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Abstract

The diffusiophoretic and electrophoretic motions of a dielectric spherical particle in an electrolyte solution located between tw
parallel plane walls are studied theoretically. The imposed electrolyte concentration gradient or electric field is constant and para
two plates, which may be either impermeable to the ions/charges or prescribed with the far-field concentration/potential distribu
electrical double layer at the particle surface is assumed to be thin relative to the particle radius and to the particle–wall gap width
polarization effect of the mobile ions in the diffuse layer is incorporated. The presence of the neighboring walls causes two basic
the particle velocity: first, the local electrolyte concentration gradient or electric field on the particle surface is enhanced or reduc
walls, thereby speeding up or slowing down the particle; second, the walls increase the viscous retardation of the moving particle. T
conservative equations, the general solution is constructed from the fundamental solutions in both rectangular and spherical coord
boundary conditions are enforced first at the plane walls by the Fourier transforms and then on the particle surface by a collocation
Numerical results for the diffusiophoretic and electrophoretic velocities of the particle relative to those of a particle under identical cns
in an unbounded solution are presented for various values of the relevant parameters including the relative separation distances
particle and the two plates. For the special case of motions of a spherical particle parallel to a single plate and in the central plan
the collocation results agree well with the approximate analytical solutions obtained by using a method of reflections. The prese
lateral walls can reduce or enhance the particle velocity, depending on the properties of the particle–solution system, the relativ
wall separation distances, and the electrochemical boundary condition at the walls. In general, the boundary effects on diffusioph
electrophoresis are quite significant and complicated, and they no longer vary monotonically with the separation distances for some
 2005 Elsevier Inc. All rights reserved.
Keywords:Diffusiophoresis; Electrophoresis; Boundary effects; Thin but polarized double layer
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1. Introduction

The transport behavior of small particles in a continu
medium at low Reynolds number is of much fundamen
and practical interest. In general, driving forces for motio
of colloidal particles include concentration gradients of
particles themselves (diffusion), bulk velocities of the d
perse medium (convection), and gravitational fields (s
mentation). Problems of the colloidal transport induced
these well-known driving forces have been treated ex
* Corresponding author.
E-mail address:huan@ntu.edu.tw(H.J. Keh).
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sively in the past. Another category of driving forces
the motions of colloidal particles involves a nonuniform i
posed field (such as electric potential, temperature, or so
concentration) that interacts with the surface of each p
cle. The particle motions associated with this mechan
known as “phoretic motions,” have also received a consi
able amount of attention recently[1–4].

Perhaps the most familiar example of phoretic motio
electrophoresis, which results from the interaction betw
an external electric field and the electric double layer s

rounding a charged particle and is widely used for parti-
cle characterization and separation in a variety of colloidal
and biological systems[5–7]. The electrophoretic veloc-
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ity U(0) of a single dielectric particle suspended in an
bounded electrolyte solution is simply related to the u
formly applied electric fieldE∞ by the Smoluchowski equa
tion [8–10],

(1)U(0) = εζ

4πη
E∞.

Here,ε/4π is the fluid permittivity,η is the fluid viscosity,
andζ is the zeta potential of the particle surface.

Another example of phoretic motions is diffusiopho
sis, which is the migration of a particle in response to
macroscopic concentration gradient of a solute and ca
applied to certain latex-particle coating processes[1,11].
The particle moves toward or away from a region of hig
solute concentration, depending on long-range interact
between the solute molecules and the particle. In an
bounded solution of a symmetric electrolyte with a cons
concentration gradient∇n∞, the diffusiophoretic velocity o
a charged particle is[12,13]

(2)U(0) = εζ

4πη

kT

Ze

∇n∞

n∞(0)
(α + ζ̄−1 ln coshζ̄ ),

with the dimensionless parameters

(3)α = D2 − D1

D2 + D1
,

(4)ζ̄ = Zeζ

4kT
.

Here, n∞(0) is the macroscopic electrolyte concentrat
measured at the particle center0 in the absence of the part
cle,D1 andD2 are the diffusion coefficients of the anion a
cation, respectively,Z is the absolute value of the valenc
of the ions,e is the charge of a proton,k is the Boltzmann
constant, andT is the absolute temperature. For the spe
caseD2 = D1 or α = 0, Eq. (2) predicts that the particl
movement (due to chemiphoresis only) is in the direction
increasing electrolyte concentration regardless of the sig
ζ and the particle velocity is a monotonic increasing fu
tion of the magnitude ofζ .

Equations(1) and (2)indicate that the electrophoretic an
diffusiophoretic velocities of a dielectric particle having
uniform zeta potential on its surface are independent of
particle size and shape (and there is no rotational mo
of the particle). However, their validity is based on the
sumptions that the local radii of curvature of the particle
much larger than the thickness of the electric double la
at the particle surface and that the effect of polarization
laxation effect) of the diffuse ions in the double layer d
to nonuniform “osmotic” flow is negligible. In fact, impor
tant advances were made in the past in the evaluation o
phoretic velocities of colloidal particles relaxing these
sumptions.
Taking the double-layer distortion from equilibrium as
a perturbation, O’Brien and White[14] obtained a numeri-
cal calculation for the electrophoretic velocity of a dielectric
nd Interface Science 286 (2005) 774–791 775

sphere of radiusa in a KCl solution which was applicable t
arbitrary values ofζ andκa, whereκ−1 is the Debye screen
ing length equal to(8πZ2e2n∞/εkT )1/2. On the other hand
Dukhin and Derjaguin[1] obtained an analytical expre
sion for the electrophoretic mobility of a spherical parti
surrounded by a thin but polarized double layer in the s
tion of a symmetric electrolyte. Later, O’Brien[15] general-
ized this analysis to the case of electrophoretic motion
charged sphere in the solution containing an arbitrary c
bination of electrolytes. The essence of this thin-layer po
ization approach is that a thin diffuse layer can still transp
a significant amount of electrolyte ions in such a way a
affect the ionic transport outside the diffuse layer. The re
for the electrophoretic velocity of a dielectric sphere w
a thin but polarized double layer in a symmetric electrol
solution can be expressed as[16]

(5)U0 = εζ

12πη
E∞[

2+ c1 + c2 + (c1 − c2)ζ̄
−1 ln coshζ̄

]
,

where coefficientsc1 andc2 are defined by Eqs.(A.6a) and
(A.6b). A comparison of Eq.(5) with the numerical result
for the KCl solution[14] shows that the thin-layer polariza
tion model is quite good over a wide range of zeta poten
whenκa > 20. If |ζ | is small andκa is large, the interac
tion between the diffuse counterions and the particle sur
is weak and the polarization of the double layer is also we
In the limit of

(6)(κa)−1 exp
(
2|ζ̄ |) → 0,

c1 = c2 = 1/2 and Eq.(5) reduces to the Smoluchows
equation(1). In general, the electrophoretic velocity giv
by Eq.(5) is not a monotonic function of̄ζ for a finite value
of κa, unlike the prediction of Eq.(1).

In contrast, Prieve and Roman[17] obtained a numeri
cal solution for the diffusiophoretic velocity over a bro
range of ζ̄ and κa for a charged sphere in concentrati
gradients of symmetric electrolytes (KCl or NaCl) using
method of O’Brien and White[14]. On the other hand, ana
lytical expressions for the velocity of a dielectric sphere w
a thin but polarized double layer undergoing diffusiopho
sis in electrolyte solutions have also been derived[4,18]. The
result for this diffusiophoretic velocity in a symmetric ele
trolyte solution is

U0 = εζ

12πη

kT

Ze

∇n∞

n∞(0)

{
c′

1 − c′
2 + α(2+ c1 + c2)

(7)+ [
2+ c′

1 + c′
2 + α(c1 − c2)

]
ζ̄−1 lncoshζ̄

}
,

where coefficientsc′
1 andc′

2 are defined by Eqs.(A.6c) and
(A.6d). Whenκa > 20, the agreement between Eq.(7) and
the numerical solution[17] is excellent for all reasonabl
values of the zeta potential. In the limiting situation given
Eq. (6), the effect of double-layer polarization disappea
c1 = c2 = c′

1 = c′
2 = 1/2, and Eq.(7) reduces to Eq.(2).
Even for the case ofD2 = D1, the particle velocity given
by Eq.(7) for a finite value ofκa may not be a monotonic
function of the magnitude of̄ζ and its direction can reverse
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(toward lower electrolyte concentration) when|ζ̄ | becomes
large.

It could be found from Eqs.(5) and (7)that the effect of
polarization of the diffuse layer is to decrease the particle
locity. The reason for this outcome is that the transport of
diffuse ions within the double layer reduces the local e
trolyte gradient or electric field along the particle surfa
Numerical calculations of Eqs.(5) and (7)show that, even
whenκa is as large as 300, the effect of ionic transport
side the diffuse layer cannot be ignored if|ζ | equals severa
kT /e.

In practical applications of diffusiophoresis and ele
trophoresis, such as transport in channels of microfluidic
vices[19–22], particles are not isolated and the surround
fluid is externally bounded by solid walls. Thus, it is im
portant to determine if the presence of neighboring bou
aries significantly affects the movement of particles. In
limiting case where Eqs.(1) and (2)are applicable, the nor
malized velocity field of the immense fluid that is dragg
by a particle during diffusiophoresis is the same as for
electrophoresis of the particle[2]; thus, the boundary effect
on electrophoresis under the situation of an infinitesim
thin double layer [satisfying Eq.(6)], which have been stud
ied extensively in the past[23–29], can be taken to interpre
those in diffusiophoresis.

When the polarization effect of diffuse ions in the dou
layer surrounding the particle is considered, the boundar
fects on diffusiophoresis can be quite different from those
electrophoresis. Through the use of a boundary colloca
technique, the diffusiophoretic and electrophoretic moti
of a colloidal sphere with a thin but polarized diffuse lay
perpendicular to a plane wall were examined[30]. The wall
effect on each transport mechanism was found to be a c
plicated function of the properties of the particle and io
In this work we present a theoretical investigation of
diffusiophoretic and electrophoretic motions of a charg
sphere with a thin but polarized double layer parallel t
single plane wall and to two plane walls at an arbitrary po
tion between them. The quasi-steady equations of cons
tion applicable to each system are solved by using both
boundary collocation technique numerically and a met
of reflections analytically. The exact numerical solutions
the particle velocities are obtained with good converge
for various cases and agree well with the approximate
lytical solutions. In the limiting case of Eq.(6), our results
are in excellent agreement with those available in the lit
ture for electrophoresis[23,24].

2. Analysis for diffusiophoresis

In this section we consider the quasi-steady diffus
phoretic motion of a dielectric spherical particle of rad

a in a solution of a symmetrically charged electrolyte par-
allel to two infinite plane walls whose distances from the
center of the particle areb andc, as shown inFig. 1. Here
nd Interface Science 286 (2005) 774–791

-

-

Fig. 1. Geometrical sketch for the diffusiophoresis of a spherical par
parallel to two plane walls at an arbitrary position between them.

(x, y, z), (ρ,φ, z), and(r, θ,φ) denote the rectangular, ci
cular cylindrical, and spherical coordinate systems, res
tively, and the origin of coordinates is chosen at the part
center. A linear electrolyte concentration fieldn∞(x) with a
uniform gradient in thex direction is imposed in the su
rounding fluid far away from the particle. The particle
charged uniformly on the surface, and the thickness of
electrical double layer is assumed to be small in comp
son with the radius of the particle and the spacing betw
the particle and each wall. Hence, the fluid phase can b
vided into two regions: an “inner” region defined as the t
double layer adjacent to each solid surface and an “ou
region defined as the remainder of the fluid, which is e
trically neutral. The objective is to determine the correct
to Eq.(7) for the particle velocity due to the presence of
plane walls.

Before the diffusiophoretic velocity of the particle is d
termined, the electrochemical potential and velocity field
the fluid phase need to be found.

2.1. Electrochemical potential distribution

The Peclet number of the system is assumed to be s
Hence, the equation of conservation of each ionic specie
the outer region of the fluid solution is the Laplace equa
[4,15],

(8)∇2µm = 0, m = 1,2.

In Eq. (8), µm is the electrochemical potential energy
ionic speciesm, defined by

(9)µm = µ0
m + kT lnnm + zmeΦ,

whereµ0
m is a constant,nm andzm are the concentration an

valence, respectively, of typem ions, andΦ is the electric
potential.m equal to 1 and 2 refers to the anion and cati
respectively, so−z1 = z2 = Z > 0. Note that, in the oute
region,n1 = n2 = n, and bothn andΦ also satisfy Laplace’s

equation.

Equation(8) satisfies the boundary condition at the parti-
cle “surface” (outer limit of the thin double layer) obtained
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by solving for the electrochemical potentials in the inner
gion and using a matching procedure to ensure a contin
solution in the whole fluid phase[4,15],

(10)

r = a+: er · ∇µm = −
2∑

i=1

βmiI : ∇s∇sµi, m = 1,2,

where the relaxation coefficients are

β11 = 1

κ

[
4

(
1+ 3f1

Z2

)
exp(ζ̄ )sinhζ̄

(11a)− 12f1

Z2
(ζ̄ + ln coshζ̄ )

]
,

(11b)β12 = − 1

κ

(
12f1

Z2

)
ln coshζ̄ ,

(11c)β21 = − 1

κ

(
12f2

Z2

)
ln coshζ̄ ,

β22 = 1

κ

[
−4

(
1+ 3f2

Z2

)
exp(−ζ̄ )sinhζ̄

(11d)+ 12f2

Z2
(ζ̄ − ln coshζ̄ )

]
.

In the above equation,fm = εk2T 2/6πηe2Dm, ζ̄ was de-
fined by Eq.(4), er is the unit vector in the direction ofr ,
I is the unit dyadic,∇s = (I − erer ) · ∇ denotes the gradi
ent operator along the particle surface, andU and� are the
instantaneous translational and angular velocities, res
tively, of the particle to be determined. To obtain Eqs.(10)
and (11), it was assumed that the concentration of each io
species within the electric double layer is related to the e
tric potential energy by a Boltzmann distribution. Eviden
in the limit of Eq.(6), β11 = β12 = β21 = β22 = 0.

The ionic electrochemical potentials far away from
particle approach the undisturbed values. Thus,

(12)z = c,−b: ∂µm

∂z
= 0,

(13)ρ → ∞: µm → µm∞,

where

(14)µm∞ = µ0
m + kT

[
1− (−1)mα

]
lnn∞

andα was defined by Eq.(3). The second term in the brac
ets of Eq.(14) represents the contribution from the mac
scopic electric field induced by the difference of ion diff
sion rates[13,31]. Note that the boundary conditions give
by Eq.(12) apply for the case of two impermeable and no
conducting plane walls (which can appear in practice) w
a negligible relaxation effect in their thin interfacial diffu

layers. For the case of diffusiophoretic motion of a parti-
cle parallel to two plane walls prescribed with linear elec-
trochemical potential profiles consistent with the far-field
nd Interface Science 286 (2005) 774–791 777
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distributions (which is less practical), Eq.(12) should be re-
placed by

(15)z = c,−b: µm = µm∞.

Since the governing equation and boundary conditi
are linear, one can express the electrochemical potentia
tributionµm, which is symmetric with respect toy and anti-
symmetric with respect tox, as the superposition

(16)µm = µmw + µmp, m = 1,2.

Here,µmw is a double Fourier integral solution of Eq.(8) in
rectangular coordinates that represents the disturbance
duced by the plane walls plus the undisturbed field an
given by

µmw = µm∞ +
∞∫

0

∞∫
0

(Xmeκz + Yme−κz)

(17)× sin(α̂x)cos(β̂y)dα̂ dβ̂,

whereXm andYm are unknown functions of separation va
ablesα̂ andβ̂, andκ = (α̂2+ β̂2)1/2. The second term on th
right-hand side of Eq.(16), µmp, is a solution of Eq.(8) in
spherical coordinates representing the disturbance gene
by the spherical particle and is given by an infinite serie
harmonics,

(18)µmp =
∞∑

n=1

Rmnr
−n−1P 1

n (µ)cosφ,

whereP 1
n is the associated Legendre function of ordern and

degree one,µ is used to denote cosθ for brevity, andRmn are
unknown constants. Note that a solution forµm of the form
given by Eqs.(16)–(18)immediately satisfies the bounda
condition at infinity in Eq.(13).

Substituting the electrochemical potential distributionµm

given by Eqs.(16)–(18) into the boundary conditions i
Eq. (12) or (15) and applying the Fourier sine and cosi
transforms on the variablesx andy, respectively, lead to
solution for the functionsXm and Ym in terms of the co-
efficientsRmn. After the substitution of this solution int
Eq. (17) and utilization of the integral representations of
modified Bessel functions of the second kind, the distri
tion µm can be expressed as

(19)µm = µm∞ +
∞∑

n=1

Rmnδ
(1)
n (r,µ)cosφ, m = 1,2,

and the functionδ(1)
n (r,µ) is defined by Eq.(B.1) in Appen-

dix B.
Applying the boundary condition given by Eq.(10) to

Eq.(19)yields

∞∑ 2∑
RmnR

′
m(µ) = kT

[(
1− 2β11

a

)
(1+ α)
n=1m=1

(20a)− 2β12

a
(1− α)

]
(1− µ2)1/2,
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∞∑
n=1

2∑
m=1

RmnR
′′
m(µ) = kT

[(
1− 2β22

a

)
(1− α)

(20b)− 2β21

a
(1+ α)

]
(1− µ2)1/2,

where

(21a)R′
1(µ) = (2β11 − a)δ(2)

n (a,µ) + aβ11δ
(4)
n (a,µ),

(21b)R′
2(µ) = β12

[
2δ(2)

n (a,µ) + aδ(4)
n (a,µ)

]
,

(21c)R′′
1(µ) = β21

[
2δ(2)

n (a,µ) + aδ(4)
n (a,µ)

]
,

(21d)R′′
2(µ) = (2β22 − a)δ(2)

n (a,µ) + aβ22δ
(4)
n (a,µ),

and the definitions of functionsδ(2)
n (r,µ) andδ

(4)
n (r,µ) are

given by Eqs.(B.2) and (B.4). Note that the dependence ofφ

factors out in Eq.(20) and the definite integrals inδ(1)
n , δ

(2)
n ,

andδ
(4)
n must be performed numerically.

To satisfy the condition in Eq.(20) exactly along the
entire surface of the particle would require the solution
the entire infinite array of unknown constantsRmn. How-
ever, the collocation method[30,32] enforces the boundar
condition at a finite number of discrete points on the h
circular generating arc of the sphere (fromθ = 0 to θ = π )
and truncates the infinite series in Eq.(19) into finite ones.
If the spherical boundary is approximated by satisfying
condition of Eq.(10) at M discrete points on its genera
ing arc, the infinite series in Eq.(19) is truncated afterM
terms, resulting in a system of 2M simultaneous linear al
gebraic equations in the truncated form of Eq.(20). This
matrix equation can be numerically solved to yield the 2M

unknown constantsRmn required in the truncated form o
Eq. (19) for the electrochemical potential distribution. T
accuracy of the boundary-collocation/truncation techni
can be improved to any degree by taking a sufficiently la
value ofM . Naturally, asM → ∞, the truncation error van
ishes and the overall accuracy of the solution depends
on the numerical integration required in evaluating the m
trix elements.

2.2. Fluid velocity distribution

With knowledge of the solution for the ionic electr
chemical potential distribution on the particle surface wh
drives the migration, we can now proceed to find the fl
field. The fluid solution is assumed to be incompressible
Newtonian. Owing to the low Reynolds number, the flu
motion in the outer region caused by the diffusiophore
motion of the particle is governed by the Stokes equatio

(22a)η∇2v − ∇p = 0,

(22b)∇ · v = 0,
wherev is the velocity field for the fluid flow andp is the
dynamic pressure distribution.
nd Interface Science 286 (2005) 774–791

The boundary conditions for the fluid velocity at the p
ticle surface[4,15], on the plane walls, and far removed fro
the particle are

(23)r = a+: v = vs ≡ U + � × r + v(s),

(24)z = c,−b: v = 0,

(25)ρ → ∞: v = 0.

In Eq.(23), the apparent slip velocity due to diffusioosmo
effect is

(26)v(s) =
2∑

m=1

Wm∇sµm,

where

(27)Wm = ε

2πη

kT

(Ze)2

[−(−1)mζ̄ + ln coshζ̄
]
,

andU = Uex and� = Ωey are the translational and angul
velocities of the particle undergoing diffusiophoresis, to
determined. For the asymmetric problem,b �= c, the assump
tion that the sphere would migrate in a direction paralle
the solute concentration gradient is justified in the abse
of fluid inertia. Note that the possible osmotic flow caus
by the plane walls is ignored for simplicity.

A fundamental solution to Eq.(22) which satisfies
Eqs.(24) and (25)can be obtained in a way similar to th
for Eq.(19), with the form

(28)v = vxex + vyey + vzez,

where

(29a)

vx =
∞∑

n=1

[
An(A

′
n + α′

n) + Bn(B
′
n + β ′

n) + Cn(C
′
n + γ ′

n)
]
,

(29b)

vy =
∞∑

n=1

[
An(A

′′
n + α′′

n) + Bn(B
′′
n + β ′′

n) + Cn(C
′′
n + γ ′′

n )
]
,

(29c)

vz =
∞∑

n=1

[
An(A

′′′
n + α′′′

n ) + Bn(B
′′′
n + β ′′′

n ) + Cn(C
′′′
n + γ ′′′

n )
]
.

Here, the primedAn, Bn, Cn, αn, βn, andγn are functions
of position involving associated Legendre functions ofµ

or cosθ defined by Eq. (2.6) and in the form of integr
tion (which need to be performed numerically) defined
Eq. (C.1) of Ganatos et al.[32], andAn, Bn, andCn are un-
known constants.
The boundary condition that remains to be satisfied is that
on the particle surface. Substituting Eqs.(19) and (28)into
Eq.(23), one obtains
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∞∑
n=1

[
An(A

′
n + α′

n) + Bn(B
′
n + β ′

n) + Cn(C
′
n + γ ′

n)
]
r=a

= U + aΩµ

(30a)−
2∑

m=1

Wm

[
H1m(µ)µcos2 φ + H2m(µ)sin2 φ

]
,

∞∑
n=1

[
An(A

′′
n + α′′

n) + Bn(B
′′
n + β ′′

n) + Cn(C
′′
n + γ ′′

n )
]
r=a

(30b)= −
2∑

m=1

Wm

[
H1m(µ)µ − H2m(µ)

]
sinφ cosφ,

∞∑
n=1

[
An(A

′′′
n + α′′′

n ) + Bn(B
′′′
n + β ′′′

n ) + Cn(C
′′′
n + γ ′′′

n )
]
r=a

= −aΩ(1− µ2)1/2 cosφ

(30c)+
2∑

m=1

WmH1m(µ)(1− µ2)1/2 cosφ,

where

H1m(µ) = kT
[
1− (−1)mα

] |∇n∞|
n∞(0)

µ

(31a)+ 1

a

∞∑
n=1

Rmnδ
(3)
n (a,µ),

H2m(µ) = kT
[
1− (−1)mα

] |∇n∞|
n∞(0)

(31b)+ 1

a(1− µ2)1/2

∞∑
n=1

Rmnδ
(1)
n (a,µ),

and the functionδ(3)
n (r,µ) is defined by Eq.(B.3). The first

2M coefficientsRmn have been determined through the p
cedure given in the previous subsection.

Careful examination of Eqs.(30a)–(30c)shows that the
solution of the coefficient matrix generated is independ
of theφ coordinate of the boundary points on the surface
the spherer = a. Thus, these relations can be satisfied
utilizing the collocation technique presented for the solut
of the electrochemical potential field. At the particle surfa
Eqs.(30a)–(30c)are applied atN discrete points (values o
θ between 0 andπ ) and the infinite series in Eq.(29) are
truncated afterN terms. This generates a set of 3N linear al-
gebraic equations for the 3N unknown coefficientsAn, Bn,
andCn. The fluid velocity field is completely obtained on
these coefficients are solved for a sufficiently large va
of N .

2.3. Derivation of the particle velocities

The drag force and torque exerted by the fluid on

spherical particle can be determined from[32]

(32a)F = −8πηA1ex,
nd Interface Science 286 (2005) 774–791 779

(32b)T = −8πηC1ey.

These expressions show that only the lowest-order co
cientsA1 andC1 in Eq.(29)contribute to the hydrodynami
force and couple acting on the particle.

Because the particle is freely suspended in the surro
ing fluid, the net force and torque exerted on the part
must vanish. Applying this constraint to Eq.(32), one has

(33)A1 = C1 = 0.

To determine the translational and angular velocitiesU and
Ω of the particle, Eq.(33) and the 3N algebraic equation
resulting from Eq.(30)are to be solved simultaneously.

3. Results and discussion for diffusiophoresis

The solution for the diffusiophoretic motion of a charg
spherical particle parallel to two plane walls at an arbitr
position between them, obtained using the boundary co
cation method described in the previous section, is prese
in this section. The system of linear algebraic equation
be solved for the coefficientsR1n and R2n is constructed
from Eq. (20), while that for An, Bn, and Cn is derived
from Eq.(30). All the numerical integrations to evaluate t
primedαn, βn, andγn as well asδ(i)

n functions were done b
80-point Gauss–Laguerre quadrature.

When the points along the semicircular generating ar
the sphere (with a constant value ofφ) where the boundar
conditions are to be exactly satisfied are being specified
first points that should be chosen areθ = 0 andπ , since these
points define the projected area of the particle normal to
direction of motion and control the gaps between the par
and the neighboring plates. In addition, the pointθ = π/2 is
also important. However, an examination of the system
linear algebraic equations(20) and (30)shows that the ma
trix equations become singular if these points are used
overcome this difficulty, these points are replaced by clos
adjacent points, i.e.,θ = δ, π/2 − δ, π/2 + δ, andπ − δ

[30,32]. Additional points along the boundary are selec
as mirror-image pairs about the planeθ = π/2 to divide
the two quarter-circular arcs of the particle into equal s
ments. The optimum value ofδ in this work is found to be
0.1◦, for which the numerical results of the particle velo
ties converge satisfactorily. In selecting the boundary po
any value ofφ may be used except forφ = 0, π/2, andπ

since the matrix equation(30) is singular for these values.

3.1. Motion parallel to a single plane wall

The boundary effects on diffusiophoresis are complica
functions of the properties of the particle and suspending
lution, the electrochemical condition of the boundary, a

the particle–boundary separation distance. Some typical col-
location solutions for the translational and rotational ve-
locities of a dielectric sphere undergoing diffusiophoresis
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Table 1
Normalized translational and rotational velocities of a spherical particle
dergoing diffusiophoresis parallel to a single impermeable and noncon
ing plane wall computed from the exact boundary-collocation solution
the asymptotic method-of-reflection solution for the caseZ = 1, f1 = 0.2,
κa = 100, andζe/kT = 2

a/b U/U0 −aΩ/U0

Exact
solution

Asymptotic
solution

Exact
solution

Asymptotic
solution

α = 0
0.1 0.99992 0.99992 0.00002 0.00002
0.2 0.99934 0.99935 0.00030 0.00030
0.3 0.99788 0.99798 0.00154 0.00152
0.4 0.99521 0.99578 0.00494 0.00480
0.5 0.99103 0.99316 0.01242 0.01172
0.6 0.98490 0.99115 0.02702 0.02430
0.7 0.97580 0.99152 0.05412 0.04502
0.8 0.96060 0.99694 0.10518 0.07680
0.9 0.92322 1.01113 0.21643 0.12302
0.95 0.85475 0.34835
0.99 0.2493 0.7542

α = −0.2
0.1 0.99969 0.99969 0.00002 0.00002
0.2 0.99755 0.99758 0.00030 0.00030
0.3 0.99169 0.99200 0.00156 0.00152
0.4 0.97982 0.98159 0.00510 0.00480
0.5 0.95838 0.96544 0.01323 0.01172
0.6 0.92042 0.94326 0.03018 0.02430
0.7 0.84954 0.91547 0.06473 0.04502
0.8 0.69592 0.88342 0.13897 0.07680
0.9 0.21212 0.84950 0.33712 0.12302
0.95 −0.75566 0.63714
0.99 −8.8227 2.2435

parallel to a plane wall (withc → ∞) for different val-
ues of the parametersα anda/b are presented inTables 1
and 2for the cases of an impermeable and nonconduc
wall and a wall with the imposed far-field electrolyte co
centration gradient, respectively. The corresponding velo
for the diffusiophoretic motion of the particle in an in
nite fluid, U0, given by Eq.(7), is used to normalize th
boundary-corrected values. All of the results obtained
der the collocation scheme converge satisfactorily to at l
the significant figures shown in the tables. The accuracy
convergence behavior of the truncation technique are pr
pally a function of the ratioa/b. For the difficult case with
a/b = 0.99, the numbers of collocation pointsM = 40 and
N = 40 are sufficiently large to achieve this convergen
For some cases, the particle will reverse the direction of
fusiophoresis and the magnitude of its normalized velo
can be dramatically varied when the separation distanc
increased. Note that the situations associated withα = 0 and
α = −0.2 (takingZ = 1 andf1 = 0.2) in the tables are clos
to the particle migration in the aqueous solutions of KCl a
NaCl, respectively.

Through the use of spherical bipolar coordinates, K

and Chen[24] obtained numerical solutions for the nor-
malized translational and rotational velocities of a dielectric
sphere surrounded by an infinitesimally thin electrical dou-
nd Interface Science 286 (2005) 774–791

Table 2
Normalized translational and rotational velocities of a spherical particle
dergoing diffusiophoresis parallel to a single plane wall prescribed
the far-field electrolyte concentration profile computed from the e
boundary-collocation solution and the asymptotic method-of-reflection
lution for the caseZ = 1, f1 = 0.2, κa = 100, andζe/kT = 2

a/b U/U0 −aΩ/U0

Exact
solution

Asymptotic
solution

Exact
solution

Asymptotic
solution

α = 0
0.1 0.99984 0.99984 0.00002 0.00002
0.2 0.99872 0.99873 0.00030 0.00030
0.3 0.99573 0.99588 0.00154 0.00152
0.4 0.99000 0.99078 0.00496 0.00480
0.5 0.98046 0.98340 0.01252 0.01172
0.6 0.96550 0.97430 0.02736 0.02430
0.7 0.94215 0.96475 0.05498 0.04502
0.8 0.90370 0.95699 0.10651 0.07680
0.9 0.82932 0.95425 0.21260 0.12302
0.95 0.75204 0.32114
0.99 0.5976 0.5205

α = −0.2
0.1 1.00006 1.00006 0.00002 0.00002
0.2 1.00050 1.00050 0.00030 0.00030
0.3 1.00188 1.00186 0.00152 0.00152
0.4 1.00511 1.00497 0.00480 0.00480
0.5 1.01179 1.01112 0.01174 0.01172
0.6 1.02480 1.02218 0.02447 0.02430
0.7 1.04930 1.04080 0.04620 0.04502
0.8 1.09390 1.07050 0.08474 0.07680
0.9 1.16276 1.11587 0.18095 0.12302
0.95 1.17697 0.33196
0.99 1.0353 0.7646

ble layer undergoing electrophoresis parallel to a nonc
ducting plane wall. These solutions, which can apply to
case of diffusiophoresis of a sphere in the limit of Eq.(6)par-
allel to an impermeable plane wall, can be used to check
correctness of our collocation solutions. It has been fo
that our solutions for the particle velocities in this limitin
case agree excellently with the bipolar-coordinate soluti
although the comparison is not shown here for concisen

In Appendix A, an approximate analytical solution for th
same diffusiophoretic motion as that considered here is
obtained using a method of reflections. The translational
angular velocities of a spherical particle near a lateral p
are given by Eqs.(A.14a) and (A.14b), which are power
series expansions inλ (= a/b). The values of the wall
corrected normalized particle velocities calculated from
asymptotic solution, with theO(λ6) term neglected, are als
listed in Tables 1 and 2for comparison. It can be see
that the asymptotic formula of Eq.(A.14a) resulting from
the method of reflections forU/U0 agrees very well with
the exact results as long asλ � 0.5; the errors in all case
are less than 0.8%. However, the accuracy of Eqs.(A.14a)
and (A.14b)[especially Eq.(A.14b) for aΩ/U0, in which

4
the leading term isO(λ )] deteriorates rapidly, as expected,
when the relative spacing between the particle and the plane
wall becomes small.
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(a)

(b)

Fig. 2. Plots of the normalized diffusiophoretic mobilityU/U0 of a spher-
ical particle parallel to a plane wall versus the separation parametera/b

with Z = 1,f1 = 0.2, andζe/kT = −5 for various values ofκa: (a)α = 0;
(b) α = −0.2. The solid curves represent the case of an impermeable
nonconducting wall, and the dashed curves denote the case of a w
which the far-field electrolyte concentration gradient is imposed.

Some exact numerical solutions for the normalized
fusiophoretic velocityU/U0 of a spherical particle paralle
to a plane wall as functions ofa/b are depicted inFig. 2
for various values ofκa. It can be seen that, under the spe
fied condition,U/U0 increases with an increase inκa for the
case of an impermeable and nonconducting wall [the bou
ary condition(12) is used], but decreases with an increas
κa for the case of a plane wall prescribed with the far-fi
electrolyte concentration distribution [the boundary con
tion (15) is used] for the otherwise specified condition. T

increase and decrease in particle mobility become more pro-
nounced asa/b increases. This behavior is expected, know-
ing that the electrochemical potential gradients on the par-
nd Interface Science 286 (2005) 774–791 781

ticle surface near an impermeable and nonconducting
increase asκa (or G) increases and these gradients nea
wall with the imposed far-field concentration gradient d
crease asκa (or G) increases for the present case (see
analysis inAppendix A).

Examination of the results inFig. 2 reveals an interest
ing feature. For the case of a plane wall impermeable
the ions/charges under the situation of largeκa (e.g., with
κa → ∞), the diffusiophoretic mobility of the particle de
creases with increaseda/b whena/b is small, but increase
from a minimum with increaseda/b when a/b is suffi-
ciently large. When the gap between the particle and the
turns thin, the particle can even move faster than it woul
a/b = 0. For example, asκa → ∞ and whena/b = 0.99,
the diffusiophoretic velocity for a typical case can be
much as 15% higher than the value with the wall far aw
from the particle. Under the situation of relatively smallκa,
the diffusiophoretic mobility of the particle near the impe
meable and nonconducting wall is a monotonic decrea
function of a/b. For a case where a linear electrochem
cal potential profile is prescribed on the plane wall, wh
is consistent with the far-field distribution under the situ
tion of smallκa (e.g., withκa = 20), the diffusiophoretic
mobility of the particle may increase monotonically w
the increase ofa/b from a/b = 0. Under the situation o
relatively largeκa, the diffusiophoretic mobility of the par
ticle near the wall prescribed with the far-field electroly
concentration distribution becomes a monotonic decrea
function ofa/b. This interesting feature thatU/U0 may not
be a monotonic decreasing function ofa/b and can even b
greater than unity is understandable because the wall e
of hydrodynamic resistance on the particle is in competi
with the wall effect of electrochemical enhancement wh
a particle with largeκa is undergoing diffusiophoretic mo
tion parallel to an impermeable and nonconducting plat
when a particle with smallκa is moving near a lateral plat
with the imposed far-field electrolyte concentration gradie
A careful examination of the asymptotic formula forU/U0
given by Eq.(A.14a)shows good agreement of the nume
cal outcome inFig. 2with the analytical solution.

The results inTables 1 and 2indicate that the dielectri
sphere undergoing diffusiophoresis parallel to a plane
rotates in the direction opposite to that for a sphere mig
ing in the same direction but under a body-force field (e.g
gravitational field). The explanation for this behavior is an
ogous to the case of electrophoresis of a charged sphere
a thin double layer parallel to a nonconducting plate[24].
For an otherwise specified condition, the magnitude of
normalized rotational velocity of the diffusiophoretic sphe
near a given plane wall is a monotonically increasing fu
tion of a/b.

3.2. Motion parallel to two plane walls
Some converged collocation solutions for the normalized
velocity U/U0 of a charged spherical particle undergoing
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Table 3
Normalized diffusiophoretic velocity of a spherical particle along the m
dian plane between two parallel plane walls computed from the e
boundary-collocation solution and the asymptotic method-of-reflection
lution for the caseZ = 1, f1 = 0.2, κa = 100, andζe/kT = 2

a/b U/U0

α = 0 α = −0.2

Exact
solution

Asymptotic
solution

Exact
solution

Asymptotic
solution

For impermeable plane walls
0.1 0.99968 0.99968 0.99915 0.99915
0.2 0.99751 0.99751 0.99325 0.99325
0.3 0.99202 0.99207 0.97760 0.97768
0.4 0.98232 0.98272 0.94781 0.94860
0.5 0.96820 0.97005 0.89890 0.90342
0.6 0.94992 0.95629 0.82267 0.84166
0.7 0.92794 0.94567 0.70053 0.76285
0.8 0.90191 0.94489 0.47632 0.67198
0.9 0.86257 0.96346 −0.12763 0.57489
0.95 0.80313 −1.24283
0.99 0.1946 −10.226

For plane walls prescribed with the far-field concentration profile
0.1 0.99952 0.99952 0.99991 0.99991
0.2 0.99620 0.99620 0.99939 0.99940
0.3 0.98762 0.98764 0.99829 0.99843
0.4 0.97197 0.97221 0.99712 0.99780
0.5 0.94811 0.94953 0.99731 0.99951
0.6 0.91521 0.92083 1.00195 1.00719
0.7 0.87210 0.88937 1.01684 1.02650
0.8 0.81568 0.86085 1.05193 1.06553
0.9 0.73429 0.84380 1.11612 1.13524
0.95 0.66825 1.13957
0.99 0.5615 1.0560

diffusiophoresis on the median plane between two par
plane walls (withc = b andΩ = 0) for various values of the
parametersα anda/b are presented inTable 3for the two
cases of impermeable and nonconducting walls and w
prescribed with the far-field electrolyte concentration d
tribution. The corresponding method-of-reflection solutio
given by Eq.(A.21) in Appendix Aas a power series expa
sion in λ (= a/b) correct toO(λ5), are also listed in this
table for comparison. Similarly to the case of migration o
spherical particle parallel to a single plane wall conside
in the previous section, the approximate analytical form
of Eq. (A.21) agrees very well with the exact results as lo
as λ � 0.5, but can have significant errors whenλ � 0.6.
In general, Eq.(A.21) overestimates the diffusiophoretic v
locity of the particle. A comparison betweenTable 3for the
case of a slit andTables 1 and 2for the case of a single pa
allel plane indicates that the assumption that the boun
effect for two walls can be obtained by simple addition
single-wall effects in general leads to a smaller correc
to diffusiophoretic motion whena/b is small but can give a
greater correction asa/b becomes large.

In Fig. 3, typical collocation results for the normalize

diffusiophoretic mobilityU/U0 of a dielectric sphere mi-
grating on the median plane between two parallel plane
walls are plotted as functions ofa/b for several values ofα
nd Interface Science 286 (2005) 774–791

(a)

(b)

Fig. 3. Plots of the normalized diffusiophoretic mobilityU/U0 of a spheri-
cal particle migrating on the median plane between two parallel plane w
(with c = b) versus the separation parametera/b with Z = 1, f1 = 0.2,
andζe/kT = −5 for several values ofκa: (a) α = 0; (b) α = −0.2. The
solid curves represent the case of impermeable and nonconducting
and the dashed curves denote the case of walls prescribed with the fa
electrolyte concentration distribution.

andκa. Analogously to the corresponding motion of a p
ticle parallel to a single plane wall under the same condi
illustrated inFig. 2, for a specified value ofa/b, U/U0 de-
creases with an increase inκa for the case of walls with the
imposed far-field electrolyte concentration gradient and
creases with an increase inκa for the case of impermeab
and nonconducting walls. Again, for the case of imperm
able and nonconducting walls in the situation of largeκa,
the diffusiophoretic mobility of the particle may first g

through a minimum with the increase ofa/b from a/b = 0
and then increase monotonically, and the particle can even
move faster than it would ata/b = 0. Also, for the case
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of walls prescribed with the far-field electrolyte concent
tion distribution under the situation of smallκa, the particle
mobility may increase monotonically with an increase
a/b from a/b = 0. This result indicates that the effect
electrochemical enhancement, rather than that of hydr
namic resistance, can be overriding when the particle–
gap thickness is small. An examination of the asympt
formula forU/U0 in Eq.(A.21) also shows good agreeme
of the trend inFig. 3with the analytical solution.

A careful comparison of the curves inFig. 3 for the case
of a slit with the corresponding curves inFig. 2 for the case
of a single wall reveals an interesting feature of the bound
effect on diffusiophoresis of a colloidal sphere. The prese
of a second, identical, lateral plane wall, even at a symme
position with respect to the sphere against the first, does
always enhance the wall effect on the diffusiophoretic pa
cle induced by the first plate only. This result reflects ag
the fact that the lateral wall can affect the electrochem
driving force and the viscous drag force on a particle in
posite directions. Each force is increased in its own direc
as the value ofa/b turns small, but to a different degree, f
the case of diffusiophoretic motion of a particle in a slit re
tive to that for the case of migration parallel to a single pla
Thus, the net effect composed of these two opposite fo
for the slit case is not necessarily to enhance that for the
of a single wall.

Fig. 4 shows the collocation results for the normaliz
translational velocityU/U0 and rotational velocityaΩ/U0
of a charged sphere undergoing diffusiophoresis paralle
two impermeable and nonconducting plane walls at var
positions between them for a typical case. The dashed cu
(with a/b = constant) illustrate the effect of the position
the second wall (atz = c) on the particle velocities for var
ious values of the relative sphere-to-first-wall spacingb/a.
The solid curves [with 2a/(b + c) = constant] indicate the
variation of the particle velocities as functions of the sph
position at various values of the relative wall-to-wall sp
ing (b + c)/2a. As illustrated inFig. 4a, the net wall effec
for the given case is to reduce the diffusiophoretic mobi
U/U0 of the particle. At a constant value of 2a/(b + c), the
particle in general (with exceptions) experiences a minim
viscous drag force and has a greatest translational vel
(without rotation) when it is located midway between t
two walls (with c = b); the hydrodynamic drag increase
the translational velocity decreases, and the rotational ve
ity increases as the particle approaches either of the wall
the ratiob/(b+c) decreases]. At a specified value ofa/b for
the diffusiophoretic particle near a first lateral wall, the pr
ence of a second plate is to further reduce the translati
and rotational velocities of the particle, and the degree of
reduction increases monotonically with a decrease in the
ative distance between the particle and the second plat
with an increase inb/(b + c)].
On the other hand, for some cases such as the diffusio-
phoresis of a dielectric sphere with a large value ofκa par-
allel to two impermeable and nonconducting plane walls or
nd Interface Science 286 (2005) 774–791 783

t

s

l

r

(a)

(b)

Fig. 4. Plots of the normalized velocities of a spherical particle unde
ing diffusiophoresis parallel to two impermeable and nonconducting p
walls versus the ratiob/(b + c) for the case ofZ = 1, f1 = f2 = 0.2,
κa = 1000, and|ζe/kT | = 5 with a/b and 2a/(b + c) as parameters: (a
translational velocityU/U0; (b) rotational velocityaΩ/U0.

with a small value ofκa parallel to two plates prescribe
with the far-field electrolyte concentration distribution, t
net wall effect can increase the diffusiophoretic mobility
the particle relative to its isolated value. At a fixed value
2a/(b + c) in these cases, the normalized particle mobi
has a relatively small value as it is located midway betw
the two walls, where the particle experiences a minim
effect of electrochemical enhancement, and becomes
tively large when it approaches either of the walls. At a giv
value ofa/b for the diffusiophoretic particle and the first la
eral plate, the effect induced by the presence of the se
plate on the particle mobility is not necessarily a monoto

function of its distance from the particle. This dependence is
quite complicated and is not graphically presented here, for
conciseness.



oid a

etic
ric
a-
the

d
the
s-
and
eac

in-

tials

n

as

n-
me

n be

sla-
er-

city

ticle
from
d-of-

me-
dary-
for

d
ns,
784 P.Y. Chen, H.J. Keh / Journal of Coll

4. Electrophoresis

In this section, we consider the steady electrophor
motion of a dielectric sphere in a uniformly applied elect
field E∞ = E∞ex parallel to two plane walls. The transl
tional and angular velocities of the particle caused by
field are U = Uex and � = Ωey , respectively. The bulk
concentrationn∞ of the symmetric electrolyte in the flui
beyond the electric double layer is constant now. Like
analysis in Section2, the thickness of the double layer is a
sumed to be much smaller than the radius of the particle
the surface-to-surface distance between the particle and
wall, but the polarization effect in the thin diffuse layer is
corporated.

Outside the double layer, the electrochemical poten
µm of the ions still satisfy Laplace’s equation(8) and bound-
ary conditions(10)–(15), but their undisturbed values i
Eq.(14)are replaced by

(34)µm∞ = µ0
m + kT lnn∞ − (−1)mZeE∞x.

The solution forµm in this case can still be expressed
Eq.(19)with coefficientsRmn determined by

∞∑
n=1

2∑
m=1

RmnR
′
m(µ)

(35a)= ZeE∞(a − 2β11 + 2β12)(1− µ2)1/2,

∞∑
n=1

2∑
m=1

RmnR
′′
m(µ)

(35b)= −ZeE∞(a − 2β22 + 2β21)(1− µ2)1/2,

to replace Eq.(20). The governing equations, boundary co
ditions, and solution for the fluid velocity field have the sa
forms as those given by Eqs.(22)–(29). The final results for
the translational and angular velocities of the particle ca
determined by the simultaneous solution of Eqs.(30) and
(33), with

(36a)H1m(µ) = −(−1)mZeE∞µ + 1

a

∞∑
n=1

Rmnδ
(3)
n (a,µ),

H2m(µ) = −(−1)mZeE∞

(36b)+ 1

a(1− µ2)1/2

∞∑
n=1

Rmnδ
(1)
n (a,µ),

in replacement for Eq.(31).
Some converged collocation solutions for the tran

tional and rotational velocities of a dielectric sphere und
going electrophoresis parallel to a plane wall (withc → ∞)
for various values ofa/b are presented inTable 4, while
the corresponding results for the electrophoretic velo

of the particle on the median plane between two parallel
plates (withc = b) are given inTable 5. Now, the elec-
trophoretic velocity of the particle in an unbounded fluid
nd Interface Science 286 (2005) 774–791

h

Table 4
Normalized translational and rotational velocities of a spherical par
undergoing electrophoresis parallel to a single plane wall computed
the exact boundary-collocation solution and the asymptotic metho
reflection solution for the caseZ = 1, f1 = f2 = 0.2, κa = 100, and
ζe/kT = 2

a/b U/U0 −aΩ/U0

Exact
solution

Asymptotic
solution

Exact
solution

Asymptotic
solution

For a nonconducting plane wall
0.1 0.99994 0.99994 0.00002 0.00002
0.2 0.99950 0.99952 0.00030 0.00030
0.3 0.99842 0.99853 0.00154 0.00152
0.4 0.99655 0.99709 0.00493 0.00480
0.5 0.99389 0.99571 0.01235 0.01172
0.6 0.99054 0.99556 0.02675 0.02430
0.7 0.98685 0.99853 0.05320 0.04502
0.8 0.98377 1.00740 0.10222 0.07680
0.9 0.98557 1.02603 0.20582 0.12302
0.95 0.99640 0.32277
0.99 1.0898 0.6057

For a plane wall prescribed with the far-field potential profile
0.1 0.99982 0.99982 0.00002 0.00002
0.2 0.99856 0.99856 0.00030 0.00030
0.3 0.99520 0.99532 0.00154 0.00152
0.4 0.98868 0.98948 0.00498 0.00480
0.5 0.97772 0.98085 0.01259 0.01172
0.6 0.96031 0.96988 0.02762 0.02430
0.7 0.93278 0.95774 0.05574 0.04502
0.8 0.88706 0.94652 0.10842 0.07680
0.9 0.80016 0.93935 0.21538 0.12302
0.95 0.71488 0.32020
0.99 0.5591 0.4984

Table 5
Normalized electrophoretic velocity of a spherical particle along the
dian plane between two plane walls computed from the exact boun
collocation solution and the asymptotic method-of-reflection solution
the caseZ = 1, f1 = f2 = 0.2, κa = 100, andζe/kT = 2

a/b U/U0

For nonconducting
plane walls

For plane walls prescribed with
the far-field potential profile

Exact
solution

Asymptotic
solution

Exact
solution

Asymptotic
solution

0.1 0.99973 0.99973 0.99948 0.99948
0.2 0.99788 0.99791 0.99592 0.99591
0.3 0.99328 0.99340 0.98669 0.98664
0.4 0.98534 0.98586 0.96977 0.96985
0.5 0.97426 0.97619 0.94381 0.94493
0.6 0.96105 0.96690 0.90762 0.91288
0.7 0.94784 0.96253 0.85944 0.87674
0.8 0.93916 0.97005 0.79502 0.84199
0.9 0.94937 0.99928 0.70090 0.81694
0.95 0.98303 0.62704
0.99 1.1572 0.5167

given by Eq.(5) is used to normalize the wall-correcte
values. The corresponding method-of-reflection solutio

given by Eqs.(A.14a), (A.14b), and (A.21)with the parame-
ter G defined by Eq.(A.16) in Appendix Aas power series
expansions inλ (= a/b) correct toO(λ5), are also listed
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(a)

(b)

Fig. 5. Plots of the normalized electrophoretic velocity of a dielectric sph
parallel to a plane wall versus the separation parametera/b with Z = 1 and
f1 = f2 = 0.2: (a) |ζe/kT | = 5; (b) κa = 100. The solid curves represe
the case of an impermeable and nonconducting wall, and the dashed c
denote the case of a wall on which the far-field electrolyte concentra
gradient is imposed.

in these tables for comparison. Analogously to the case
diffusiophoresis considered in the previous section, the
ymptotic formulas of Eqs.(A.14a) and (A.21)for U/U0
agree quite well with the exact results as long asλ � 0.6,
but can have significant errors for greater values ofλ.

In Fig. 5, typical collocation results for the normalize
electrophoretic mobilityU/U0 of a spherical particle para
lel a plane wall as functions ofa/b are plotted for various
values ofκa andζe/kT . The corresponding results for th
particle undergoing electrophoresis on the median plane
tween two parallel plane walls are depicted inFig. 6. For the

case of nonconducting plane walls under the specified con-
dition, the value ofU/U0 decreases with an increase ina/b

asa/b is small, but increases from a minimum (to a max-
nd Interface Science 286 (2005) 774–791 785

s

(a)

(b)

Fig. 6. Plots of the normalized electrophoretic velocity of a dielectric sph
migrating on the medium plane between two parallel plane walls versu
separation parametera/b with Z = 1 andf1 = f2 = 0.2: (a) |ζe/kT | = 5;
(b) κa = 100. The solid curves represent the case of an impermeable
nonconducting wall, and the dashed curves denote the case of a w
which the far-field electrolyte concentration gradient is imposed.

imum if the value ofκa is small) with increasinga/b and
can be greater than unity asa/b is sufficiently large. For
the case of plane walls prescribed with the undisturbed e
tric potential distribution,U/U0 is a monotonic decreasin
function of a/b. It appears thatU/U0 in general increase
with an increase inκa and with a decrease inζe/kT for the
case of nonconducting walls, but decreases with an incr
in κa and with a decrease inζe/kT for the case of plane
walls prescribed with the undisturbed potential distributi
However, similar to the case of diffusiophoresis conside
in the previous section, no simple rule could appropria

describe the boundary effects on the electrophoretic mobil-
ity of the particle, which are dependent on the combination
of ζe/kT , κa,Z,f1, f2, anda/b.
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(a)

(b)

Fig. 7. Plots of the normalized velocities of a dielectric sphere underg
electrophoresis parallel to two impermeable and nonconducting plane
versus the ratiob/(b + c) for the case ofZ = 1, f1 = f2 = 0.2, κa = 1000,
and|ζe/kT | = 5 with a/b and 2a/(b + c) as parameters: (a) translation
velocityU/U0; (b) rotational velocityaΩ/U0.

Some collocation results for the normalized translatio
velocityU/U0 and rotational velocityaΩ/U0 of a dielectric
sphere undergoing electrophoresis parallel to two non
ducting plane walls at various positions between them
displayed inFig. 7. Similar to the cases of diffusiophores
the particle experiences a minimum viscous drag and h
greatest translational velocity (without rotation) when it
located midway between the two walls (withc = b). At a
specific value ofa/b for the electrophoretic particle near
first lateral wall, the presence of a second plate is to fur
reduce the translational and rotational velocities of the p

cle, and the degree of this reduction increases monotonically
with a decrease in the relative distance between the particle
and the second plate [or with an increase inb/(b + c)].
nd Interface Science 286 (2005) 774–791

5. Conclusions

In this work, the exact numerical solutions and appr
imate analytical solutions for the quasi-steady diffus
phoretic and electrophoretic motions of a charged sp
parallel to two infinite plane walls at an arbitrary positi
between them have been obtained by using the bound
collocation technique and the method of reflections, res
tively. Both the cases of impermeable and nonconduc
walls and of walls with the imposed far-field electroly
concentration gradient were examined in the limit of v
ishingly small Reynolds and Peclet numbers. It has b
found that the boundary effects on these phoretic mot
of a particle are quite significant and are complicated fu
tions of the properties of the particle and surrounding i
(ζe/kT , κa, Z, f1, and f2), the electrochemical cond
tions of the boundaries, and the separation distancesa/b

and a/c). The diffusiophoretic or electrophoretic mobili
of a particle near a wall is generally, but not necessaril
monotonic decreasing function of the separation param
a/b. When the value ofa/b is sufficiently large, the effec
of a lateral wall can speed up or slow down the particle
locity relative to its isolated value depending on the val
of the relevant parameters of the particle–electrolyte
tem and the electrochemical boundary condition at the w
This behavior reflects the competition between the relativ
weak hydrodynamic retardation exerted by the neighb
ing wall on the particle migration and the possible, stro
phoretic enhancement due to the electrochemical intera
between the particle and the lateral wall. No general rule
make an adequate prediction for such complicated phen
ena present in the boundary effects on diffusiophoresis
electrophoresis.
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Appendix A. Analysis of the diffusiophoresis and
electrophoresis of a spherical particle parallel to one or
two plane walls by a method of reflections

In this Appendix, we analyze the quasi-steady diffus
phoretic and electrophoretic motions of a dielectric sph
of radiusa with uniform zeta potentialζ in the solution of
a symmetric electrolyte either parallel to an infinite flat w
(with c → ∞) or on the median plane between two par
lel plates (withc = b), as shown inFig. 1, by a method of
reflections. The effect of the walls on the translational
locity U and angular velocity� of the particle is sought in

expansions ofλ, which equalsa/b, the ratio of the particle
radius to the distance between the wall and the center of the
particle.
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A.1. Motion parallel to a plane wall

For the problem of diffusiophoretic motion of a sphe
ical particle driven by a uniform electrolyte concentrati
gradient∇n∞ parallel to an impermeable and noncondu
ing plane wall, the governing equations(8) and (22) for
the electrochemical potentials of the ions and the fl
flow field must be solved by satisfying the boundary c
ditions (10), (12), (13), and (23)–(25) with c → ∞. The
method-of-reflection solution consists of the series, wh
terms depend on increasing powers ofλ,

(A.1a)µm = µm∞ + µ(1)
mp + µ(1)

mw + µ(2)
mp + µ(2)

mw + · · · ,

(A.1b)v = v(1)
p + v(1)

w + v(2)
p + v(2)

w + · · · ,
where subscripts p and w represent the reflections from
particle and the wall, respectively, and the superscript(i) de-
notes theith reflection from that surface. In these series,
the expansion sets of the corresponding electrochemica
tential and velocity fields for the fluid solution must satis
Eqs.(8) and (22). The advantage of this method is that it
necessary to consider boundary conditions associated
only one surface at a time.

According to Eq.(A.1), the translational and angular v
locities of the particle can also be expressed in the se
forms

(A.2a)U = U0ex + U(1) + U(2) + · · · ,

(A.2b)� = �(1) + �(2) + · · · .
In these expressions,U0 is the diffusiophoretic velocity of an
identical particle suspended freely in the continuous ph
far from the wall given by Eq.(7); U(i) and�(i) are related
to ∇µ

(i)
mw andv(i)

w by [33]

(A.3a)U(i) =
2∑

m=1

Gm

[∇µ(i)
mw

]
0 + [

v(i)
w

]
0 + a2

6

[∇2v(i)
w

]
0,

(A.3b)�(i) = 1

2

[∇ × v(i)
w

]
0,

where the subscript 0 to variables inside brackets
notes evaluation at the position of the particle center
Eq.(A.3a),

G1 = εkT

3πη(Ze)2

[
(1+ g11 − g21)ζ̄

(A.4a)+ (1+ g11 + g21) ln coshζ̄
]
,

G2 = εkT

3πη(Ze)2

[
(−1+ g12 − g22)ζ̄

(A.4b)+ (1+ g12 + g22) ln coshζ̄
]
,

¯
whereζ is defined by Eq.(4),

(A.5a)g11 = 1

2
(c′

1 + c1),
nd Interface Science 286 (2005) 774–791 787

-

(A.5b)g12 = 1

2
(c′

1 − c1),

(A.5c)g21 = 1

2
(c′

2 − c2),

(A.5d)g22 = 1

2
(c′

2 + c2).

In Eq.(A.5),

c1 = 1

2a2�1
(a2 − 2aβ11 + 3aβ12

(A.6a)+ aβ22 + 2β12β21 − 2β11β22),

c2 = 1

2a2�1
(a2 − 2aβ22 + 3aβ21 + aβ11

(A.6b)+ 2β12β21 − 2β11β22),

(A.6c)c′
1 = c1 − 3

β12

a�1
,

(A.6d)c′
2 = c2 − 3

β21

a�1
,

where

(A.7)�1 = 1

a2
(a2 + aβ11 + aβ22 − β12β21 + β11β22),

and the relaxation coefficientsβ11, β12, β21, andβ22 are de-
fined by Eq.(11). In the limit of Eq.(6) or zero relaxation
coefficients, Eqs.(A.5) and (A.6)reduce toc1 = c2 = c′

1 =
c′

2 = g11 = g22 = 1/2 andg12 = g21 = 0. In the other limit
of very large relaxation coefficients, these equations bec
c1 = c2 = c′

1 = c′
2 = g11 = g22 = −1 andg12 = g21 = 0.

The solution for the first reflected fields from the parti
is

(A.8a)µ(1)
mp = a3r−2 sinθ cosφ

2∑
i=1

gmi |∇µi∞|,

v(1)
p = 1

2
U0a

3r−3(2 sinθ cosφ er

(A.8b)− cosθ cosφ eθ + sinφ eφ).

The velocity distribution shown in Eq.(A.8b) is identical to
the irrotational flow surrounding a rigid sphere moving w
velocityU0ex .

The boundary conditions for the first reflected fields fr
the wall are derived from Eqs.(12), (13), (24), and (25):

(A.9a)z = −b: ∂µ
(1)
mw

∂z
= −∂µ

(1)
mp

∂z
,

(A.9b)v(1)
w = −v(1)

p ;
(A.9c)r → ∞, z > −b: µ(1)
mw → 0,

(A.9d)v(1)
w → 0.
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The solution of µ(1)
mw is obtained by applying comple

Fourier transforms onx andy in Eqs.(8) and (A.9a), (A.9c),
with the result

(A.10a)

µ(1)
mw = a3x

[
x2 + y2 + (z + 2b)2]−3/2

2∑
i=1

gmi |∇µi∞|.

This reflected concentration field may be interpreted as
ing from the reflection of the imposed field from a fictitio
particle identical to the actual particle, its location being
the mirror-image position of the actual particle with resp
to the planez = −b (i.e., atx = 0, y = 0, z = −2b). The
solution forv(1)

w can be found by fitting the boundary co
ditions (A.9b), (A.9d)with the general solution to Eq.(22)
established by Faxen[34], which results in

v(1)
w = a3U0

4π

∞∫
−∞

∞∫
−∞

ei(α̂x+β̂y)−κ(z+2b)

×
{
−[

2κ(z + b) + 1
]
iα̂ez − [

2κ(z + b) − 1
]

(A.10b)×
(

α̂2

κ
ex + α̂β̂

κ
ey

)}
dα̂ dβ̂,

whereκ = (α̂2 + β̂2)1/2 andi = √−1.
The contributions ofµ(1)

mw andv(1)
w to the translational an

angular velocities of the particle are determined by us
Eq.(A.3),

(A.11a)U(1)
s =

2∑
m=1

Gm

[∇µ(1)
mw

]
r=0 = 1

8
Gλ3U0ex,

(A.11b)

U(1)
h =

[
v(1)

w + a2

6
∇2v(1)

w

]
r=0

= −1

8
(λ3 − λ5)U0ex,

(A.11c)U(1) = U(1)
s + U(1)

h = 1

8

[−(1− G)λ3 + λ5]U0ex,

(A.11d)a�(1) = a

2

[∇ × v(1)
w

]
r=0 = − 3

16
U0λ

4ey,

where

(A.12)G = 1

U0

2∑
m=1

2∑
i=1

Gmgmi |∇µi∞|.

After the substitution of Eq.(14) for µi∞ and Eq.(A.5) for
gmi , Eq.(A.12) becomes

(A.13)G = kT |∇n∞|
U0n∞(0)

2∑
m=1

Gm

[
c′
m − (−1)mcmα

]
.

Equation(A.11a) shows that the reflected electrochemi

potential field from the wall can increase (ifG > 0) or de-
crease (ifG < 0) the velocity of the diffusiophoretic particle,
while Eq.(A.11b)indicates that the reflected velocity field is
nd Interface Science 286 (2005) 774–791

to decrease this velocity; the net effect of the reflected fi
is expressed by Eq.(A.11c), which can enhance or retard th
movement of the particle, depending on the combinatio
the values ofG andλ. WhenG = 0, the reflected electro
chemical potential field makes no contribution to the dif
siophoretic velocity. Equation(A.11c)indicates that the wal
correction to the translational velocity of the diffusiophore
particle isO(λ3), which is weaker than that obtained for t
corresponding sedimentation problem, in which the lead
boundary effect isO(λ). Note that the necessary conditio
for the wall enhancement on the diffusiophoretic motion
occur is a large value ofG and/or a value ofλ close to unity
such that the relationλ5 > (1− G)λ3 is warranted.

Equation(A.11d) shows that the diffusiophoretic sphe
rotates about an axis which is perpendicular to the di
tion of the applied electrolyte concentration gradient a
parallel to the plane wall. The direction of rotation is o
posite to that which would occur if the sphere were driven
move by a body force. Note that the angular velocity�(1) in
Eq. (A.11d)does not depend on the parameterG (sincev(1)

w
is not a function ofG). Also, the wall-induced angular ve
locity of the diffusiophoretic particle isO(λ4), which is the
same in order as but different in its coefficient (−3/16 versus
3/32) from that of a rigid sphere moving under a body-fo
field [34].

U(2) and a�(2) will be O(λ6)ex and O(λ7)ey , respec-
tively. With the substitution of Eqs.(A.11c) and (A.11d)
into Eq. (A.2), the particle velocities can be expressed
U = Uex and� = Ωey with

(A.14a)U = U0

[
1− 1

8
(1− G)λ3 + 1

8
λ5 + O(λ6)

]
,

(A.14b)aΩ = U0

[
− 3

16
λ4 + O(λ7)

]
.

The particle migrates along the imposed electrolyte con
tration gradient at a rate that can increase or decrease a
particle approaches the wall. Owing to the neglect of ine
effects, the wall does not deflect the direction of diffus
phoresis.

For the case that a linear electrolyte concentration pro
is prescribed on the plane wall which is consistent with
far-field distribution, namely, the boundary condition(12) is
replaced by Eq.(15), the series expansions(A.1) and (A.2),
the solutions ofµ(1)

mp andv(1)
p in Eq.(A.8), and the boundary

conditions forµ(1)
mw andv(1)

w in Eqs.(A.9b)–(A.9d)are still
valid, while Eq.(A.9a)becomes

(A.15)z = −b: µ(1)
mw = −µ(1)

mp.

With this change, it can be shown that the results of
reflected fields and of the particle velocities are also
tained from Eqs.(A.10)–(A.14)by replacinggmi by −gmi
(or replacingG by −G). Thus, contrary to the effect of an
impermeable and nonconducting plane wall, the reflected
electrochemical potential field from a parallel wall with the
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imposed far-field concentration gradient reduces the tr
lational velocity of the particle ifG > 0 and enhances th
velocity if G < 0. WhenG = 0, the two types of plane wa
will produce the same effects on the diffusiophoretic mot
of the particle. Under the condition that the value ofG is
sufficiently small and/or the value ofλ is sufficiently large
such thatλ5 > (1 + G)λ3, the net effect of a lateral plan
wall prescribed with the far-field concentration distributi
can enhance the diffusiophoretic migration of a particle.

For the problem of electrophoretic motion of a spheri
particle caused by a constant external electric fieldE∞ par-
allel to a nonconducting plane or to a plane prescribed w
a linear electric potential profile consistent with the far-fi
distribution, the above analysis still applies, but nowU0 is
the electrophoretic velocity of an isolated sphere given
Eq. (5) and the expression forG given by Eq.(A.13) be-
comes

(A.16)G = −Ze|E∞|
U0

2∑
m=1

(−1)mGmcm.

Note that Eq.(A.14b)for the rotational velocity of the parti
cle correct toO(λ4) is independent of the parameterG.

A.2. Motion on the median plane between two parallel fl
walls

For the problem of diffusiophoretic or electrophore
motion of a sphere on the median plane between two im
meable and nonconducting parallel plates, the boundary
ditions corresponding to governing equations(8) and (22)
are given by Eqs.(10), (12), (13), and (23)–(25)with c = b.
But, the angular velocity� of the particle vanishes now
because of the symmetry. Withλ = a/b 
 1, the series ex
pansions of the electrochemical potentials of the ions, fl
velocity, and particle velocity given by Eqs.(A.1), (A.2a),
and (A.8) remain valid here. From Eqs.(12), (13), (24),
and (25), the boundary conditions for the first wall-reflect
fieldsµ

(1)
mw andv(1)

w are found to be

(A.17a)|z| = b: ∂µ
(1)
mw

∂z
= −∂µ

(1)
mp

∂z
,

(A.17b)v(1)
w = −v(1)

p ;

(A.17c)r → ∞, |z| � b: µ(1)
mw → 0,

(A.17d)v(1)
w → 0.

The first wall-reflected fields can be solved by the sa
method as used for a single lateral plate in the previous
tion, with the results

µ(1)
mw = − a3

2π

∞∫
−∞

∞∫
−∞

iα

κ
ei(α̂x+β̂y)−κb cosh(κz)

sinh(κb)
dα̂ dβ̂
(A.18a)×
2∑

i=1

gmi |∇µi∞|,
nd Interface Science 286 (2005) 774–791 789

-

v(1)
w = a3

2π
U0

∞∫
−∞

∞∫
−∞

1

sinh(2κb) − 2κb
ei(α̂x+β̂y)

×
{[

sinh(κz) − κzcosh(κz) + g sinh(κz)
]
iα̂ez

+ [
κzsinh(κz) − g cosh(κz)

]

(A.18b)×
(

α̂2

κ
ex + α̂β̂

κ
ey

)}
dα̂ dβ̂,

whereκ = (α̂2 + β̂2)1/2, g = κb − e−κb sinh(κb), andU0 is
given by Eqs.(7) and (5)for the cases of diffusiophoresis an
electrophoresis, respectively. The contributions ofµ

(1)
mw and

v(1)
w to the particle velocity are determined using Eq.(A.3a),

which lead to a result similar to Eqs.(A.11a)–(A.11c),

(A.19a)U(1)
s = d1Gλ3U0ex,

(A.19b)U(1)
h = −(d2λ

3 − d3λ
5)U0ex,

U(1) = U(1)
s + U(1)

h

(A.19c)= [−(d2 − d1G)λ3 − d3λ
5]U0ex,

where G is given by Eq.(A.12) (or by Eqs.(A.13) and
(A.16) for the relevant cases),

(A.20a)d1 =
∞∫

0

ρ2

e2ρ − 1
dρ = 0.300514,

(A.20b)d2 = 1

2

∞∫
0

ρ2(ρ − e−ρ sinhρ)

sinh(2ρ) − 2ρ
dρ = 0.417956,

(A.20c)d3 = 1

6

∞∫
0

ρ4

sinh(2ρ) − 2ρ
dρ = 0.338324.

With the combination of Eqs.(A.2a) and (A.19c), the parti-
cle velocity can be expressed asU = Uex with

(A.21)U = U0
[
1− (d2 − d1G)λ3 + d3λ

5 + O(λ6)
]
.

For the case where the particle is undergoing diffus
phoresis or electrophoresis on the median plane between
parallel plates on which a linear electrolyte concentration
electric potential profile consistent with the far-field distr
ution is imposed, Eq.(12) should be replaced by Eq.(15).
In this case, Eqs.(A.1), (A.2a), (A.8), (A.17b)–(A.17d)are
still applicable, while Eq.(A.17a)becomes

(A.22)|z| = b: µ(1)
mw = −µ(1)

mp.
With this change, it can be shown that the results of the re-
flected fields and of the particle velocity are also obtained
from Eqs.(A.18)–(A.21)by replacinggmi (or G) andd1 by
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−gmi (or −G) andd̄1, respectively, where

(A.23)d1 =
∞∫

0

ρ2

e2ρ + 1
dρ = 0.225386.

Comparing Eq.(A.21) for the slit case with Eq.(A.14a)
for the case of a single parallel plane, one can find
the wall effects on the diffusiophoretic or electrophore
velocity of a particle in the two cases are qualitatively s
ilar. However, the assumption that the result of the bou
ary effect for two walls can be obtained by simple addit
of the single-wall effects generally gives a smaller corr
tion to diffusiophoretic or electrophoretic velocity, while f
the corresponding sedimentation problem this approxi
tion overestimates the wall correction.

Using the same method of reflections, Keh and Ander
[23] obtained asymptotic solutions for the electrophore
mobility of a dielectric sphere surrounded by an infinit
imally thin electric double layer either parallel to a no
conducting plane wall or on the median plane between
parallel plates correct toO(λ6). In the limit of Eq.(6), the
formulas given by Eqs.(A.14a) and (A.21)are consisten
with these earlier solutions.

As discussed in Sections3 and 4, the boundary effect
on phoretic motions in general are quite complicated
no simple rule is able to make an adequate prediction
such complicated phenomena. Thus, limited numerical
lutions with interpolation and extrapolation are awkward
be used in practical applications. Therefore, the closed-f
analytical results obtained in this Appendix, which can
conveniently used in the calculations for various cases
κa > 20 (without the need of a computer), should be a fav
able contribution to the evaluation and understanding of
boundary effects on diffusiophoresis and electrophoresi

Appendix B. Definitions of some functions in Section 2

The functionsδ(i)
n with i = 1,2,3, and 4 in Eqs.(19),

(21), (31), and (36)are defined by

δ(1)
n (r,µ) = r−n−1P 1

n (µ) − (−n)m

∞∫
0

κ1−m J1(κρ)

sinhτ

× [
c2Vn+m(c)(sinhσ)1−m(coshσ)m

(B.1)
− b2Vn+m(−b)(sinhω)1−m(coshω)m

]
dκ,

δ(2)
n (r,µ) = −(n + 1)r−n−2P 1

n (µ)

− (−n)m

∞∫
0

κ2−m

sinhτ

{
J ′

1(κρ)(1− µ2)1/2
× [
c2Vn+m(c)(sinhσ)1−m(coshσ)m

− b2Vn+m(−b)(sinhω)1−m(coshω)m
]

nd Interface Science 286 (2005) 774–791

+ J1(κρ)µ
[
c2Vn+m(c)(coshσ)1−m(sinhσ)m

(B.2)

− b2Vn+m(−b)(coshω)1−m(sinhω)m
]}

dκ,

δ(3)
n (r,µ) = −r−n−1∂P 1

n (µ)

∂µ
(1− µ2)1/2

− (−n)mr

∞∫
0

κ2−m

sinhτ

{
J ′

1(κρ)µ

× [
c2Vn+m(c)(sinhσ)1−m(coshσ)m

− b2Vn+m(−b)(sinhω)1−m(coshω)m
]

− J1(κρ)(1− µ2)1/2

× [
c2Vn+m(c)(coshσ)1−m(sinhσ)m

(B.3)

− b2Vn+m(−b)(coshω)1−m(sinhω)m
]}

dκ,

δ(4)
n (r,µ) = (n + 1)(n + 2)r−n−3P 1

n (µ)

− (−n)m

∞∫
0

κ3−m

sinhτ

{[
J ′′

1 (κρ)(1− µ2)

+ J1(κρ)µ2][−c2Vn+m(sinhσ)1−m(coshσ)m

− b2Vn+m(−b)(sinhω)1−m(coshω)m
]

+ 2J ′
1(κρ)(1− µ2)1/2µ

× [
c2Vn+m(c)(coshσ)1−m(sinhσ)m

(B.4)

− b2Vn+m(−b)(coshω)1−m(sinhω)m
]}

dκ.

Here,

Vn(zi) = (2/π)1/2

zn+1
i

[n/2]∑
q=0

(κ|zi |)n−q−1/2

(−2)qq!(n − 2q − 1)!
(B.5)× Kn−q−3/2

(
κ|zi |

)
,

(B.6a)σ = κ(z + b),

(B.6b)ω = κ(z − c),

(B.6c)τ = κ(b + c),

J1 is the Bessel function of the first kind of order one and
prime on it denotes differentiation with respect to its ar
ment,Kν is the modified Bessel function of the second k
of orderν, and the square bracket[ν] denotes the largest in
teger which is less than or equal toν. In Eqs.(B.1)–(B.4),

m = 1 if Eq. (12) is used for the boundary condition of the
electrochemical potential field at the plane walls andm = 0
if Eq. (15) is used.
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