)

kT

�
�1

�
dy; (6c)

L+�K�1g
�

0

y

�
exp

�
�F(y)

kT

�
�1

�
dy: (6d)

In Eqs. (6a), (6b), (6c) and (6d), F represents the

potential energy resulting from the interaction

Fig. 1. Geometrical sketch for the transverse diffusioosmosis of

a fluid solution around a circular cylinder in a coaxial

cylindrical cell.
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between a single solute molecule and the cylinder
surface (F is positive if the interaction force is

repulsive and negative if it is attractive), y is the

normal distance measured from the cylinder sur-

face to the fluid phase, n0 is the prescribed solute

concentration measured at the position of the axis

of the cylinder but in the absence of the cylinder,

and it has been assumed that aEt/n0�/1. The

dimensionless parameter n depends primarily on
the shape of the function F rather than on its

magnitude, and a typical value for it is 1/2. The

adsorption length K equals the ratio of the Gibbs

excess concentration of the solute in the adsorp-

tion layer to the solute concentration in the bulk

solution at equilibrium, and it can be measured

independently. There does not seem to be any

means of quantitatively determining the length L*,
other than to say that it is positive and comparable

to the size of the solute molecule. The physical

meaning of Eq. (4) is that the net tangential solute

flux along the cylinder surface must be balanced

by the normal solute flux occurred just beyond the

diffuse layer to prevent accumulation of the solute.

The relaxation coefficient b represents the ratio of

apparent surface-to-bulk diffusion coefficients
[28].

At the outer (virtual) surface of the cell, the local

solute concentration gradient is in accord with the

uniformly applied gradient Etex . Thus,

r�b:
@n

@r
�Et cos f: (7)

The solution to Eqs. (3), (4) and (7) is

n�n0�A

�
1�

b

a
�

�
1�

b

a

�
a2

r2

�
Etr cos f; (8)

where

A�
�

1�
b

a
�

�
1�

b

a

�
8
��1

and 8�(a=b)2: (9)

An alternative for the boundary condition of the

solute concentration at the virtual surface r�/b

may be taken as the distribution giving rise to the

gradient Etex in the cell when the cylinder does not

exist. In this case, Eq. (7) becomes

r�b: n�n0�Etr cos f: (10)

The solution of the governing Eq. (3) subject to the

boundary conditions Eqs. (4) and (10) is also given

by the form of Eq. (8), but with the parameter A

defined as

A�
�

1�
b

a
�

�
1�

b

a

�
8
��1

: (11)

For the special case of b /a�/1, both Eqs. (9) and
(11) give A�/1/2, and the concentration gradient

in the fluid resulting from Eq. (8) equals the

constant imposed value everywhere.

With knowledge of the solution for the solute

concentration distribution, we can now proceed to

find the flow field in a cell. The fluid surrounding

the cylinder is assumed to be incompressible and

Newtonian. Due to the low Reynolds number, the
diffusioosmotic motion of the fluid outside the

thin diffuse layer is governed by the steady two-

dimensional differential equation for creeping

flows,

92(92C)�0; (12)

where C (r , f) is the stream function related to

the r and f components of the velocity field by

vr�
1

r

@C

@f
; (13a)

vf��
@C

@r
: (13b)

The boundary condition for the fluid velocity at

the surface of the cylinder is [2,29]

r�a: vr�0; (14a)

vf��
kT

h
L+K

@n

r@f
: (14b)

The apparent slip velocity given by Eq. (14b)

results from Eq. (1) for the local diffusioosmosis
caused by the cylinder�/solute interaction energy

F(y ) and the tangential gradient @n /r@f along

the cylinder surface, which can be evaluated from

the solute concentration distribution given by Eq.

(8). On the outer boundary of the cell, the Happel

model [8,9] assumes that the radial velocity relative

to the bulk flow and the shear stress are zero; viz.,
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r�b: vr��Ut cos f; (15a)

trf�h

�
r

@

@r

�
vf

r

�
�

1

r

@vr

@f

�
�0; (15b)

where Ut is the transverse diffusioosmotic velocity

of the bulk fluid to be determined.

A solution to Eq. (12) suitable for satisfying

boundary conditions on the cylindrical surfaces is
[30]

C�
�

Cr�1�Dr ln
r

a
�Er�Fr3

�
sin f; (16)

where the constants C , D , E , and F are to be

determined from Eqs. (14a), (14b), (15a) and (15b)

using Eqs. (8), (13a) and (13b). The procedure is

straightforward, with the result

C�a2v[Ut�VA ln 8 ]; (17a)

D�2v[Ut(1�8 2)�VA(1�8 2)]; (17b)

E��v(1�8 2)[Ut�VA ln 8 ]; (17c)

F �� a�2v8 2[Ut�VA ln 8 ]; (17d)

where

V �
kT

h
L+KEt; (18a)

v� [1�8 2�(1�8 2)ln 8 ]�1: (18b)

With this solution, the components of the fluid

velocity can be calculated by using Eqs. (13a) and

(13b). Note that the characteristic velocity defined

by Eq. (18a) is identical to the diffusioosmotic

velocity of the fluid along a planar surface given
by Eq. (1).

The drag force (in the x direction) exerted by the

fluid on the cylinder per unit length is [30]

Fd�4phD: (19)

At the steady state, the net force acting on the

cylinder must vanish; viz., D�/0. With this con-

straint, Eq. (17b) yields the transverse diffusioos-

motic velocity of the bulk fluid,

Ut�VA(1�8 2)(1�8 2)�1; (20)

where A is given by Eq. (9) or Eq. (11).

If the Kuwabara model [10] for the boundary

conditions of the fluid flow at the virtual surface of

the cell, which assumes that the radial velocity

relative to the bulk flow and the vorticity are zero,

is used, Eq. (15b) is replaced by

r�b: (9�v)z�
@vf

@r
�

vf

r
�

1

r

@vr

@f
�0: (21)

With this change, the stream function C can still

be expressed in the form of Eq. (16), and the

coefficients C , D , E , and F should be determined
by boundary conditions Eqs. (14a), (14b), (15a)

and (21). The result is

C�a2v?[Ut(2�8 )�VA(1�8�2 ln 8 )]; (22a)

D�4v?[Ut�VA(1�8 )]; (22b)

E��v?[2Ut(1�8 )

�VA(1�8 2�2 ln 8 )]; (22c)

F �� a�2v?8 [Ut�VA(1�8 )]; (22d)

where

v?�(3�48�82�2 ln 8 )�1: (23)

The fact that there is no drag force exerted on the

cylinder requires D�/0, and Eq. (22b) gives the

bulk transverse diffusioosmotic velocity as

Ut�VA(1�8 ): (24)

For any combination of b /a and 8 , the Happel

model always results in a slightly higher value of
Ut than the Kuwabara model does (by a factor

(1�/8 )(1�/82)�1), which occurs because the zero-

vorticity boundary condition yields a larger energy

dissipation in the cell than that due to the drag on

the cylinder alone. Note that the Happel model

has an advantage in that it does not require an

exchange of mechanical energy between the cell

and the environment [30].
For the diffusioosmosis driven by the long-

itudinal component Elez of the solute concentra-

tion gradient, there is no polarization of the thin

diffuse layers or disturbance in the fluid velocity

and solute concentration fields caused by the

curvature of the cylinders like the above analysis

for the transverse motion. The longitudinal diffu-

sioosmotic velocity of the fluid solution is given by
Eq. (1), and the bulk fluid velocity (in the direction

opposite to Elez) through the ordered array of

cylinders can be written as

Ul�
kT

h
L+KEl: (25)
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The overall diffusioosmotic velocity of the bulk
fluid caused by an arbitrarily oriented solute

gradient is the vectorial sum of the transversal

and longitudinal contributions,

U ��(Utex�Ulez): (26)

Thus, in general, the direction of the bulk diffu-

sioosmotic flow will not be parallel to the pre-

scribed solute gradient.

3. Results and discussion

Due to the differences in the boundary condi-

tions for the solute concentration and fluid velo-

city distributions at the virtual surface r�/b of the
unit cell, four cases of the cell model can be

defined:

Case I: The Happel model with a specified

concentration gradient at the virtual surface (the

boundary conditions at r�/b are described by

Eqs. (7), (15a) and (15b));

Case II: The Happel model with a specified

concentration profile at the virtual surface (the
boundary conditions at r�/b are described by

Eqs. (10), (15a) and (15b));

Case III: The Kuwabara model with a specified

concentration gradient at the virtual surface (the

boundary conditions at r�/b are described by

Eqs. (7), (15a) and (21));

Case IV: The Kuwabara model with a specified

concentration profile at the virtual surface (the
boundary conditions at r�/b are described by

Eqs. (10), (15a) and (21)).

The analytical solutions of the concentration

and flow fields in the unit cell and the diffusioos-

motic velocity of the bulk fluid have been obtained

in the previous section for all of the four cases.

In Case I, the transverse diffusioosmotic velo-

city is given by Eq. (20) with coefficient A defined
by Eq. (9). This velocity can be expressed as

Ut�U (0)
t

�
1�

b

a

��
1�

b

a
�

�
1�

b

a

�
8
��1

(1�8 2)

� (1�8 2)�1; (27)

where

U (0)
t �

�
1�

b

a

��1 kT

h
L+KEt; (28)

which is the transverse diffusioosmotic velocity of

the bulk fluid in the limit 8�/0. Note that Eq. (28)

is also the diffusiophoretic velocity of an isolated

circular cylindrical particle with a thin but polar-

ized diffuse layer caused by the transversely

imposed solute concentration gradient [29].

In Case II, the transverse diffusioosmotic velo-

city of the bulk fluid can be evaluated by Eq. (20)
with A given by Eq. (11), and its expression

parallel to Eq. (27) for Case I is

Ut�U (0)
t

�
1�

b

a

��
1�

b

a
�

�
1�

b

a

�
8
��1

(1�8 2)

� (1�8 2)�1: (29)

In Case III, the transverse diffusioosmotic

velocity of the fluid can be obtained by the

substitution of Eq. (9) into Eq. (24), with the result

Ut�U
(0)
t

�
1�

b

a

��
1�

b

a
�

�
1�

b

a

�
8
��1

(1�8 ):

(30)

In Case IV, the transverse diffusioosmotic

velocity is given by Eq. (24) with A defined by

Eq. (11), and it can be expressed as

Ut�U (0)
t

�
1�

b

a

��
1�

b

a
�

�
1�

b

a

�
8
��1

(1�8 ):

(31)

It can be found from Eqs. (27)�/(31) that the

transverse diffusioosmotic velocity of the fluid

solution within an ordered array of identical

cylinders predicted by the cell model is quite

sensitive to the boundary conditions specified at

the virtual surface of the cell. The boundary

condition for the solute concentration at the
virtual surface r�/b determines the dependence

of the normalized diffusioosmotic velocity Ut/Ut
(0)

as a function of b /a , while the boundary condition

for the fluid velocity at r�/b controls the connec-

tion of Ut/Ut
(0) with the remainder part.

The normalized transverse diffusioosmotic ve-

locity of the bulk fluid in the fiber matrix, Ut/Ut
(0),
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as calculated from Eqs. (27)�/(31) for the four

cases of the cell model, is plotted versus the

volume fraction of the cylinders, 8 , in Figs. 2�/4

for various values of the parameter b /a . In all

cases, Ut/Ut
(0)�/1 in the limit 8�/0. The calcula-

tions are presented up to 8�/0.9, which corre-

sponds to the maximum attainable volume

fraction for a swarm of identical parallel cylinders

(triangularly ordered, [31]).

In Fig. 2, the normalized diffusioosmotic velo-

city Ut/Ut
(0) of the fluid within an array of identical

circular cylinders with b /a�/1 is plotted as a

function of 8 for the Happel cell model (Cases I

and II, which are the same with b /a�/1) and for

the Kuwabara cell model (Cases III and IV, which

are also the same with b /a�/1). It is clearly shown

that the Kuwabara model predicts a somewhat

smaller diffusioosmotic velocity than the Happel

model does.

Fig. 3(a) shows the results of the normalized

diffusioosmotic velocity Ut/Ut
(0) within the array of

circular cylinders as a function of 8 for the

limiting case of b /a�/0. It can be seen that, under

this situation, Ut/Ut
(0) is always greater than unity

(and has a maximum at some value of 8 ) for Case

I, is a monotonically decreasing function of 8 for

Cases II and IV, and is independent of 8 for Case

III. The results of Ut/Ut
(0) within the array of

cylinders as a function of 8 for the other limiting

case of b /a 0/� are plotted in Fig. 3(b). Now, Ut/

Ut
(0) is greater than unity at all values of 8 (and has

a maximum) for Case II, is a monotonically

decreasing function of 8 for Cases I and III, and

is independent of 8 for Case IV. It can be found

from Eqs. (27)�/(31) that, for the situations with b /

a �/1, the transverse diffusioosmotic velocity of

the bulk fluid predicted by Cases I and III is

Fig. 2. Plots of the normalized transverse diffusioosmotic

velocity of a fluid solution in an ordered array of identical

circular cylinders with b /a�/1 versus the volume fraction of the

cylinders for the Happel cell model (Cases I and II, Eq. (27) or

Eq. (29)) and the Kuwabara cell model (Cases III and IV, Eq.

(30) or Eq. (31)).

Fig. 3. Plots of the normalized transverse diffusioosmotic

velocity of a fluid solution in an ordered array of identical

circular cylinders versus the volume fraction of the cylinders: (a)

b /a�/0; (b) b /a 0/�. The curves with labels I, II, III, and IV

represent the cell model calculations from Eqs. (27), (29)�/(31),

respectively.
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smaller than that predicted by Cases II and IV,

respectively (as illustrated in Fig. 3(b)), which is

opposite to the outcome for the situations with b /

a B/1 (as illustrated in Fig. 3(a)).

In Fig. 4, the normalized diffusioosmotic velo-

city Ut/Ut
(0) of the fluid within the array of circular

cylinders is plotted as a function of 8 for the four

cases of the cell model with b /a as a parameter.

For a fixed value of 8 , Ut/Ut
(0) decreases mono-

tonically with an increase in b /a in Cases I and III,

but is a monotonically increasing function of b /a
in Cases II and IV. For Case I with b /a B/1 or

Case II with b /a �/1, Ut/Ut
(0) increases with an

increase in 8 in a dilute suspension, while this

normalized velocity is a monotonically decreasing

function of 8 for Case I with b /a ]/1 or for Case

II with b /a 5/1. For the special situations of Case

III with b /a�/0 and Case IV with b /a 0/�, Ut/

Ut
(0) is independent of 8 ; however, this normalized

velocity decreases monotonically with an increase

in 8 in all the other situations of Cases III and IV.

4. Concluding remarks

In this paper, the steady-state diffusioosmosis of

a fluid solution of an uncharged solute with a

uniformly imposed and arbitrarily oriented con-
centration gradient in an ordered array of identical

circular cylinders with thin but polarized inter-

facial layers is analyzed using the unit cell model

with various boundary conditions at the virtual

surface of the cell. On the basis of the assumption

of small Peclet and Reynolds numbers, the solute

concentration and fluid flow fields in the cell were

solved analytically and the diffusioosmotic velo-
city of the bulk fluid as a function of the porosity

of the array of cylinders was obtained in closed-

form expressions given by Eqs. (27)�/(31). Com-

parisons of the results of the cell model with

different conditions at the outer boundary of the

cell have also been provided.

We note that the four cases of the cell model

defined in the previous section lead to somewhat
different results for the diffusioosmotic velocity of

the fluid. The unit cell models with various

boundary conditions at the virtual surface of the

cell have also been used in the literature to study

the electrophoresis [14�/17,20] and diffusiophoresis

[26] of suspensions of colloidal spheres with thin

diffuse layers. The results of those studies indicate

that the tendency of the dependence of the
normalized particle mobility on the volume frac-

tion of the particles in Cases I and III is not correct

in comparison with the ensemble-averaged results

obtained by using the concept of statistical me-

chanics. So, the boundary condition represented

by Eq. (7) might not be as accurate as that

Fig. 4. Plots of the normalized transverse diffusioosmotic

velocity of a fluid solution in an ordered array of identical

circular cylinders versus the volume fraction of the cylinders

with b /a as a parameter: (a) Case I (Eq. (27), solid curves) and

Case II (Eq. (29), dashed curves); (b) Case III (Eq. (30), solid

curves) and Case IV (Eq. (31), dashed curves). The dashed

curves of b /a 0/� and b /a�/0 coincide with the solid curves of

b /a�/0 and b /a 0/�, respectively.

Y.K. Wei, H.J. Keh / Colloids and Surfaces A: Physicochem. Eng. Aspects 211 (2003) 175�/183182



represented by Eq. (10), probably due to the fact
that the angular component of the solute concen-

tration gradient at the virtual surface of the cell is

not specified in Eq. (7). It was also shown that the

electrophoretic and diffusiophoretic velocities pre-

dicted by Case IV of the cell model agree quite well

with those obtained from the statistical model

[32,33] and from an experimental study [34] for

dilute suspensions of particles. A possible reason
for this outcome might be the fact that the

Kuwabara boundary condition of zero vorticity

is consistent with the irrotational-flow environ-

ment generated by an electrophoretic or diffusio-

phoretic particle with a thin diffuse layer. For the

system of diffusioosmosis in a fibrous porous

medium discussed in the present work, the relevant

experimental data, which are not available yet,
would be needed to confirm the validity of each

case of the cell model at various ranges of b /a and

8 .

Eq. (28) for the limiting case of 8�/0 can be

used to express the diffusiophoretic velocity of a

single circular cylindrical particle in the direction

normal to its axis. As to the diffusiophoretic

motion of a cylinder generated by a longitudinal
solute concentration gradient, there is no distur-

bance in the solute concentration and fluid velo-

city fields caused by the curvature of the cylinder.

Thus, the longitudinal velocity of the cylinder is

given by Eq. (25). For the diffusiophoresis of a

circular cylindrical particle oriented arbitrarily

with respect to the imposed concentration gradi-

ent, the particle velocity is the vectorial sum of its
transversal and longitudinal contributions. For an

ensemble of circular cylinders with random orien-

tation, the average diffusiophoretic velocity

(aligned with the direction of the applied concen-

tration gradient 9n�) can be obtained by two

thirds of the value given by Eq. (28) (with Et�/

j9n�j) plus one third of the value given by Eq. (25)

(with Et�/j9n�j) [29].
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