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Abstract

The problem of the diffusiophoretic motion of a spherical particle in a fluid solution of a nonionic solute situated at an arbitrary position
between two infinite parallel plane walls is studied theoretically in the quasisteady limit of negligible Peclet and Reynolds numbers. The applied
solute concentration gradient is uniform and perpendicular to the plane walls. The particle–solute interaction layer at the particle surface is
assumed to be thin relative to the particle radius and to the particle–wall gap widths, but the polarization effect of the diffuse solute in the thin
interfacial layer caused by the strong adsorption of the solute is incorporated. The presence of the walls causes two basic effects on the particle
velocity: first, the local solute concentration gradient on the particle surface is altered by the walls, thereby speeding up or slowing down the
moving particle; second, the walls enhance the viscous retardation of the particle. A boundary-collocation method is used to semianalytically
solve the solutal and hydrodynamic governing equations of the system. Numerical results for the diffusiophoretic velocity of the particle
relative to that under identical conditions in an unbounded fluid solution are presented for various cases. The collocation results agree well
with the approximate analytical solutions obtained by using a method of reflections. The net effect of the confining walls is always to reduce
the particle velocity, irrespective of the surface properties of the particle or the relative particle–wall separation distances. The boundary effect
on diffusiophoresis of a particle normal to two plane walls is found to be quite significant and generally stronger than that parallel to the walls.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Diffusiophoresis; Electrophoresis; Colloidal phenomena; Fluid mechanics; Boundary effect; Plane walls

1. Introduction

A colloidal particle, when placed in a solution that is not
uniform in the concentration of some molecular solute, will
spontaneously migrate toward regions of higher or lower con-
centration of the solute as a result of physical interaction be-
tween the solute molecules and the particle. This migration is
termed diffusiophoresis (Dukhin and Derjaguin, 1974) and has
been demonstrated experimentally for both ionic (Ebel et al.,
1988) and nonionic (Staffeld and Quinn, 1989) solutes. Diffu-
siophoresis can be utilized to characterize or separate colloidal
particles and may be important in some coating processes.
In a solution of nonelectrolyte solute with constant concen-
tration gradient ∇C∞, the diffusiophoretic velocity of a particle
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is (Anderson et al., 1982)

U(0) = kT

�
L∗K∇C∞, (1)

and there is no rotational motion of the particle. In the above
equation, L∗ is a characteristic length for the particle–solute
interaction (of order 1–10 nm), K is the Gibbs adsorption length
characterizing the strength of the adsorption of the molecular
solute [K and L∗ are defined later by Eqs. (6b) and (6c)], �
is the fluid viscosity, k is Boltzmann’s constant, and T is the
absolute temperature. According to Eq. (1), colloidal particles
in aqueous solutions with a solute concentration gradient of
order 100 kmol/m4 (=1 M/cm) can move by diffusiophoresis
at a velocity of several micrometers per second.

Eq. (1) can be applied to an isolated rigid particle of arbitrary
shape and size. However, its validity is based on the assump-
tion that the local radii of curvature of the particle are much
larger than the thickness of the particle–solute interaction layer
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(diffuse layer) at the particle surface (of the same order as
L∗) and the effect of the polarization of the diffuse solute (the
solute continually adsorbs at the upstream edge and desorbs
at the downstream edge) in the interfacial layer surrounding
the particle is negligible. Anderson and Prieve (1991) analyzed
the diffusiophoretic motion of a colloidal sphere of radius a
with a thin but polarized diffuse layer when the suspending
nonelectrolyte solution is only slightly nonuniform in solute
concentration on the length scale of a (a|∇C∞|>C∞) and
obtained for the particle velocity as

U0 = A∇C∞, (2a)

where the diffusiophoretic mobility

A = kT

�
L∗K

(
1 + �

a

)−1

, (2b)

and the definition of the length � is given by Eq. (5). For
a strongly adsorbing solute (e.g., a surfactant), the relaxation
parameter �/a (or K/a) can be much greater than unity. If all
the adsorbed solute were “stuck” to the surface of the particle
(the diffuseness of the adsorption layer disappears), then L∗=0
and there would be no diffusiophoretic migration of the particle.
In the limit of �/a → 0 (very weak adsorption), the polarization
of the diffuse solute in the interfacial layer vanishes and Eq. (2)
reduces to Eq. (1). A comparison between Eqs. (1) and (2)
indicates that the effect of polarization of the diffuse layer is to
decrease the concentration gradient along the particle surface
and lower the diffusiophoretic mobility of the particle.

Eq. (2) serves only for fluid solutions that extend to infinity
in all directions. In real situations of diffusiophoresis, however,
colloidal particles are not isolated and will move in the pres-
ence of neighboring boundaries. In the limiting case that Eq. (1)
is applicable, the normalized velocity field of the unbounded
fluid that is dragged by a particle during diffusiophoresis is the
same as for electrophoresis of a dielectric particle with an in-
finitesimally thin electric double layer (Anderson, 1989); thus,
the boundary effects on electrophoresis, which have been in-
vestigated extensively in the past (Morrison and Stukel, 1970;
Keh and Anderson, 1985; Keh and Chen, 1988; Keh and Lien,
1991; Loewenberg and Davis, 1995; Keh and Chiou, 1996; Hao
and Haber, 1998; Yariv and Brenner, 2003; Unni et al., 2007;
Hsieh and Keh, 2007), can be utilized to interpret those on dif-
fusiophoresis. An important result of these investigations is that
the boundary effects on electrophoresis (and on diffusiophore-
sis) are weaker than on sedimentation, because the disturbance
to the fluid velocity field caused by a phoretic particle decays
faster than that produced by a Stokeslet.

When the polarization effect of solute species in the diffuse
layer surrounding the particle is considered, the boundary ef-
fects on diffusiophoresis can be quite different from those on
electrophoresis, due to the fact that the particle size and some
other unique factors are involved in each transport mechanism.
Through the use of a boundary-collocation technique, the dif-
fusiophoretic (and electrophoretic) motion of a colloidal sphere
with a thin but polarized diffuse layer in the direction normal
to a plane wall was examined (Keh and Jan, 1996). Recently,

the diffusiophoretic motions of a colloidal sphere with a thin
polarized diffuse layer parallel to two plane walls at an arbi-
trary position between them (Chen and Keh, 2002) and along
the axis of a circular cylindrical pore (Keh and Hsu, 2006) were
also investigated by using the boundary-collocation method.
Numerical results of wall-corrections to Eq. (2) for the parti-
cle velocity were presented for various values of the relative
separation distances and the relaxation parameter �/a.

This paper is an extension of the previous work (Chen and
Keh, 2002) to the situation of the diffusiophoretic motion of
a spherical particle with a thin but polarized diffuse layer per-
pendicular to two parallel plane walls at an arbitrary position
between them. The effects of fluid inertia as well as solute con-
vection are neglected. For the case of a particle undergoing dif-
fusiophoresis normal to the plane walls, the diffusion around
the particle may generate larger solute concentration gradients
on the particle surface relative to those in an infinite medium.
These gradients enhance the diffusiophoretic velocity, although
their action will be retarded by the viscous interaction of the
migrating particle with the confining walls. Both effects of this
solutal enhancement and hydrodynamic retardation increase as
the ratios of the radius of the particle to its distances from the
walls increase. Determining which effect is overriding at small
particle–wall gap widths is a main target of this study. Because
the governing equations and boundary conditions concerning
the general problem of diffusiophoresis of a particle at an arbi-
trary position between two parallel plane walls in an arbitrary
direction are linear, its solution can be obtained as a superpo-
sition of the solutions for its two subproblems: motion parallel
to the plane walls, which was previously examined (Chen and
Keh, 2002), and motion normal to the confining walls, which
is considered in this article.

2. Analysis

We consider the quasisteady diffusiophoresis of a spherical
particle of radius a in a fluid solution of a nonelectrolyte solute
perpendicular to two infinite plane walls whose distances from
the center of the particle are b and c, as shown in Fig. 1.
Here (�, �, z) and (r, �, �) denote the circular cylindrical and
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Fig. 1. Geometrical sketch for the diffusiophoresis of a spherical particle
perpendicular to two plane walls at an arbitrary position between them.
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spherical coordinate systems, respectively, and the origin of
coordinates is chosen at the particle center. A linear solute con-
centration field C∞(z) with a uniform gradient E∞ez (=∇C∞)

is imposed in the ambient fluid far removed from the particle,
where ez is the unit vector in the z direction and, for conve-
nience, E∞ is taken to be positive. It is assumed that the layer
of interaction between the solute molecules and the particle
surface is thin in comparison with the radius of the particle and
the spacing between the particle and each wall. Hence, the fluid
phase can be divided into two regions: an“inner”region defined
as the thin interaction layers adjacent to the solid surfaces and
an “outer” region defined as the remainder of the fluid phase.
The purpose is to obtain the correction to Eq. (2) for the parti-
cle mobility due to the presence of the plane walls.

To determine the diffusiophoretic velocity of the particle, it
is necessary to ascertain the solute concentration and velocity
fields in the fluid phase.

2.1. Solute concentration distribution

The diffusiophoretic motion of a particle can be considered
quasisteady if the Peclet and Reynolds numbers of the system
are small (which is certainly justified for all practical situations
since the typical order of magnitude of U0a is 10−12 m2/s).
The equation of continuity governing the solute concentration
distribution C for the outer region of the fluid solution of con-
stant solute diffusivity is the Laplace equation

∇2C = 0. (3)

This governing equation satisfies the boundary condition at
the particle “surface” (outer limit of the thin interfacial layer)
obtained by solving for the solute concentration in the inner
region and using a matching procedure to ensure a continuous
solution in the whole fluid phase (O’Brien, 1983; Anderson and
Prieve, 1991),

r = a : �C

�r
= −�

1

r2 sin �

�

��

(
sin �

�C

��

)
, (4)

in which � is the relaxation coefficient defined by

� = (1 + �Pe)K , (5)

where

Pe = kT

�D
L∗KC0, (6a)

K =
∫ ∞

0
[exp(−�(yn)/kT ) − 1] dyn, (6b)

L∗ = K−1
∫ ∞

0
yn[exp(−�(yn)/kT ) − 1] dyn, (6c)

and

� = (L∗K2)−1
∫ ∞

0

{∫ ∞

yn

[exp(−�(yn)/kT ) − 1] dyn

}2

dyn.

(6d)

In the above equations, � represents the potential energy re-
sulting from the interaction between a single solute molecule

and the particle surface; D is the solute diffusion coefficient;
yn is the normal distance measured from the particle surface
into the fluid phase; C0 is the bulk concentration of the solute
species measured at the particle center in the absence of the
particle. The dimensionless parameter � is of order unity and
�Pe accounts for the effect of convection on the solute distribu-
tion just outside the adsorption layer surrounding the particle.
To obtain Eqs. (4)–(6), it was assumed that the concentration
of solute within the adsorption boundary layer is related to the
solute–surface interaction energy by a Boltzmann distribution.

Since the solute concentration far away from the particle
approaches the undisturbed distribution, we can write

z = c : C = C0 + E∞c, (7)

z = −b : C = C0 − E∞b, (8)

� → ∞, −b�z�c : C → C∞ = C0 + E∞z. (9)

The concentrations at the two parallel plane walls have been
set equal to different constants to allow a uniform gradient in
their normal direction far from the particle.

The solute concentration distribution can be expressed as the
superposition

C = C0 + E∞z + Cw + Cp. (10)

Here, Cw is a separable solution of Eq. (3) in cylindrical coor-
dinates that represents the disturbance produced by the plane
walls and is given by a Fourier–Bessel integral

Cw = E∞
∫ ∞

0
[X(	)e	z + Y (	)e−	z]	J0(	�) d	, (11)

where Jn is the Bessel function of the first kind of order n;
X(	) and Y (	) are unknown functions of the separation vari-
able 	. The last term on the right-hand side of Eq. (10), Cp is
a separable solution of Eq. (3) in spherical coordinates repre-
senting the disturbance generated by the spherical particle and
is given by an infinite series in harmonics,

Cp = E∞
∞∑

m=0

Rmr−m−1Pm(cos �), (12)

where Pm is the Legendre polynomial of order m and Rm are
unknown constants. Note that a solution for C of the form given
by Eqs. (10)–(12) immediately satisfies the boundary condition
at infinity in Eq. (9).

Substituting the solute concentration distribution C given by
Eqs. (10)–(12) into the boundary conditions in Eqs. (7) and
(8) and applying the Hankel transform on the variable � lead
to a solution for the functions X(	) and Y (	) in terms of the
coefficients Rm. After the substitution of this solution into Eqs.
(10)–(12), C can be expressed as

C = C0 + E∞z + E∞
∞∑

m=0

Rm
(1)
m (r, �), (13)

where the function 
(1)
m (r, �) is defined by Eq. (B.1) in Appendix

B (in which the integration must be performed numerically).
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Application of the boundary condition given by Eqs. (4)–(13)
yields

∞∑
m=0

Rm

[(
1 − 2�

a

)

(2)
m (a, �) − �

a

(3)
m (a, �)

]

=
(

2�

a
− 1

)
cos �, (14)

where the definitions of the functions 
(2)
m (r, �) [=�
(1)

m /�r]
and 
(3)

m (r, �) are given by Eqs. (B.2) and (B.3).
To satisfy the conditions in Eq. (14) exactly along the entire

surface of the particle would require the solution of the entire
infinite array of unknown constants Rm. However, the colloca-
tion method (Ganatos et al., 1980; Keh and Jan, 1996) enforces
the boundary condition at a finite number of discrete points
on any semicircular longitudinal generating arc of the sphere
(from � = 0 to �) and truncates the infinite series in Eq. (13)
into a finite one. If the spherical boundary is approximated
by satisfying the condition of Eq. (4) at M discrete points on
the generating arc, the infinite series in Eq. (13) is truncated
after M terms, resulting in a system of M simultaneous lin-
ear algebraic equations in the truncated form of Eq. (14). This
matrix equation can be numerically solved to yield the M un-
known constants Rm required in the truncated form of Eq. (13)
for the solute concentration distribution. The accuracy of the
boundary-collocation/truncation technique can be improved to
any degree by taking a sufficiently large value of M . Naturally,
as M → ∞ the truncation error vanishes and the overall accu-
racy of the solution depends only on the numerical integration
required in evaluating the functions 
(2)

m and 
(3)
m in Eq. (14).

2.2. Fluid velocity distribution

Having obtained the solution for the solute concentration
distribution on the particle surface which drives the diffusio-
phoretic migration, we can now proceed to find the flow field.
Owing to the low Reynolds number encountered in diffusio-
phoresis, the fluid motion is governed by the quasisteady fourth-
order differential equation for viscous axisymmetric creeping
flows

E2(E2�) = 0, (15)

in which the Stokes stream function � is related to the compo-
nents of fluid velocity v in cylindrical coordinates by (v� = 0)

v� = 1

�

��

�z
, (16a)

vz = − 1

�

��

��
, (16b)

and the Stokes operator E2 has the form

E2 = �
�

��

(
1

�

�

��

)
+ �2

�z2
. (17)

The boundary conditions for the fluid velocity at the particle
surface, on the plane walls, and far from the particle are

r = a : v = Uez − kT

�
L∗K �C

r��
e�, (18)

z = c, −b : v = 0, (19)

� → ∞, −b�z�c : v = 0, (20)

where e� is the unit vector in the � direction, U is the diffusio-
phoretic velocity of the particle to be determined, and �C/��
at the particle surface is obtained from the concentration dis-
tribution given by Eq. (13).

To solve the fluid flow field, we express the stream function
in the form

� = �w + �p. (21)

Here �w is a Fourier–Bessel integral solution of Eq. (15) in
cylindrical coordinates that represents the disturbance produced
by the plane walls and is given by (Ganatos et al., 1980)

�w =
∫ ∞

0
[A(	)e	z + B(	)e−	z + C(	)	ze	z

+ D(	)	ze−	z]�J1(	�) d	, (22)

where A(	), B(	), C(	), and D(	) are unknown functions
of 	. The second part of �, denoted by �p, is a separable
solution of Eq. (15) in spherical coordinates representing the
disturbance generated by the spherical particle and is given by

�p =
∞∑

n=2

(Bnr
−n+1 + Dnr

−n+3)G
−1/2
n (cos �), (23)

where G
−1/2
n is the Gegenbauer polynomial of the first kind

of order n and degree − 1
2 ; Bn and Dn are unknown constants.

Note that the boundary condition in Eq. (20) is immediately
satisfied by a solution of the form given by Eqs. (21)–(23).

Substituting the stream function � given by Eqs. (21)–(23)
into the boundary conditions in Eq. (19) and applying the Han-
kel transform on the variable � lead to a solution for A(	),
B(	), C(	), and D(	) in terms of the coefficients Bn and Dn.
After the substitution of this solution into Eqs. (21)–(23), the
fluid velocity components can be expressed as

v� =
∞∑

n=2

[Bn
(1)
1n (r, �) + Dn

(1)
2n (r, �)], (24a)

vz =
∞∑

n=2

[Bn
(2)
1n (r, �) + Dn

(2)
2n (r, �)], (24b)

where the definitions of the functions (j)
in for i and j equal to 1

or 2 are given by Eqs. (B.5) and (B.6) in Appendix B (in which
the integration must be performed numerically).

The only boundary condition that remains to be satisfied is
that on the particle surface. Substituting Eqs. (13) and (24)
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into Eq. (18), one obtains

∞∑
n=2

[Bn
(1)
1n (a, �) + Dn

(1)
2n (a, �)]

= U0

(
1 + �

a

) [
sin � −

∞∑
m=1

Rm
(4)
m (a, �)

]
cos �, (25a)

∞∑
n=2

[Bn
(2)
1n (a, �) + Dn

(2)
2n (a, �)]

= U − U0

(
1 + �

a

) [
sin � −

∞∑
m=1

Rm
(4)
m (a, �)

]
sin �,

(25b)

where U0 is the diffusiophoretic velocity of the particle in the
absence of the plane walls given by Eq. (2) and the definition
of the function 
(4)

m (r, �) [=
(1)
m /r��] is given by Eq. (B.4).

The first M coefficients Rm have been determined through the
procedure given in the previous subsection.

Eq. (25) can be satisfied by utilizing the boundary-collocation
technique presented for the solution of the solute concentration
field. Along a longitudinal generating arc at the particle surface,
Eq. (25) is applied at N discrete points (values of � between
0 and �) and the infinite series in Eq. (24) are truncated after
N terms. This generates a set of 2N linear algebraic equations
for the 2N unknown coefficients Bn and Dn. The fluid velocity
field is completely obtained once these coefficients are solved
for a sufficiently large number of N.

2.3. Derivation of the particle velocity

The hydrodynamic force acting on the spherical particle can
be determined from (Happel and Brenner, 1983)

F = 4��D2. (26)

This expression shows that only the lowest-order coefficient D2
contributes to the drag force exerted on the particle by the fluid.

Since the particle is freely suspended in the surrounding fluid,
the net force acting on the particle must vanish. Applying this
constraint to Eq. (26), one has

D2 = 0. (27)

To determine the diffusiophoretic velocity U of the particle,
Eq. (27) and the 2N algebraic equations resulting from the
truncated form of Eq. (25) are to be solved simultaneously.
Because of the linearity of the problem, if the sign of the solute
concentration gradient is inverted, that of the particle velocity
is also inverted. Accordingly, the problem is invariant when the
distances b and c from the particle center to the two plane walls
are interchanged.

If the particle velocity in Eq. (18) is disabled (i.e., U = 0
is set), then the force obtained from Eq. (26) can be taken as
the diffusiophoretic force exerted on the particle near the walls
due to the solute concentration gradient ∇C∞. This force can
be expressed as

F = 6��aU0F
∗, (28)

where F ∗ is the normalized magnitude of the diffusiophoretic
force. The value of F ∗ also equals f ∗U/U0, where f ∗ is
the dimensionless Stokes resistance coefficient of the parti-
cle (with no slip) migrating normal to the two plane walls
driven by a body force in the absence of the solute concen-
tration gradient (Ganatos et al., 1980; Chang and Keh, 2006)
and U is the diffusiophoretic velocity of the particle obtained
from Eq. (27).

3. Results and discussion

The numerical results for the diffusiophoretic motion of a
spherical particle perpendicular to two plane walls at an arbi-
trary position between them, obtained by using the boundary
collocation method described in the previous section, are pre-
sented in this section. The system of linear algebraic equations
to be solved for the coefficients Rm is constructed from Eq. (14),
while that for Bn and Dn is composed of Eq. (25). All the
numerical integrations to evaluate the functions 
(j)

m and (j)
in

were done by the Gauss–Laguerre quadrature of 180 zeros.
When selecting the points along the half-circular generating

arc of the spherical particle where the boundary conditions are
to be exactly satisfied, the first points that should be chosen
are � = 0 and �, since these stagnation points control the gaps
between the particle and the plane walls. In addition, the point
�=�/2 which defines the projected area of the particle normal
to the direction of migration is also important. However, an
examination of the systems of linear algebraic equations (14)
and (25) shows that the matrix equations become singular if
these points are used. To overcome this difficulty, these three
points are replaced by four closely adjacent basic points at �=
,
�/2 − 
, �/2 + 
, and � − 
 (Ganatos et al., 1980). Additional
points along the generating arc are selected as mirror-image
pairs about the equatorial plane � = �/2 to divide the two
quarter-circular arcs of the particle into equal segments. The
optimum value of 
 in this work is found to be 0.01◦, with
which the numerical results of the particle velocity converge
satisfactorily.

3.1. Motion normal to a single plane wall

Numerical solutions for the normalized diffusiophoretic
force F ∗ acting on a spherical particle near a single plane
wall (with c → ∞) caused by a normal solute concentration
gradient, defined by Eq. (28), for the case of �/a = 0 are given
in Table 1 for various values of the spacing parameter a/b at
the quasisteady state using the boundary-collocation method.
All of these results were obtained by choosing the number of
collocation points N (=M) equal to 52, 54, and 56 to show
their convergence. The rate of convergence is rapid for small
values of a/b and deteriorates as the distance between the
particle and the wall decreases. Interestingly, the results in
Table 1 illustrate that the diffusiophoretic (or electrophoretic)
force exerted on the particle increases monotonically with an
increase in the value of a/b. For a typical case of a colloidal
sphere with radius a = 1 �m undergoing diffusiophoresis with
velocity U0 equal to several �m/s in aqueous solutions (with
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Table 1
Numerical results of the normalized diffusiophoretic force F ∗ on a spherical
particle near a plane wall (c → ∞) caused by a normal solute concentration
gradient for the case of �/a = 0

a/b F ∗

N = M = 52 N = M = 54 N = M = 56

0.1 1.12549 1.12549 1.12549
0.2 1.27871 1.27871 1.27871
0.3 1.46357 1.46357 1.46357
0.4 1.68644 1.68644 1.68644
0.5 1.95738 1.95738 1.95738
0.6 2.29213 2.29213 2.29213
0.7 2.71570 2.71570 2.71570
0.8 3.26972 3.26972 3.26972
0.9 4.02842 4.02842 4.02842
0.95 4.52531 4.52531 4.52531
0.99 5.00436 5.00436 5.00436
0.995 5.07048 5.07048 5.07048
0.999 5.12451 5.12451 5.12451

a solute concentration gradient of order 100 kmol/m4), the dif-
fusiophoretic force acting on the particle given by Eq. (28)
ranges from 10−13 to 10−12 N, which is greater than the Brow-
nian force (of order kT/a) and gravitational/buoyant force ex-
erted on the particle by about two orders of magnitude.

In Table 2, our collocation solutions for the diffusiophoretic
velocity of a spherical particle normal to a plane wall for var-
ious values of the parameters �/a and a/b are presented. The
velocity for the diffusiophoretic motion of an identical particle
in an infinite fluid, U0 =AE∞, given by Eq. (2), is used to nor-
malize the boundary-corrected quantities. Thus, the normalized
particle velocity is independent of the value of kTL∗K/�. All
of the results obtained under the collocation scheme converge
satisfactorily to at least the significant figures shown in the ta-
ble. Again, the accuracy and convergence behavior of the trun-
cation technique is principally a function of the ratio a/b. For
general cases with a/b=0.9, the numbers of collocation points
M=22 and N=22 can lead to these satisfactory results. For the
most difficult case with a/b=0.999, the numbers M =136 and
N = 136 are sufficiently large to achieve this convergence. Our
collocation results in Table 2 can be found to agree excellently
with the numerical solutions obtained by Keh and Jan (1996)
using a similar boundary-collocation method. Note that the di-
mensionless Stokes resistance coefficient f ∗ =F ∗/(U/U0) for
the translation of a rigid sphere normal to a plane wall as a
function of a/b can be calculated using the collocation solu-
tions presented in Tables 1 and 2, and the results agree with
those available in the literature (Brenner, 1961; Maude, 1961).

In Appendix A, an approximate analytical solution for the
same diffusiophoretic motion as that considered here is also
obtained by using a method of reflections. The particle veloc-
ity is given by Eq. (A.11), which is a power series expansion
in � (=a/b). The values of the wall-corrected normalized par-
ticle velocity calculated from this asymptotic solution, with the
O(�9) term neglected, are also listed in Table 2 for compar-
ison. It can be seen that the asymptotic formula (A.11) from
the method of reflections for U/U0 agrees very well with the

collocation results as long as ��0.7; the errors in all cases are
less than 3.2%. However, the accuracy of Eq. (A.11) deterio-
rates rapidly, as expected, when the relative spacing between
the particle and the plane wall becomes small (say, ��0.8).
The prediction of Eq. (A.11) may overestimate or underesti-
mate the diffusiophoretic velocity of the particle, depending on
the combination of the parameters �/a and a/b.

The collocation solutions for the normalized velocity U/U0
of a spherical particle undergoing diffusiophoresis normal to a
plane wall as functions of �/a are depicted in Fig. 2 for var-
ious values of a/b. As shown in both Table 1 and Fig. 2, the
particle migrates with the velocity that would exist in the ab-
sence of the wall, given by Eq. (2), as a/b → 0. The diffu-
siophoretic velocity then steadily decreases as the particle ap-
proaches the wall (with increasing a/b), going to zero at the
limit. The wall-corrected normalized diffusiophoretic mobility
U/U0 of the particle increases (or the wall effect is weaker)
with an increase in �/a, keeping a/b unchanged. This increase
in the particle mobility in general becomes more pronounced as
a/b increases (but is not too close to unity). This behavior is ex-
pected knowing that the local solute gradients along the particle
surface near a wall with a perpendicularly imposed concentra-
tion gradient decrease as �/a decreases (the local concentration
gradient at the particle surface on the near side to the plane
wall is depressed compared with that on the far side, as can
be seen in the analysis given in Appendix A or by Keh and
Lien, 1991). When �/a= 1

2 , the effect of solutal interaction be-
tween the particle and the wall disappears, and the relative dif-
fusiophoretic mobility of the particle decreases monotonically
with a/b solely owing to the hydrodynamic resistance exerted
by the plane wall.

3.2. Motion perpendicular to two plane walls

Numerical results of the normalized diffusiophoretic force
F ∗ exerted on a spherical particle located between two parallel
plane walls whose distance to one wall is the same as to the
other (with c = b) caused by a perpendicular solute concentra-
tion gradient are presented in Table 3 for various values of the
parameter a/b using the boundary-collocation method for the
case of �/a = 0. Like the results for a single plane wall given
in Table 1, the results in Table 3 were obtained by choosing the
number of collocation points N (=M) equal to 54, 56, and 58
to show their convergence. Again, these results indicate that the
diffusiophoretic (or electrophoretic) force acting on the particle
is a monotonic increasing function of a/b.

In Table 4, the collocation solutions for the normalized ve-
locity U/U0 of a spherical particle situated midway between
two parallel plane walls (with c=b) undergoing diffusiophore-
sis perpendicularly for various values of the parameters �/a

and a/b are presented. The corresponding method-of-reflection
solutions, given by Eq. (A.20) in Appendix A as a power se-
ries expansion in � (=a/b) correct to O(�8), are also listed in
this table for comparison. Similar to the case of migration of
a spherical particle normal to a single plane wall considered
in the previous subsection, the approximate analytical formula
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Table 2
Normalized diffusiophoretic velocity of a spherical particle normal to an infinite plane wall (with c → ∞) computed from the exact boundary-collocation
solution and the asymptotic method-of-reflection solution

a/b U/U0

�/a = 0 �/a = 0.1 �/a = 1 �/a = 10

Exact Asymptotic Exact Asymptotic Exact Asymptotic Exact Asymptotic
solution solution solution solution solution solution solution solution

0.1 0.99938 0.99938 0.99941 0.99941 0.99956 0.99956 0.99972 0.99972
0.2 0.99504 0.99505 0.99532 0.99532 0.99655 0.99654 0.99778 0.99777
0.3 0.98330 0.98336 0.98424 0.98428 0.98845 0.98840 0.99264 0.99247
0.4 0.96020 0.96048 0.96251 0.96267 0.97268 0.97233 0.98277 0.98176
0.5 0.92089 0.92178 0.92563 0.92607 0.94614 0.94472 0.96636 0.96243
0.6 0.85862 0.86091 0.86739 0.86841 0.90437 0.90014 0.94076 0.92911
0.7 0.76297 0.76854 0.77800 0.78069 0.83997 0.83031 0.90133 0.87298
0.8 0.61631 0.63083 0.64030 0.64960 0.73831 0.72288 0.83840 0.78071
0.9 0.38585 0.42760 0.41854 0.45582 0.56121 0.56023 0.72454 0.63341
0.95 0.21993 0.29290 0.25031 0.32731 0.40497 0.45101 0.61604 0.53159
0.99 0.04962 0.16534 0.06146 0.20561 0.16599 0.34707 0.41484 0.43336
0.995 0.02525 0.14802 0.03191 0.18909 0.10880 0.33293 0.35024 0.41992
0.999 0.0052 0.1339 0.0067 0.1756 0.0389 0.3214 0.2388 0.4090
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Fig. 2. Plots of the normalized diffusiophoretic velocity U/U0 of a spherical
particle perpendicular to a plane wall versus the relaxation parameter �/a

for various values of a/b.

(A.20) agrees quite well with the collocation results as long as
��0.6, but can have significant errors when ��0.7. In general,
Eq. (A.20) overestimates the diffusiophoretic velocity of the
particle. A comparison between Table 4 for the case of a slit
and Table 2 for the case of a single normal plane indicates that
the assumption that the boundary effect for two walls can be
obtained by simple addition of single-wall effects leads to a
greater correction to diffusiophoretic motion. Analogous to the
motion normal to a single plane wall, the dimensionless Stokes
resistance coefficient f ∗ = F ∗/(U/U0) for the translation of

Table 3
Numerical results of the normalized diffusiophoretic force F ∗ on a spherical
particle located midway between two parallel plane walls (with c=b) caused
by a normal solute concentration gradient for the case of �/a = 0

a/b F ∗

N = M = 54 N = M = 56 N = M = 58

0.1 1.16746 1.16746 1.16746
0.2 1.38489 1.38489 1.38489
0.3 1.66161 1.66161 1.66161
0.4 2.00976 2.00976 2.00976
0.5 2.44707 2.44707 2.44707
0.6 3.00121 3.00121 3.00121
0.7 3.71724 3.71724 3.71724
0.8 4.67150 4.67150 4.67150
0.9 6.00120 6.00120 6.00120
0.95 6.88224 6.88224 6.88224
0.99 7.73715 7.73715 7.73715
0.995 7.85550 7.85550 7.85550
0.999 7.95228 7.95228 7.95228

a sphere perpendicular to two plane walls with c = b as a
function of a/b can be calculated using the collocation solutions
presented in Tables 3 and 4, and the results agree with those
available in the literature (Ganatos et al., 1980; Chang and Keh,
2006).

The collocation results for the normalized diffusiophoretic
mobility U/U0 of a spherical particle on the median plane be-
tween two parallel plane walls in the normal direction are plot-
ted in Fig. 3 as a function of a/b for several values of �/a.
Analogous to the corresponding motion of a particle perpendic-
ular to a single plane wall discussed in the previous subsection,
whose results are also plotted as dashed curves in this figure
for a comparison, U/U0 decreases with an increase in a/b for
a given value of �/a and increases (or the boundary effect be-
comes weaker) with an increase in �/a for a specified value of
a/b.
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Table 4
Normalized diffusiophoretic velocity of a spherical particle normal to two equally distant plane walls (with c=b) computed from the exact boundary-collocation
solution and the asymptotic method-of-reflection solution

a/b U/U0

�/a = 0 �/a = 0.1 �/a = 1 �/a = 10

Exact Asymptotic Exact Asymptotic Exact Asymptotic Exact Asymptotic
solution solution solution solution solution solution solution solution

0.1 0.99891 0.99891 0.99900 0.99900 0.99936 0.99936 0.99973 0.99973
0.2 0.99143 0.99143 0.99208 0.99208 0.99501 0.99501 0.99796 0.99796
0.3 0.97174 0.97184 0.97388 0.97398 0.98364 0.98371 0.99359 0.99365
0.4 0.93503 0.93594 0.93996 0.94077 0.96257 0.96318 0.98617 0.98671
0.5 0.87734 0.88200 0.88655 0.89071 0.92934 0.93250 0.97570 0.97853
0.6 0.79470 0.81170 0.80984 0.82501 0.88087 0.89263 0.96220 0.97294
0.7 0.68163 0.73087 0.70433 0.74843 0.81172 0.84705 0.94488 0.97768
0.8 0.52842 0.64971 0.55979 0.66961 0.71000 0.80272 0.92002 1.00715
0.9 0.31579 0.58245 0.35284 0.60073 0.54190 0.77135 0.87079 1.08655
0.95 0.17548 0.55918 0.20753 0.57456 0.39558 0.76596 0.80919 1.15733
0.99 0.03874 0.54749 0.05054 0.55936 0.16699 0.76926 0.63655 1.23529
0.995 0.01966 0.54652 0.02625 0.55787 0.11057 0.77025 0.56154 1.24662
0.999 0.0040 0.5458 0.0055 0.5568 0.0403 0.7712 0.4132 1.2560
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Fig. 3. Plots of the normalized velocity U/U0 of a spherical particle situated
midway between two parallel plane walls (with c = b) undergoing diffu-
siophoresis perpendicularly versus the separation parameter a/b for several
values of �/a. The dashed curves are plotted for the corresponding case of
a single plane wall for comparison.

A careful comparison of the curves in Fig. 3 (or of Tables 2
and 4) for the case of a slit with the case of a single wall reveals
an interesting feature of the boundary effect on diffusiophoresis
of a colloidal sphere. The presence of a second normal plane
wall, even at a symmetric position with respect to the sphere
against the first, does not always enhance the wall effect on
the diffusiophoretic particle induced by the first plate only, as
indicated in the example case of �/a = 10. This result reflects

the fact that the wall can affect the solutal driving force and
the viscous drag force on a particle in opposite directions for
some cases (with �/a > 1

2 , as discussed in Appendix A). Each
force is increased in its own direction as the value of a/b

turns small, but to a different degree, for the case of lateral
diffusiophoretic motion of a particle in a slit relative to that for
the case of migration normal to a single plate. Thus, the net
effect composed of these two opposite forces for the slit case
is not necessarily to enhance that for the case of a single wall.

In Fig. 4, the collocation results for the normalized veloc-
ity U/U0 of a colloidal sphere with �/a = 0 and 1

2 under-
going diffusiophoresis normal to two plane walls at various
positions between them are plotted. The dashed curves (with
a/b = constant) illustrate the effect of the position of the sec-
ond wall (at z = c) on the particle velocity for various val-
ues of the relative sphere-to-first-wall spacing b/a. The solid
curves [with 2a/(b+c)=constant], which are symmetric about
b/(b + c) = 1

2 since b and c can be interchanged, indicate the
variation of the particle velocity as a function of the sphere
position at various values of the relative wall-to-wall spacing
(b + c)/2a. It can be seen that the net wall effect is to reduce
the diffusiophoretic mobility U/U0 of the particle. At a con-
stant value of 2a/(b + c), the particle in general experiences a
minimum viscous drag force and has a greatest velocity when
it is located midway between the two walls (with c = b). The
hydrodynamic drag increases and the diffusiophoretic velocity
decreases as the particle approaches either of the walls (or the
ratio b/(b + c) decreases), with an exception for the case that
�/a is small, 2a/(b + c) is small, and b/(b + c) is close to 1

2
[say, �/a =0, 2a/(b+ c)�0.2, and 0.48�b/(b+ c)�0.52, as
illustrated in Fig. 4a]. Interestingly, at some specified values of
a/b for the diffusiophoretic particle near a first wall, the pres-
ence and approach of a second plate can increase the velocity
of the particle when it is far from the particle (c islarge), and
then reduce the particle velocity when it is close to the particle
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Fig. 4. Plots of the normalized diffusiophoretic velocity U/U0 of a spherical
particle perpendicular to two plane walls versus the ratio b/(b + c) with a/b

and 2a/(b + c) as parameters: (a) �/a = 0; (b) �/a = 1
2 .

(say, b/(b + c) > 0.4). Again, Figs. 4a and b indicate that the
wall effect on the diffusiophoresis of the particle is stronger for
the case with a smaller value of �/a.

For the creeping motion of a spherical particle on which a
constant body force F ez (e.g., a gravitational field) is exerted
normal to two infinite plane walls at an arbitrary position be-
tween them, the numerical results of the particle velocity have
been obtained by using the boundary-collocation technique

(Ganatos et al., 1980; Chang and Keh, 2006). A comparison of
our solution with these results indicates that the wall effect on
diffusiophoretic motion is weaker than that on a sedimenting
particle (also see the discussion after Eq. (A.7) in Appendix A).

Because the governing equations and boundary conditions
concerning the general problem of diffusiophoresis of a spheri-
cal particle in an arbitrary direction between two parallel plane
walls are linear, the net solution can be obtained as a super-
position of the solutions for its two subproblems: motion per-
pendicular to the plane walls, which is examined in this paper,
and motion parallel to the confining boundaries. The colloca-
tion solutions for the diffusiophoretic motion of a spherical
particle parallel to two plane walls have already been obtained
by Chen and Keh (2002). It was found that, when the walls
are prescribed with a linear solute concentration profile con-
sistent with the far-field concentration distribution, the wall-
corrected normalized diffusiophoretic velocity of the particle
also increases with an increase in �/a. A comparison between
the Table 3 of Chen and Keh and our Table 4 shows that the
plane walls in general exerts the most influence on the particle
when diffusiophoretic motion occurs normal to them, and the
least in the case of diffusiophoresis parallel to them. Therefore,
the direction of diffusiophoretic motion of a particle between
two parallel plane walls is different from that of the prescribed
solute concentration gradient, except when it is oriented paral-
lel or perpendicular to the plane walls.

4. Concluding remarks

The numerical solution and approximate analytical solu-
tion for the quasisteady diffusiophoretic motion (and elec-
trophoretic motion, for the case with �/a = 0) of a colloidal
sphere perpendicular to two infinite plane walls at an ar-
bitrary position between them have been obtained in this
work by using the boundary-collocation technique and the
method of reflections, respectively, in the limit of vanish-
ingly small Reynolds and Peclet numbers. The boundary-
corrected normalized diffusiophoretic velocity U/U0 of
the particle is found to increase with an increase in �/a,
keeping its distances from the confining walls unchanged.
For a specified value of �/a, the diffusiophoretic mobil-
ity of a particle perpendicular to one or two equally dis-
tant plane walls is a monotonic decreasing function of the
separation parameter a/b. The results of the wall-corrected
particle mobility reflect the dominance of the hydrodynamic
retardation exerted by the confining walls on the particle migra-
tion over the possible diffusiophoretic enhancement due to the
solutal interaction between the particle and the normal walls.
Unfortunately, no experimental data available in the literature
involve the diffusiophoretic velocity of a particle as a function
of its position between two parallel plane walls or near a single
plane wall for a comparison with this theoretical prediction.

The diffusiophoretic mobility of a spherical particle paral-
lel to two infinite plane walls at an arbitrary position between
them was calculated in a previous work (Chen and Keh, 2002)
for various values of the parameters �/a, a/b, and b/(b + c).
It was found that, for the case of the confining walls prescribed
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with the far-field solute concentration profile under the situa-
tion of large �/a or for the case of impermeable walls under
the situation of small �/a, the particle mobility first decreases
and then increases with increasing a/b. When the gaps between
the particle and the plane walls turn thin, the particle can even
migrate faster than it would as a/b=0 (by as much as 22% for
an example case of c = b and a/b = 0.99). The effect of vis-
cous interactions is stronger or the effect of solutal interactions
is weaker in a transverse diffusiophoresis than in a parallel mo-
tion. In general, the net boundary effect on diffusiophoresis of
a particle is stronger for the perpendicular migration. For the
general problem of a particle undergoing diffusiophoresis in an
arbitrary direction with respect to the two parallel plane walls,
the solution can be obtained by adding both the parallel and
transverse results vectorially.

Notation

a radius of the particle, m
A diffusiophoretic mobility defined by Eq. (2), m5/s
b, c the respective distances from the particle center to

the two plates, m
B parameter defined after Eq. (A.8b), m5/s
Bn, Dn coefficients in Eq. (23) or (24) for the flow field,

mn+2/s, mn/s
C solute concentration field in the fluid, m−3

C0 value of C∞ at the position of particle center, m−3

C∞ prescribed solute concentration field defined by
Eq. (9), m−3

d1, d2, d3 constants defined by Eq. (A.16)
ez, er , e� unit vectors in z, r, and � directions
E∞ =|∇C∞|, m−4

F ∗ normalized diffusiophoretic force
G dimensionless parameter defined after Eq. (A.4b)

G
−1/2
n Gegenbauer polynomial of the first kind of order

n and degree − 1
2

H dimensionless parameter defined after Eq. (A.8b)
Jn Bessel function of the first kind of order n
k Boltzmann’s constant, J/K
K Gibbs adsorption length defined by Eq. (6b), m
L∗ characteristic length for the particle–solute inter-

action defined by Eq. (6c), m
M, N numbers of collocation points on the particle sur-

face
Pn Legendre function of order n
r radial spherical coordinate, m
Rm coefficients in Eq. (12) or (13) for the concentra-

tion field, mm+2

T absolute temperature, K
U, U diffusiophoretic velocity of the particle, m/s
U0, U0 diffusiophoretic velocity of an isolated particle de-

fined by Eq. (2), m/s
v velocity field of the fluid, m/s
v�, vz components of v in cylindrical coordinates, m/s
z axial cylindrical coordinate, m

Greek letters

� relaxation coefficient defined by Eq. (5), m

(j)

1n , (j)

2n functions of r and � defined by Eqs. (B.5)
and (B.6), m−n−1, m−n+1


(1)
n , 
(2)

n , 
(3)
n , 
(4)

n functions of r and � defined by Eqs.
(B.1)–(B.4), m−n−1, m−n−2,
m−n−2, m−n−2

� viscosity of the fluid, kg/m s
�, � angular spherical coordinates
� =a/b

� radial cylindrical coordinate, m
� Stokes stream function for the fluid

flow, m3/s

Subscripts

p particle
w wall

Superscript

(i) the ith reflection
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Appendix A. Analysis of the diffusiophoresis of a spherical
particle normal to one or two plane walls by a method of
reflections

In this appendix, the quasisteady diffusiophoretic motion of
a colloidal sphere perpendicular either to an infinite plane wall
(c → ∞) or to two parallel plane walls with equal distances
from the particle (c = b), as shown in Fig. 1, will be analyzed
using a method of reflections. The effect of the walls on the
particle velocity U is sought in expansions of �, which equals
a/b, the ratio of the particle radius to the distance between the
particle center and the walls.

A.1. Motion normal to a single plane wall

For the problem of diffusiophoretic motion of a spherical par-
ticle normal to an infinite plane wall, the governing equations
(3) and (15) must be solved by satisfying the boundary con-
ditions (4), (7)–(9) and (18)–(20) with c → ∞. The method-
of-reflection solution for the solute concentration and velocity
fields in the fluid phase consists of the following series, whose
terms depend on increasing powers of �:

C = C0 + E∞z + C(1)
p + C(1)

w + C(2)
p + C(2)

w + · · · , (A.1a)

v = v(1)
p + v(1)

w + v(2)
p + v(2)

w + · · · , (A.1b)

where subscripts w and p represent the reflections from wall
and particle, respectively, and the superscript (i) denotes the ith
reflection from that surface. In these series, all the expansion
sets of the solute concentration and fluid velocity fields must
satisfy Eqs. (3) and (15).
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According to Eq. (A.1), the diffusiophoretic velocity of the
particle can also be expressed in the series form

U = U0ez + U(1) + U(2) + · · · . (A.2)

In this expression, U0 =AE∞ is the diffusiophoretic velocity of
an identical particle in the corresponding unbounded solution
phase given by Eq. (2); U(i) is related to ∇C

(i)
w and v(i)

w by
(Keh and Luo, 1995)

U(i) = A[∇C(i)
w ]0 + [v(i)

w ]0 + a2

6
[∇2v(i)

w ]0, (A.3)

where the subscript 0 to variables inside brackets denotes eval-
uation at the position of the particle center.

The solution for the first reflected fields from the particle is

C(1)
p = GE∞a3r−2 cos �, (A.4a)

v(1)
p = 1

2 U0a
3r−3(2 cos �er + sin �e�), (A.4b)

where G=( 1
2 −�/a)(1+�/a)−1. Obviously, −1�G� 1

2 , with
the upper and lower bounds occurring at the limits �/a =0 and
�/a → ∞, respectively. The velocity distribution shown in Eq.
(A.4b) is identical to the irrotational flow surrounding a rigid
sphere moving with velocity U0ez.

The boundary conditions for the ith reflected fields from the
wall are derived from Eqs. (7)–(9), (19), and (20),

z = −b : C(i)
w = −C(i)

p , (A.5a)

v(i)
w = −v(i)

p , (A.5b)

r → ∞, z� − b : C(i)
w → 0, (A.5c)

v(i)
w → 0. (A.5d)

The solution of C
(1)
w is obtained by applying Hankel trans-

forms on variable � in Eqs. (3) and (A.5a), (A.5c) (taking i=1),
with the result

C(1)
w = GE∞a3(2b + z)[(2b + z)2 + �2]−3/2. (A.6a)

This reflected concentration field may be interpreted as arising
from the reflection of the imposed field E∞ez from a fictitious
particle identical to the actual particle, its location being at the
mirror-image position of the actual particle with respect to the
plane z = −b (i.e., at x = 0, y = 0, z = −2b). The solution of
v(1)
w can also be obtained by applying Hankel transforms to the

Stokes equation (15) twice and to boundary conditions (A.5b),
(A.5d), which results in

v(1)
w = − 3

2 U0a
3{�(4b + 3z)[(2b + z)2 + �2]−5/2

− 10�(b + z)(2b + z)2[(2b + z)2 + �2]−7/2}e�

− 1
2 U0a

3{2[(2b + z)2 + �2]−3/2

+ 3[4(b + z)(2b + z) − �2][(2b + z)2 + �2]−5/2

− 30�2(b + z)(2b + z)[(2b + z)2 + �2]−7/2}ez.

(A.6b)

The contributions of C
(1)
w and v(1)

w to the velocity of the
particle are determined by using Eq. (A.3):

U(1)
s = A[∇C(1)

w ]r=0 = − 1
4 G�3U0ez, (A.7a)

U(1)
h =

[
v(1)
w + a2

6
∇2v(1)

w

]
r=0

=
(

−1

2
�3 + 1

4
�5

)
U0ez,

(A.7b)

U(1) = U(1)
s + U(1)

h =
[
−

(
1

2
+ 1

4
G

)
�3 + 1

4
�5

]
U0ez.

(A.7c)

Eq. (A.7a) shows that the reflected solute concentration field
from the plane wall can decrease (if G > 0 or �/a < 1

2 ) or in-
crease (if G < 0 or �/a > 1

2 ) the diffusiophoretic velocity of
the particle, while Eq. (A.7b) indicates that the reflected ve-
locity field is to decrease this velocity; the net effect of the re-
flected fields is expressed by Eq. (A.7c), which always retards
the movement of the particle, irrespective of the combination
of the values of G (or �/a) and �. When G=0 (or �/a= 1

2 ), the
reflected concentration field makes no contribution to the diffu-
siophoretic velocity. Eq. (A.7c) shows that the wall correction
to the diffusiophoretic velocity of the particle is O(�3), which
is weaker than that obtained for the corresponding sedimenta-
tion problem, in which the leading boundary effect is O(�).

The solution for the second reflected fields from the particle
is

C(2)
p = E∞[− 1

4 G2�3a3r−2 cos �

+ 3
16 GH�4a4r−3(3 cos2� − 1) + O(�5a5)], (A.8a)

v(2)
p = U0

[
−1

8
G�3a3r−3(2 cos �er + sin �e�)

− 3

64

(
2G

B

A
+ 15

)
�4a2r−2(3 cos2� − 1)er

+ O(�4a4, �5a5)

]
, (A.8b)

where H =3(1−2�/a)(3+4�/a) and B=−(5kT /6�)L∗K(1+
2�/a)−1.

The boundary conditions for the second reflected fields from
the wall are obtained by substituting the results of C

(2)
p and v(2)

p

into Eq. (A.5), with which Eqs. (3) and (15) can be solved as
before to yield

[∇C(2)
w ]r=0 = E∞[− 1

16 G2�6 + O(�9)]ez, (A.9a)[
v(2)
w + a2

6
∇2v(2)

w

]
r=0

= U0

{
− 1

256

[
135 − 2

(
16 + 9

B

A

)
G

]
�6

− 1

16

[
G + 3

64

(
2G

B

A
− 15

)]
�8 + O(�9)

}
ez. (A.9b)

The contribution of the second reflected fields to the particle
velocity is obtained by combining Eqs. (A.3) and (A.9), which
gives

U(2) = U0

{
− 1

256

[
135 − 2

(
16 + 9

B

A

)
G + 16G2

]
�6

− 1

16

[
G + 3

64

(
2G

B

A
− 15

)]
�8 + O(�9)

}
ez.

(A.10)
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Obviously, U(4) will be O(�9). With the substitution of Eqs.
(A.7c) and (A.10) into Eq. (A.2), the particle velocity can be
expressed as U = Uez with

U = U0

{
1 −

(
1

2
+ 1

4
G

)
�3 + 1

4
�5

− 1

256

[
135 − 2

(
16 + 9

B

A

)
G + 16G2

]
�6

− 1

16

[
G + 3

64

(
2G

B

A
− 15

)]
�8 + O(�9)

}
. (A.11)

Owing to the linearity of the problem, the above analysis is
valid when the particle is either approaching the plane wall or
receding from it.

A.2. Motion normal to two parallel plane walls

For the problem of diffusiophoretic motion of a colloidal
sphere perpendicular to two infinite plane walls with equal dis-
tances from the particle, the boundary conditions corresponding
to governing Eqs. (3) and (15) are given by Eqs. (4), (7)–(9),
and (18)–(20) with c = b. With � = a/b>1, the series expan-
sions of the solute concentration, fluid velocity, and particle ve-
locity given by Eqs. (A.1), (A.2), and (A.4) remain valid here.
From Eqs. (7)–(9), (19), and (20), the boundary conditions for
C

(i)
w and v(i)

w are found to be

|z| = b : C(i)
w = −C(i)

p , (A.12a)

v(i)
w = −v(i)

p , (A.12b)

� → ∞, z� |b| : C(i)
w → 0, (A.12c)

v(i)
w → 0. (A.12d)

The first wall-reflected fields can be solved by the same
method as used for the case of a single plane wall in the previous
subsection, with the result

C(1)
w = −GE∞a�2

∫ ∞

0

1 + e−2�

sinh(2�)
sinh

(�

b
z
)

�J0

(�

b
�
)

d�,

(A.13a)

v(1)
w = − U0�

3
∫ ∞

0
�2

[
E(�, z)J1

(�

b
�
)

e�

+F(�, z)J0

(�

b
�
)

ez

]
d�, (A.13b)

where

E(�, z) = 2

2� + sinh(2�)

[
(1 − � − e−� sinh �) sinh

(�

b
z
)

+�

b
z cosh

(�

b
z
)]

, (A.14a)

F(�, z) = 2

2� + sinh(2�)

[
(� + e−� sinh �) cosh

(�

b
z
)

−�

b
z sinh

(�

b
z
)]

. (A.14b)

The contributions of C
(1)
w and v(1)

w to the particle veloc-
ity are determined by using Eq. (A.3), which lead to a result

similar to Eq. (A.7),

U(1)
t = A[∇C(1)

w ]r=0 = −d1G�3U0ez, (A.15a)

U(1)
h =

[
v(1)
w + a2

6
∇2v(1)

w

]
r=0

= [−d2�
3 + d3�

5]U0ez,

(A.15b)

U(1) = U(1)
t + U(1)

h = [−(d1G + d2)�
3 + d3�

5]U0ez, (A.15c)

where

d1 =
∞∫

0

1 + e−2�

sinh(2�)
�2 d� = 0.60103, (A.16a)

d2 =
∫ ∞

0

sinh(�)e−� + �

2� + sinh(2�)
�2 d� = 0.79077, (A.16b)

d3 = 1

3

∫ ∞

0

�4

2� + sinh(2�)
d� = 0.44176. (A.16c)

Again, Eqs. (A.15a) and (A.16a) show that the reflected con-
centration field from the confining walls can decrease (if G > 0
or �/a < 1

2 ) or increase (if G < 0 or �/a > 1
2 ) the particle ve-

locity, while Eqs. (A.15b) and (A.16b), (A.16c) indicate that
the reflected velocity field is to decrease this velocity; the net
effect is expressed by Eq. (A.15c), which can enhance or retard
the movement of the particle, depending on the combination of
the values of G (or �/a) and �. Eq. (A.15c) indicates that the
necessary condition for the wall enhancement on the diffusio-
phoretic motion to occur is a large value of �/a and a value of
� close to unity such that the relation d3�

5 > (d2 + d1G)�3 is
warranted.

Analogous to the previous case, the results of the second
reflections can be obtained as

C(2)
p = −E∞[d1G

2�3a3r−2 cos � + O(�5a5)],
(A.17a)

v(2)
p = −U0d1G�3a3r−3(2 cos �er + sin �e�) + O(�5a3),

(A.17b)

[∇C(2)
w ]r=0 = E∞[d2

1G2�6 + O(�9)]ez, (A.18a)[
∇v(2)

w + a2

6
∇2v(2)

w

]
r=0

= U0[d1d2G�6 − d1d3G�8 + O(�9)]ez, (A.18b)

and

U(2) = [(d2
1G2 + d1d2G)�6 − d1d3G�8 + O(�9)]U0ez. (A.19)

Note that the �4a2 and �4a4 terms in the expressions for C
(2)
p

and v(2)
p vanish.

With the combination of Eqs. (A.2), (A.15c), and (A.19), the
particle velocity can be expressed as U = Uez with

U = U0[1 − (d2 + d1G)�3 + d3�
5

+ (d2
1G2 + d1d2G)�6 − d1d3G�8 + O(�9)]. (A.20)

This result is valid for a particle undergoing diffusiophoresis
toward either of the two plane walls.
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Appendix B. Definitions of some functions in Section 2

The functions 
(j)
m for j equal to 1, 2, 3, or 4 in Eqs. (13),

(14), and (25) are defined by


(1)
m (r, �) =

∫ ∞

0
	(sinh �)−1[−B ′′

1m(	, −b) sinh �

+ B ′′
1m(	, c) sinh �]J0(r	 sin �) d	

+ r−m−1Pm(cos �), (B.1)


(2)
m (r, �)

=
∫ ∞

0
	2(sinh �)−1{sin �[B ′′

1m(	, −b) sinh �

− B ′′
1m(	, c) sinh �]J1(r	 sin �)

− cos �[B ′′
1m(	, −b) cosh �

− B ′′
1m(	, c) cosh �]J0(r	 sin �)} d	

− (m + 1)r−m−2Pm(cos �), (B.2)


(3)
m (r, �)

=
∫ ∞

0
r	3(sinh �)−1

{
sin 2�[B ′′

1m(	, −b) cosh �

− B ′′
1m(	, c) cosh �]J1(r	 sin �)

− 1

4
[B ′′

1m(	, −b) sinh � − B ′′
1m(	, c) sinh �]

× [(1 + 3 cos 2�)J0(r	 sin �)

+ 2sin2�J2(r	 sin �)]
}

d	

+ (m + 1)(m + 2)r−m−2Pm(cos �), (B.3)


(4)
m (r, �)

=
∫ ∞

0
	2(sinh �)−1{cos �[B ′′

1m(	, −b) sinh �

− B ′′
1m(	, c) sinh �]J1(r	 sin �)

+ sin �[B ′′
1m(	, −b) cosh �

− B ′′
1m(	, c) cosh �]J0(r	 sin �)} d	

− (1 + m)r−m−2[Pm(cos �) cos �

− Pm+1(cos �)] csc �, (B.4)

and the functions (j)
in for i and j equal to 1 or 2 in Eqs. (24)

and (25) are defined by

(1)
in (r, �)

= −
∫ ∞

0
[G′′+(�, �)B ′

in(	, −b)

− G′′+(�, �)B ′
in(	, c) − G′+(�, �)B ′′

in(	, −b)

+ G′+(�, �)B ′′
in(	, c)]	J1(	r sin �) d	

− r−n+2i−3[(n + 1)G
−1/2
n+1 (cos �) csc �

− 2(i − 1)G
−1/2
n (cos �) cot �], (B.5)

(2)
in (r, �)

= −
∫ ∞

0
[−G′−(�, �)B ′

in(	, −b) + G′−(�, �)B ′
in(	, c)

+ G′′−(�, �)B ′′
in(	, −b)

− G′′−(�, �)B ′′
in(	, c)]	J0(	r sin �) d	

− r−n+2i−3[Pn(cos � + 2(i − 1)G
−1/2
n (cos �)], (B.6)

where

B ′
1n(	, z) = − 1

n!
(

	|z|
z

)n−1

e−	|z|, (B.7)

B ′′
1n(	, z) = −	n−1

n!
( |z|

z

)n

e−	|z|, (B.8)

B ′
2n(	, z)

= − 1

n!
(

	|z|
z

)n−3

[(2n − 3)	|z| − n(n − 2)]e−	|z|, (B.9)

B ′′
2n(	, z) = − 	n−3

n!
( |z|

z

)n

[(2n − 3)	|z|
− (n − 1)(n − 3)]e−	|z|, (B.10)

G′±(�, v) = �∗�v(�′ ± �′v′), (B.11)

G′′±(�, v) = �∗[v(cosh � − �′v′) ± �(�′ − �′ cosh v)], (B.12)

�′ = sinh �

�
, v′ = sinh v

v
, �′ = sinh �

�
,

�∗ = �

sinh2 � − �2
, (B.13)

� = 	(r cos � + b), � = 	(r cos � − c),

� = 	(b + c). (B.14)
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