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Slipping Stokes flow around a slightly deformed sphere
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When a fluid may slip at the surface of a particle, the conventional boundary condition must be
modified to incorporate the tangential stress at the surface. Even for the simplest nontrivial shapes
of the slip particle, the resulting Stokes problem could not be analytically solved. We present a first
attempt to obtain analytical approximations for the resistance relations for a rigid, slightly deformed
slip sphere in an unbounded Stokesian flow. To the first order in the small parameter characterizing
the deformation, we derive expressions for the hydrodynamic force and torque exerted on the
particle, which are found to be in very good agreement with the available numerical results, even in
the case in which deformations are not small. The drag force on a spheroid is found to be an either
decaying or growing function of the aspect ratio of the particle. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2337666�
The movement of a solid particle immersed in an arbi-
trary fluid flow at low Reynolds numbers is of much funda-
mental and practical interest. In the general formulation of
the Stokes problem,1 it is usually assumed that no slippage
arises at the solid-fluid interface. Actually, this is an ideali-
zation of the transport processes involved. The phenomena
that the adjacent fluid can slip frictionally over a solid sur-
face, occurring for cases such as the low-density gas flow
surrounding an aerosol particle2 and the aqueous liquid flow
near a hydrophobic surface,3 have been confirmed. Presum-
ably any such slipping would be proportional to the local
velocity gradient next to the solid surface,1,4 at least as long
as this gradient is small. The constant of proportionality, �−1,
is called a “slip coefficient.”

The slip coefficient has been determined experimentally
for various cases and found to agree with the general kinetic
theory of gases. For a viscous fluid with the dynamic viscos-
ity �, the slip coefficient can be evaluated from the relation
�−1=Cml /�, where l is the mean free path of a gas molecule,
and Cm is a dimensionless constant in the range 1.0−1.5.5

In general, the underlying Stokes problem could not be
exactly solved for nonspherical slip particles. However, the
consideration of a slightly deformed sphere1 yields sufficient
information about the physics of the processes involved.

Consider an incompressible Newtonian fluid of viscosity
�, extending to infinity, undergoing some arbitrary Stokes
flow with velocity and pressure distributions v and p, respec-
tively. Thus, the fluid motion at small Reynolds numbers is
governed by the Stokes equations

��v = �p, � · v = 0, �1�

subject to a particular set of boundary conditions. The gen-
eral solution of Eq. �1� is given by Ref. 1:
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v = �
n
���n + � � �r�n� +

n + 3

2��n + 1��2n + 3�
r2�pn

−
n

��n + 1��2n + 3�
rpn� , �2�

p = �
n

pn, �3�

where �n , pn and �n are solid spherical harmonics of degree
n, r is a position vector, and r= �r�.

The fluid is allowed to slip on the surface S of the par-
ticle, which leads to the boundary condition1,4

v�S = �−1P��v��S, �4�

where P��v� is the tangential component of the stress vector
P�v�=��v� ·n, with ��v� being a deviatoric stress tensor and
n a unit normal vector on the surface of the particle. Note
that the perfect slip, such as would occur for a gas bubble in
a liquid, corresponds to �→0, whereas the standard no-slip
boundary condition for a solid surface is recaptured in the
limit �→�.

In the fluid far away from the particle, the velocity field
is prescribed as

v�r→� = v�. �5�

Evidently, v� must itself be a solution of Eq. �1�.
It is convenient to go to the comoving frame, v=vR

+v�, and then the boundary conditions acquire the form

vR�S = �− v� + �−1P��vR� + �−1P��v����S, �6�

vR�r→� = 0 . �7�

In what follows, we consider the cases of a plug flow v�

=U and a rotating flow v�=��r at infinity. These two cases
can be treated separately due to the linear structure of Eq. �1�
and boundary conditions �4� and �5�.

We consider a slightly deformed spherical particle fixed

in a prescribed velocity field v�. The shape of the particle in
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spherical coordinates �r ,	 ,
� is given by r=a�1+�f�	 ,
��,
where � is a dimensionless parameter, �� � �1, and f�	 ,
� is
an arbitrary function of angular position, which is of order
unity with respect to �. The expansions for the velocity and
pressure fields naturally acquire the structure

vR = �
i=0

�

�iui, p = �
i=0

�

�ip�i�. �8�

Obviously, each pair �ui , p�i�� must itself satisfy the Stokes
equations. Using the expression for the unit normal vector on
the particle surface, n=r /r−�a�f , we expand boundary
condition �6� in successive powers of � by a Taylor series
expansion about the unperturbed geometry, which corre-
sponds to the spherical surface of r=a, to obtain

�u0 − �−1P�0��r=a = − v��r=a �9�

for the zeroth-order term and

�u1 − �−1P�1��r=a = B1 + B2 + B3 �10�

for the first-order term, with

B1 = af�	,
�
�

�r
�− u0 − v� + �−1P�0��r=a, �11�

B2 = − a�−1��0 · �f��r=a, �12�

B3 = a�−1	
2�P0 · �f�
r

r
+ �P0 ·

r

r
��f�	

r=a
, �13�

where digital subscripts mark zeroth- and first-order terms in
the expansions of the appropriate quantities.

Physically, B1 represents the correction due to the
change in the size of the particle, while B2 and B3 take into
account the changes in the shape of the particle, due to a
local correction in the direction of the normal vector. The
omission of the terms B2 and B3 in the analyses of an axi-
symmetrical slip flow, performed by several authors,6,7 led to
erroneous results for the drag force.

In the spherical coordinates with their origin at the cen-
ter of the undeformed sphere, the perturbation of the surface
of the particle may be expanded into an infinite series of
surface spherical harmonics as

f�	,
� = �
k=0

�

fk�	,
� . �14�

We now consider the general solution of Eq. �1� supplied
with slip boundary condition �4�. As can be shown,1 to get
the solution of Eq. �1� with boundary conditions �6� and �7�
for the case of a spherical particle of radius a, one has to
calculate the following quantities:

1

r
�r · A��r=a = �

n

Xn�	,
� , �15�

	��r · ��
�r · A�

r
− r� · A�	 = � Yn�	,
� , �16�
r=a n
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r · �� � A��r=a = �
n

Zn�	,
� , �17�

where according to Eqs. �9� and �10�, A=vR−�−1P�, while
Xn , Yn, and Zn are surface spherical harmonics. This and
similar techniques were widely used for a variety of different
boundary conditions, e.g., those describing Stokesian flows
around a submerged fluid drop or gas bubble, elastic particle,
etc.8

Substituting the expression for the fluid velocity field in
Eq. �2� and stress vector in Eq. �4� with n=r /r into Eqs.
�15�–�17�, and simultaneously solving the resulting set of
linear equations, we obtain �only those terms that define the
flow in an unbounded fluid, i.e., with negative powers of r,
are retained�

�−n−1 =
�aZn

n�n + 1���a + ��n + 2��
�a

r
�n+1

, n � 1, �18�

the vortical term and

�−n−1 =
a��aYn + Xn��an + 2��n2 − 1��

2�n + 1���a + ��2n + 1��
�a

r
�n+1

, �19�

p−n−1 =
��2n − 1�
a�n + 1�

�a

r
�n+1

�
�aYn + Xn�n + 2���a + 2n��

�a + ��2n + 1�
, n � 1, �20�

the hydrodynamic potential and pressure terms. Thus, Eqs.
�18�–�20� allow us to describe the structure of the fluid flow
when the surface harmonics of Eqs. �15�–�17� are given.
Note that, in the limit �a��, expressions �18�, �19�, and
�10� reproduce the well-known result for the conventional
no-slip flow.1

Equations �18�–�20� allow us to obtain the zeroth-order
terms in the expansion of the velocity field. Substituting v�

=U into Eqs. �15�–�17� and using Eqs. �18�–�20�, we get

v0 = U�1 −
B

r
−

D

r3� +
�U · r�r

r2 �3D

r3 −
B

r
� , �21�

D =
a3

4

�a

�a + 3�
, B =

3a

4

�a + 2�

�a + 3�
�22�

for a plug flow. Similarly, v�=��r yields

v0 = �r −
4D

r2 � �� � r�
r

�23�

for a rotating flow. Both expressions �21� and �23� are in
agreement with the results obtained previously.1,4

In the general situation, having expressed vectors B1, B2,
and B3 in Eq. �10� in terms of surface spherical harmonics,
and utilizing the relations �18�–�20�, one can construct the
first-order corrections to the background velocity fields �21�
and �23� as an infinite sum over the angular terms fk�	 ,
� in
Eq. �14� relevant to a particular perturbation of the shape of
a spherical particle. However, to obtain physically important
characteristics of the fluid flows around the particle, such as

the hydrodynamic resistance tensors, all sufficient informa-
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tion can be extracted from the finite number of terms in the
infinite sum of Eq. �2�, representing the velocity field.

To evaluate the hydrodynamic drag force and torque act-
ing on a deformed spherical particle, we use the well-known
formulas derived in terms of the solid spherical harmonics
p−2 and �−2,1

F = − 4��r3p−2�, T = − 8���r3�−2� , �24�

and recall that these general expressions for the force and
torque are independent of the shape of the particle. Naturally
introducing the expansions in powers of perturbation param-
eter �,

F = �
i=0

�

�iFi, T = �
i=0

�

�iTi, �25�

we proceed with the appropriate terms in the expansion �2�,
viz., p−2

�1� and �−2
�1� �see Eqs. �18� and �20�� with respect to the

first order of �. Performing some analytical manipulations by
means of MATHEMATICA 4.0, we get

p−2U
�1� = −

3�ar−3

2
��2a2 + 6�a� + 6�2

��a + 3��2 �U · r�f0

−
�2a2 + 6�a� + 24�2

10��a + 3��2 �U · ���r2f2�� , �26�

�−2U
�1� = a2r−23��a + 2��

4��a + 3��
U · � � �rf1� �27�

for the case of a plug flow and

p−2�
�1� = − �a2r−23��a + 2��

2��a + 3��
� · � � �rf1� , �28�

�−2�
�1� = − a3r−33�a��a + 4��

��a + 3��2 
�� · r�f0 −
1

10
�� · ��

��r2f2�� �29�

for a rotating flow.
Usefully introducing notations for the resistance tensors,

�Fi

Ti
� = � 6�a��i� 6�a2D�i�

6�a2C�i� 8�a3��i� � · �U

�
� , �30�

we obtain

�ij
�1� =

�2a2 + 6�a� + 6�2

��a + 3��2 �ij f0

−
�2a2 + 6�a� + 24�2

10��a + 3��2 �i� j�r2f2� , �31�

�ij
�1� =

3�a��a + 4��
2 
�ij f0 −

1
�i� j�r2f2�� , �32�
��a + 3�� 10
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Cij
�1� = − Dij

�1� = −
�a + 2�

�a + 3�
�ijk�k�rf1� , �33�

where �ij is a Kronecker delta, �ijk is a Levi-Civita permuta-
tion symbol, and components of the resistance tensors are
given in a Cartesian frame. In the limit �a��, the expres-
sions of the resistance tensors in Eqs. �31�–�33� coincide
with those for a no-slip deformed sphere.1 Furthermore, the
translational and rotational resistance tensors ��1� and ��1�

are symmetric, while the coupling tensors are antisymmetric
and conjugated, �C�1��T=D�1�, which in turn follows from the
general symmetry properties of the kinetic coefficients �the
so-called Onsager relations�.

As particular cases of interest, we consider the following
form of a spheroidal particle in the Cartesian frame �x ,y ,z�:

x2 + y2

a2 +
z2

a2�1 − ��2 = 1. �34�

For the case ��0, the spheroid is oblate; for the case ��0,
the spheroid is prolate. To O���, the shape of the particle can
be written as

r = a
1 − ��1

3
P0�cos 	� +

2

3
P2�cos 	��� , �35�

with the Legendre polynomials P0�cos 	� and P2�cos 	�. Us-
ing Eqs. �31� and �32� for the translational and rotational
resistance tensors in the spheroidal geometry, we get

��spheroid
�1� �ij = −

2

5
�ij +

�2a2 + 6�a� + 24�2

5��a + 3��2 �i3� j3, �36�

��spheroid
�1� �ij = −

3�a��a + 4��
5��a + 3��2 �2�ij − �i3� j3� �37�

while the coupling tensors obviously vanish.
Concerning the axisymmetric flow past a spheroid, i.e.,

U=U��ez and F=F��ez, in which ez is the unit vector in the z
direction, using Eq. �36� we have the simple compact expres-
sion for the total drag force,

F�� = 6�aU����a + 2�

�a + 3�
− �

�2a2 + 6�a� − 6�2

5��a + 3��2 � . �38�

Expression �38� for the drag force acting on a spheroid fixes
the erroneous result published in Refs. 6 and 7. Interestingly,
in the case in which the undisturbed fluid velocity is perpen-
dicular to the axis of revolution of the spheroid, i.e., U ·ez

=0, F ·ez=0, �U � =U�, and �F � =F�, the slip effect on the
drag force disappears to the O��� terms,

F� = 6�aU���a + 2�

�a + 3�
− �

2

5
� . �39�

Similarly, for the case of the axisymmetrical rotation of the
flow, i.e., �=���ez and T=T��ez, the hydrodynamic torque

exerted on the spheroid about the axis of symmetry becomes
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T�� = 8�a3���� �a

�a + 3�
− �

3�a��a + 4��
5��a + 3��2 � . �40�

For the rotational flow around the spheroid with respect to an
equatorial axis, i.e., � ·ez=0, T ·ez=0, �� � =��, and �T �
=T�, we get

T� = 8�a3��� �a

�a + 3�
− �

6�a��a + 4��
5��a + 3��2 � . �41�

Recently, Keh and Huang9 investigated the problem of
slow axisymmetrical flow of a viscous incompressible fluid
past a slip spheroid with an arbitrary aspect ratio using a
method of internal singularity distribution combined with a
boundary-collocation technique. The analytical approxima-
tion of the dimensionless form factor for the axisymmetrical

FIG. 1. The dimensionless drag force for the longitudinal motion of prolate
and oblate spheroids as functions of the aspect ratio for various values of
slip parameter �a /�. The short curves represent the analytical approxima-
tion given by Eq. �38� and the long curves denote the numerical solution
obtained by Keh and Huang in Ref. 9.
ownloaded 19 Nov 2008 to 140.112.113.225. Redistribution subject to
motion of a spheroid given by Eq. �38� is plotted in Fig. 1 as
functions of its aspect ratio �i.e., 1−�� against the values
obtained numerically9 for the prolate and oblate cases, re-
spectively. It can be seen from the figures that the analytical
solution closely follows the numerical results �up to the as-
pect ratio �2 in the prolate case and aspect ratio �0.6 in the
oblate case�.

The competition between the slip and surface area ef-
fects, characterized by one dimensionless parameter �a /�,
allows for the existence of different behaviors of the form
factor �i.e., dimensionless drag force� as a function of the
aspect ratio of a spheroid. For the case of a plug flow past a
spheroid with a no-slip surface or a slip surface having large
values of �a /�, the value of the form factor increases mono-
tonically �up to the O��� term� with an increase of the aspect
ratio. For a slip spheroid with a small value of �a /�, say,
�0.1, however, the form factor is a monotonically decreas-
ing function of the aspect ratio. When the aspect ratio is
large, the major portion of the fluid slip at the particle surface
occurs in the direction of the particle’s movement. However,
when the aspect ratio becomes small, the main component of
the fluid slip at the surface of a spheroidal particle is in the
direction normal to the motion of the spheroid. To conclude,
we note that the form factor is a monotonically increasing
function of �a /� for a given value of the aspect ratio �see
Fig. 1�.
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