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Abstract

A theoretical study is presented for the steady diffusioosmotic flow of an electrolyte solution in a fine capillary slit with each of its inside walls
coated with a layer of polyelectrolytes generated by an imposed tangential concentration gradient. In this solvent-permeable and ion-penetrable
surface charge layer, idealized polyelectrolyte segments are assumed to be distributed at a uniform density. The electric double layer and the
surface charge layer may have arbitrary thicknesses relative to the gap width between the slit walls. The Poisson–Boltzmann equation and a
modified Navier–Stokes/Brinkman equation are solved numerically to obtain the electrostatic potential, dynamic pressure, tangentially induced
electric field, and fluid velocity as functions of the lateral position in the slit in a self-consistent way, with the constraint of no net electric current
arising from the cocurrent diffusion, electric migration, and diffusioosmotic convection of the electrolyte ions. The existence of the surface charge
layers can lead to a diffusioosmotic flow quite different from that in a capillary with bare walls. The effect of the lateral distribution of the induced
tangential electric field and the relaxation effect due to ionic convection in the slit on the diffusioosmotic flow are found to be very significant in
practical situations.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The electrokinetic flows of an electrolyte solution in a small
pore with a charged wall are of much fundamental and practical
interest in various areas of science and engineering. Perhaps the
most familiar example of an electrokinetic flow is electroosmo-
sis, which results from the interaction between a tangentially
applied electric field and the electric double layer adjacent to
the charged wall. Problems of fluid flow caused by this well-
known mechanism were studied extensively in the past [1–10].

Another example of electrokinetic flows in a micropore,
which is termed diffusioosmosis (also known as capillary os-
mosis [5,11]) and has caught less attention, involves a tangen-
tial concentration gradient of the electrolyte that interacts with
the charged pore wall. As in the case of electroosmosis, the
electrolyte–wall interaction in diffusioosmosis is electrostatic
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in nature and its range is the Debye screening length κ−1 (de-
fined right after Eq. (3)). The tangential gradient of a dissociat-
ing electrolyte produces fluid flow along a charged solid surface
by two mechanisms. The first comprises the stresses developed
by the tangential gradient of the excess pressure within the elec-
tric double layer (chemiosmotic effect), and the second is based
on the macroscopic electric field that is generated because the
tangential diffusive and convective fluxes of the two electrolyte
ions are not equal (electroosmotic effect). The fluid motion
caused by diffusioosmosis has been analytically examined for
electrolyte solutions near a plane wall [11–17] and inside a cap-
illary pore [17–23]. Some experimental results and interesting
applications concerning diffusioosmosis are also available in
the literature [24].

Although the basic relationships involved in electrokinetic
phenomena were derived mainly by using the traditional model
of plane distribution of surface charges, quite a number of in-
vestigations have applied these phenomena to the study of the
effects of adsorbed polyelectrolytes on the solid surfaces. The
electroosmotic flows in capillaries with thin polymer layers on
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the inside walls were theoretically examined for the cases of
a slit [25,26] and a tube [27] with thin double layers. On the
other hand, analytical formulas for the electroosmotic veloc-
ity profile of electrolyte solutions on the cross section of a
capillary with its inside wall coated with a finite layer of ad-
sorbed polyelectrolytes were obtained by solving the linearized
Poisson–Boltzmann equation for the case of an arbitrary value
of κR or κh, where R is the radius of a capillary tube and h is
the half-thickness of a capillary slit [28,29].

Recently, the diffusioosmotic flow of a solution of symmet-
ric electrolytes in a fine capillary slit bearing adsorbed polyelec-
trolytes on its inside walls was theoretically investigated for the
case of small electrostatic potentials or low fixed-charge densi-
ties, and analytical formulas for the fluid velocity profile on the
cross section of the slit were obtained [30,31]. In these studies,
however, either the effect of lateral distributions of the counte-
rions and co-ions (or of the electrostatic potential) on the local
electric field induced by the imposed electrolyte concentration
gradient in the tangential direction or the effect of the ionic con-
vection on it caused by the diffusioosmotic flow (relaxation ef-
fect) was neglected. Moreover, these analyses are subject to the
severe restriction that the electrostatic potential is sufficiently
low (less than about 25 mV) for the Debye–Hückel approx-
imation to be acceptable. In practical applications, however,
electrostatic potentials as high as 100–200 mV are frequently
encountered.

In this work we present a comprehensive analysis of the
steady diffusioosmosis of an electrolyte solution with a con-
stant prescribed concentration gradient through a capillary slit
bearing permanently adsorbed or covalently bound polyelec-
trolytes on each of its inside walls. The charge and segment
densities of the adsorbed polymers are assumed to be uniform
throughout the surface charge layer, but no assumption is made
concerning the magnitude of the electrostatic potential or the
thicknesses of the surface charge layer and the electric double
layer relative to the gap width between the slit walls. Both the
lateral distribution of the induced axial electric field and the
effect of the ionic convection on it are allowed. The Poisson–
Boltzmann equation governing the electrostatic potential and a
modified Navier–Stokes/Brinkman equation governing the fluid
flow within the capillary are numerically solved and results for
the induced electric field and diffusioosmotic velocity profiles
are obtained for various cases. These results show that the ef-
fect of the deviation of the induced electric field in the slit from
its bulk-phase quantity and the effect of the ionic convection on
the diffusioosmotic velocity of the fluid are very significant in
practical situations.

2. Electrostatic potential distribution

In this section we consider the lateral distribution of the
electrostatic potential in the fluid solution of a symmetrically
charged electrolyte of valence Z (where Z is a positive inte-
ger) undergoing diffusioosmosis in the narrow channel between
two large identical parallel plates of length L at separation dis-
tance 2h with h � L, as illustrated in Fig. 1. Each of the inside
walls of the capillary slit is coated with a layer of adsorbed
Fig. 1. Geometrical sketch for diffusioosmosis in a capillary slit with each of
its inside walls coated with a layer of adsorbed polyelectrolytes.

charged polymers in equilibrium with the surrounding solution.
The polymer layer is treated as a solvent-permeable and ion-
penetrable surface charge layer of constant thickness d = h − b

in which fixed-charged groups of valence q are distributed at
a uniform density N . Experimental values for human erythro-
cytes [32], rat lymphocytes [33], and grafted polymer macro-
capsules [34] indicate that d ranges from 7.8 nm to 3.38 µm
and N can be as high as 0.03 kmol/m3, depending on the pH
and ionic strength of the electrolyte solution.

The applied electrolyte concentration gradient ∇n∞ is a
constant along the axial (z) direction in the capillary slit, where
n∞(z) is the linear concentration (number density) distribution
of the electrolyte in the bulk solution phase in equilibrium with
the fluid inside the slit. The electrolyte ions can diffuse freely in
the slit (inside and outside the surface charge layers), so there
exists no regular osmotic flow of the solvent. The end effects
are neglected. It is assumed that n∞ is only slightly nonuni-
form, such that

L|∇n∞|/n∞(0) � 1,

where z = 0 is set at the midpoint through the slit. Thus, the
variation of the electrostatic potential (excluding the macro-
scopic electric field induced by the electrolyte gradient, which
will be discussed in the next section) and ionic concentrations
in the capillary with the axial position can be neglected in com-
parison with their corresponding quantities at z = 0.

Owing to the planar symmetry of the system, we need con-
sider only the half-region 0 � y � h, where y is the distance
from the median plane between the slit walls in a normal direc-
tion. If ψ(y) represents the electrostatic potential at the position
y relative to that in the bulk solution and n+(y, z) and n−(y, z)

denote the local concentrations of the cations and anions, re-
spectively, of the symmetric electrolyte with valence Z, then
Poisson’s equation gives

(1)
d2ψ

dy2
= −e

ε

{
Z

[
n+(y,0) − n−(y,0)

] + H(y)qN
}
.

In this equation, e is the charge of a proton; H(y) is a unit
step function, which equals unity if b < y < h, and zero if 0 �
y < b; ε is the permittivity of the electrolyte solution which is
assumed to be constant.

The local ionic concentrations n+ and n− can also be related
to the electrostatic potential ψ by the Boltzmann equation,

(2)n± = n∞ exp
(∓ψ

)
,
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where ψ = Zeψ/kT (k is the Boltzmann constant and T is
the absolute temperature) is the dimensionless potential profile.
Substitution of Eq. (2) into Eq. (1) results in the well-known
Poisson–Boltzmann equation,

(3)
d2ψ

dy2
= κ2 sinhψ − H(y)κ2N,

where

κ = [
2(Ze)2n∞(0)/εkT

]1/2

is the Debye screening parameter and

N = Ze2qN/εκ2kT .

Note that the Debye–Hückel approximation with small magni-
tudes of ψ , which was employed in the previous studies, is not
used here. Also, the parameter N is of order unity and can be
viewed as a nondimensionalized Donnan potential [26,35] of
the surface charge layer.

For the case of constant surface potential, the boundary con-
ditions for ψ are

(4a)
dψ

dy
(y = 0) = 0,

(4b)ψ
(
y = b−) = ψ

(
y = b+)

,

(4c)
dψ

dy

(
y = b−) = dψ

dy

(
y = b+)

,

(4d)ψ(y = h) = ζ ,

where ζ = Zeζ/kT is the dimensionless zeta potential at the
shear plane of the slit walls adjacent to the electrolyte solu-
tion having a uniform bulk concentration n∞(0). Equations (4b)
and (4c) are the continuity requirements for ψ and dψ/dy at
the outer edge of the surface charge layer [26,36]. If the con-
stant surface charge density, instead of the surface potential ζ ,
is known at the slit walls, the boundary condition specified by
Eq. (4d) should be replaced by the Gauss condition [22].

Equations (3) and (4), with arbitrary values of b/h, N , ζ ,
and κh, can be numerically solved by employing the finite dif-
ference method. Figs. 2a and 2b show the numerical results of
the dimensionless potential ψ for the case of a slit filled with
adsorbed polyelectrolytes (b/h = 0) and for the case of a slit
with finite surface charge layers (b/h = 0.8), respectively, with
N = 1 as functions of the relative position y/h for several val-
ues of the parameters ζ and κh. As expected, the potential
profile for any case of given values of b/h and κh increases
monotonically with an increase in ζ . The decay of the potential
from the capillary wall with decreasing y/h becomes gentler
when the value of κh is smaller for any case. In the limit κh = 0,
the potential in the capillary is a constant equal to the surface
potential of the wall for the specified case of N = 1. In the other
limit with κh → ∞, the potential in the capillary becomes zero
everywhere. For the case of ζ = 0, the potential profile for fixed
values of b/h and κh increases monotonically with an increase
in N , which is not illustrated in Fig. 2, for conciseness. Com-
paring Fig. 2 with the analytical result for the potential profile
obtained using the Debye–Hückel approximation [30], we find
(a)

(b)

Fig. 2. Plots of the dimensionless potential ψ(y) in a slit with its inside walls
coated with layers of polyelectrolytes with N = 1 versus the relative position
y/h: (a) b/h = 0; (b) b/h = 0.8. The solid and dashed curves denote the cases
κh = 10 and κh = 1, respectively.

that this approximation in general overestimates the magnitudes
of ψ .

3. Induced electric field distribution

The ionic concentrations n+ and n− in the fluid undergoing
diffusioosmosis in the capillary slit with surface charge lay-
ers are not uniform in both axial (z) and lateral (y) directions;
hence their prescribed gradients in the axial direction can give
rise to a “diffusion current” distribution on a cross section of
the slit. To prevent a continuous separation of the counterions
and co-ions, an electric field distribution along the axial direc-
tion arises spontaneously in the electrolyte solution to produce
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another electric current distribution, which exactly balances the
diffusion current [11–23]. This induced electric field generates
an electroosmotic flow of the fluid in the slit, in addition to the
chemiosmotic flow caused by the imposed electrolyte gradient
directly. Both the chemiosmotic and the electroosmotic flows
also generate an electric current distribution by ionic convection
(known as the relaxation effect), and alternately, this secondary
“convection current” again needs to be balanced by the electric
current contributed from the induced electric field.

The total flux of either ionic species can be expressed in the
general form

(5)J± = −D±
[
∇n± ± Ze

kT
n±(∇ψ − E)

]
+ n±u,

where u = u(y)ez is the fluid velocity in the axial direction of
decreasing electrolyte concentration (i.e., ez is the unit vector
in the direction of −∇n∞), D+ and D− are the diffusion co-
efficients of the cations and anions, respectively, E = E(y)ez

is the macroscopic electric field induced by the prescribed con-
centration gradient of the electrolyte, and the principle of su-
perposition for the electric potential is used. To have no net
electric current arising from the cocurrent diffusion, electric
migration, and diffusioosmotic convection of the cations and
anions, one must require that J+ = J− = J (obviously, the lat-
eral component of J vanishes and the ionic fluxes induced by
∇ψ in Eq. (5) are balanced by the lateral components of the
diffusive ionic fluxes as required by the Boltzmann distribution
given by Eq. (2)).

Applying the constraint J+ = J− to Eq. (5), we obtain

(6)

E = kT

Ze

∇n∞

n∞(0)

[
(1 + β)e−ψ − (1 − β)eψ

(1 + β)e−ψ + (1 − β)eψ

+ Pe sinhψ

(1 + β)e−ψ + (1 − β)eψ

u

U∗

]
,

where

(7)U∗ = ε|∇n∞|
ηn∞(0)

(
kT

Ze

)2

= 2kT

ηκ2

∣∣∇n∞∣∣,
which is a characteristic value of the diffusioosmotic velocity,

(8)β = D+ − D−
D+ + D−

,

(9)Pe = 4n∞(0)U∗

(D+ + D−)|∇n∞| = 8n∞(0)kT

(D+ + D−)ηκ2
,

and η is the fluid viscosity, which is taken to be constant.
As it is defined by Eq. (8), −1 � β � 1, with the upper and
lower bounds occurring as D−/D+ → 0 and ∞, respectively.
Typical values of the physical quantities in Eqs. (6)–(9) are
U∗ = 10−5 m/s, D± = 10−9 m2/s, n∞(0)/|∇n∞| = 10−4 m,
and Pe of order unity. The induced electric field E given by
Eq. (6) in a self-consistent way depends on the local electrosta-
tic potential ψ , which was numerically solved in the previous
section, and the fluid velocity u, which will be determined in
the next section. It indicates that E is collinear with and propor-
tional to the axially imposed electrolyte gradient ∇n∞.
If we consider the situation that κb � 1, then, at a position
y � b,ψ → 0 and Eq. (6) for the induced electric field caused
by the imposed electrolyte concentration gradient reduces to its
bulk-phase quantity,

(10)E∞ = kT

Ze

β∇n∞

n∞(0)
.

For the special case of uncharged surface layers and slit walls
(N = ζ = 0), E at any location y is also identical to this bulk-
phase quantity. Note that E∞ is in the same direction as β∇n∞
and linearly proportional to the parameter β , but E(y) need not
vanish if β = 0, even as Pe = 0, as shown in Eq. (6).

4. Fluid velocity distribution

We now consider the steady diffusioosmotic flow of a sym-
metric electrolyte solution in a capillary slit with each of its
inside walls covered by a layer of charged polymers under the
influence of a constant concentration gradient of the electrolyte
prescribed axially. The momentum balances on the incompress-
ible and Newtonian fluid in the y and z directions give

(11)
∂p

∂y
+ Ze(n+ − n−)

dψ

dy
= 0,

(12)η
d2u

dy2
− H(y)f u = ∂p

∂z
− Ze(n+ − n−)E,

where p(y, z) is the dynamic pressure distribution and f is the
hydrodynamic friction coefficient in the polymer layer per unit
volume of the fluid, which is assumed to be constant. Equa-
tion (12) is the Navier–Stokes/Brinkman equation, modified by
adding a term for electrostatic force.

The boundary conditions for u are

(13a)
du

dy
(y = 0) = 0,

(13b)u
(
y = b−) = u

(
y = b+)

,

(13c)
du

dy

(
y = b−) = du

dy

(
y = b+)

,

(13d)u(y = h) = 0.

Equations (13b) and (13c) express the continuity conditions of
u and of du/dy at the outer boundary of the surface charge layer
[25–27]. In Eq. (13d), we have assumed that the shear plane
coincides with the surface of the bare wall.

After the substitution of Eq. (2) into Eq. (11) based on
the assumption that the equilibrium ionic distributions are not
affected by the net electrolyte flux J, which is warranted if
|∇n∞|/κn∞(0) � 1, the pressure distribution in a capillary slit
with each of its inside walls coated with a layer of adsorbed
polyelectrolytes can be determined as

(14)p = p0 + 2n∞(z)kT
[
coshψ − coshψ(0)

]
.

Here, p0 is the pressure at the median plane between the slit
walls, which is a constant in the absence of applied pressure
gradient, and the electric potential distribution ψ(y) has been
solved numerically in Section 2.



690 H.C. Ma, H.J. Keh / Journal of Colloid and Interface Science 313 (2007) 686–696
(a)

(b)

Fig. 3. Plots of the dimensionless pressure (p −p0)/n∞kT in a slit with its in-
side walls coated with layers of polyelectrolytes with N = 1 versus the relative
position y/h: (a) b/h = 0; (b) b/h = 0.8. The solid and dashed curves denote
the cases κh = 10 and κh = 1, respectively.

The pressure distribution p in the slit with surface charge
layers can be obtained by substituting the numerical solution
of ψ(y) into Eq. (14). Figs. 3a and 3b illustrate this result for
the cases of b/h equal to 0 and 0.8, respectively, for N = 1
and various values of ζ and κh. It can be seen from Figs. 2
and 3 that the dimensionless pressure (p−p0)/n∞kT increases
(decreases) with the relative coordinate y/h as long as the mag-
nitude of the dimensionless potential ψ increases (decreases)
with y/h, irrespective of the values of ζ and κh. This behav-
ior is understood by an examination of Eq. (11) for the fluid
momentum balance in the lateral direction. For the case of
ζ � 1, the value of (p − p0)/n∞kT is always positive and in-
creases monotonically with an increase in the value of y/h.
On the other hand, for the case of b/h = 0 and ζ = 0, the
value of (p − p0)/n∞kT is always negative, and its magnitude
is also a monotonic increasing function of y/h. The value of
(p − p0)/n∞kT may change signs when the value of y/h in-
creases and approaches unity for the case of b/h = 0 and ζ < 0.
Comparing Fig. 3 with the analytical result for the pressure pro-
file obtained using the Debye–Hückel approximation [30], we
find that this approximation in general underestimates the val-
ues of p − p0.

After substituting Eq. (2) for n±, Eq. (6) for E(y), and
Eq. (14) for p into Eq. (12), and using the numerical solu-
tion for ψ(y) obtained in Section 2, the diffusioosmotic veloc-
ity distribution u(y) of the electrolyte solution as a function
of the parameters b/h,N, ζ ,β , Pe, κh, and λh [where λ =
(f/η)1/2] can be numerically solved using the finite difference
method. Then the distribution of the macroscopic electric field
E(y) induced by the prescribed electrolyte concentration gra-
dient can also be numerically determined by substituting the
numerical results for ψ(y) and u(y) into Eq. (6). It is under-
stood that, for given values of b/h, Pe, κh,λh, and y/h, the
quantities E(y) and u(y) with specified values −ζ and β are
equal to those with the values ζ and −β when N = 0 (the poly-
mer layer is uncharged), but these relations do not exist when
N 	= 0. Similarly, the quantities E(y) and u(y) with specified
values −N and β are equal to those with the values N and −β

when ζ = 0. Note that the analytical results for E(y) and u(y)

obtained using the Debye–Hückel approximation with no re-
laxation effect (taking Pe = 0 in Eq. (6)) are given in a previous
article [31].

The parameter 1/λ has the dimension of length and the
square of it is the so-called Darcy permeability of the porous
medium, which is related to the pore (or segment) size and
porosity and characterizes the dynamic behavior of the vis-
cous fluid in the porous medium. For the surface charge layers
of human erythrocytes [26], rat lymphocytes [33], and grafted
polymer microcapsules [34], experimental data of 1/λ range
from 1.35 to 3.7 nm.

5. Results and discussion

The macroscopic electric field E(y) induced by a prescribed
concentration gradient of a symmetric electrolyte in a capillary
slit filled with absorbed polyelectrolytes (b/h = 0) normalized
by its quantity at the median plane between the slit walls, E(0),
as a function of the normalized coordinate y/h is plotted in
Figs. 4 and 5 for some values of the dimensionless parameters
N,ζ ,β, κh,λh, and Pe. As expected, the normalized induced
electric field in general is a sensitive function of y/h and can
deviate much from its bulk-phase value. This fact should play
an important role in the electroosmotic contribution to the fluid
velocity. When Pe = 0, the effect of the ionic convection on the
induced electric field is not involved, as indicated in Eq. (6), and
the induced electric field distribution is independent of the per-
meability parameter λh. In this case, E(y)/E(0) is positive and
its value increases with an increase in y/h from unity at the
median plane of the slit to a maximum at its walls, increases
with an increase in κh from unity at κh = 0 to a certain ex-
tent, decreases with an increase in N as β = 0, and equals unity
in the limits β = ±1, for an otherwise specified condition. On
the other hand, when the value of Pe is finite, the magnitude
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(a)

(b)

Fig. 4. Plots of the normalized electric field E(y)/E(0) induced by an
electrolyte gradient in a slit filled with polyelectrolytes (b/h = 0) with
ζ = 2, κh = 1, and λh = 1 versus the relative position y/h: (a) for N = 1 and
various values of β ; (b) for β = 0 and various values of N . The solid and dashed
curves represent the cases Pe = 1 and 0, respectively.

of E(y)/E(0) in general is larger than that for the case of Pe
= 0, but exceptions may exist and it may not be a monotonic
function of y/h as the magnitude of β approaches unity, and
it decreases with an increase in λh as expected. In all cases,
the effect of the electrolyte convection (relaxation effect) on the
local induced electric field in the capillary slit can be quite sig-
nificant, not only quantitatively but also qualitatively, even for
the cases of low fixed charge density in the layers of adsorbed
polyelectrolytes and/or low zeta potential at the slit walls.

In Figs. 6 and 7, the normalized induced electric field
E(y)/E(0) in a slit with its inside walls covered by finite lay-
ers of adsorbed polyelectrolytes (with b/h = 0.8) as a function
of the relative coordinate y/h is plotted for several values of
the dimensionless parameters N,ζ ,β, κh,λh, and Pe. Interest-
ingly, as indicated in Fig. 7b, E(y)/E(0) decreases with an
(a)

(b)

Fig. 5. Plots of the normalized electric field E(y)/E(0) induced by an elec-
trolyte gradient in a slit filled with polyelectrolytes (b/h = 0) with N = 1,
β = 0, and Pe = 1 versus the relative position y/h: (a) for λh = 1 and various
values of κh; (b) for κh = 1 and various values of λh. The solid and dashed
curves represent the cases ζ = 6 and 2, respectively.

increase in the permeability parameter λh if the position y is
deep inside the porous surface layer, as expected, but it tends
to increase with an increase in λh if the position y is out-
side the porous layer. Since the thickness of the surface charge
layer for the case considered in Fig. 6b is relatively thin, its
induced electric field distribution is not a sensitive function of
the parameter N , especially when the effect of electrolyte con-
vection is included. Other characteristics of the induced elec-
tric field for the case with a finite value of b/h are similar to
those for the case of b/h = 0. The existence of the surface
charge layers at the slit walls can lead to an induced electric
field distribution quite different from that in a slit with bare
walls [17].

The dimensionless diffusioosmotic velocity u/U∗ of an
electrolyte solution in a capillary slit filled with absorbed poly-
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(a)

(b)

Fig. 6. Plots of the normalized electric field E(y)/E(0) induced by an elec-
trolyte gradient in a slit with surface layers of polyelectrolytes with b/h =
0.8, ζ = 2, κh = 1, and λh = 1 versus the relative position y/h: (a) for N = 1
and various values of β ; (b) for β = 0 and various values of N . The solid and
dashed curves denote the cases Pe = 1 and 0, respectively.

electrolytes (b/h = 0) as a function of the relative coordinate
y/h is plotted in Figs. 8 and 9 for some values of the para-
meters N,ζ ,β, κh,λh, and Pe. This diffusioosmotic velocity
can be either positive or negative and in general is a monotonic
function of each parameter for an otherwise specified condi-
tion. For the typical case of N = 1 and ζ = 2 given in Fig. 8a,
u is negative when the magnitude of β is not too close to unity,
meaning that the diffusioosmotic flow is in the direction of in-
creasing electrolyte concentration. When the magnitude of β

approaches unity, the fluid may flow against the electrolyte con-
centration gradient (u is positive). In general, the magnitude
of u/U∗ decreases with an increase in the normalized coordi-
nate y/h from the maximum at the median plane of the slit and
to zero at the no slip walls (there are exceptions) for a given
(a)

(b)

Fig. 7. Plots of the normalized electric field E(y)/E(0) induced by an elec-
trolyte gradient in a slit with surface layers of polyelectrolytes with b/h = 0.8,
N = 1, β = 0, and Pe = 1 versus the relative position y/h: (a) for λh = 1 and
various values of κh; (b) for κh = 1 and various values of λh. The solid and
dashed curves denote the cases ζ = 6 and 2, respectively.

system. As expected, Fig. 9b illustrates that the magnitude of
the fluid velocity decreases as λh increases and vanishes as
λh → ∞ because of the infinite friction of the polyelectrolytes.
For all cases, the magnitude of u(y)/U∗ decreases with an in-
crease in Pe, and the effect of the ionic convection is significant
and cannot be neglected.

In Figs. 10 and 11, the dimensionless diffusioosmotic ve-
locity distribution u(y)/U∗ of an electrolyte solution in a slit
with its inside walls covered by finite layers of adsorbed poly-
electrolytes (with b/h = 0.8) is plotted for several values of
the parameters N,ζ ,β, κh,λh, and Pe. Similarly to the induced
electric field distribution shown in Fig. 6b, Fig. 10b illustrates
that the fluid velocity profile in the slit with relatively thin
surface charge layers is not a sensitive function of the para-
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(a)

(b)

Fig. 8. Plots of the dimensionless diffusioosmotic velocity u(y)/U∗ in a slit
filled with polyelectrolytes (b/h = 0) with ζ = 2, κh = 1, and λh = 1 versus
the relative position y/h: (a) for N = 1 and various values of β ; (b) for β = 0
and various values of N . The solid and dashed curves represent the cases Pe = 1
and 0, respectively.

meter N . For some cases, such as indicated by the curves with
κh � 3 in Fig. 11a, the diffusioosmotic velocity at the posi-
tions deep inside the porous surface layer can reverse direction
from that at the positions outside the porous layer. In the limit
λh → ∞, u(y)/U∗ vanishes within the surface charge layers
(y > b) as expected, but can be finite at other locations in the
slit, as shown in Fig. 11b. Other flow characteristics for the case
with a finite value of b/h are similar to those for the case of
b/h = 0. Again, all the results suggest that the relaxation effect
on the diffusioosmotic velocity can be significant. The exis-
tence of the surface charge layers at the slit walls can lead to
a quite different diffusioosmotic flow from that in a slit with
bare walls [17].
(a)

(b)

Fig. 9. Plots of the dimensionless diffusioosmotic velocity u(y)/U∗ in a slit
filled with polyelectrolytes (b/h = 0) with N = 1, β = 0, and Pe = 1 versus the
relative position y/h: (a) for λh = 1 and various values of κh; (b) for κh = 1
and various values of λh. The solid and dashed curves represent the cases ζ = 6
and 2, respectively.

In Fig. 12, the dimensionless diffusioosmotic velocity
u(0)/U∗ of the electrolyte solution at the median plane of a
capillary slit with its inside walls covered by finite layers of
absorbed polyelectrolytes (b/h = 0.8) is plotted versus the pa-
rameter N at several values of β,λh, and Pe for the case of
ζ = 0 and κh = 10. Maps showing the direction of this veloc-
ity for the case of ζ = 0, κh = 10, and λh = 1 are also drawn
in Fig. 13. The dependence of u(0)/U∗ on every parameter is
quite similar to that of u/U∗ for a given value of y/h, and it
is not necessarily a monotonic function of N for an otherwise
specified condition. When the product of N and β is negative
(inside the second and fourth quadrants in Fig. 13), u(0) is neg-
ative (as shown by example curves in the lower half of Fig. 12a
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(a)

(b)

Fig. 10. Plots of the dimensionless diffusioosmotic velocity u(y)/U∗ in a slit
with surface layers of polyelectrolytes with b/h = 0.8, ζ = 2, κh = 1, and
λh = 1 versus the relative position y/h: (a) for N = 1 and various values of β ;
(b) for β = 0 and various values of N . The solid and dashed curves denote the
cases Pe = 1 and 0, respectively.

or in the right half of Fig. 12b), and the electrolyte solution
flows toward higher concentration. When the product of N and
β is positive (inside the first and third quadrants in Fig. 13), the
diffusioosmotic velocity u(0) may reverse its direction from
along the concentration gradient to against it as |β| increases
from zero to a certain extent for a given value of N (in addi-
tion to a reversal occurring at N = 0). When the value of Pe is
finite, the probability of the diffusioosmotic flow of the elec-
trolyte solution in the direction toward higher concentration for
a combination of β and N is reduced in comparison with the
case of Pe = 0, due to the effect of the electrolyte convection.
Again, Figs. 12 and 13 illustrate that this relaxation effect can
be significant.
(a)

(b)

Fig. 11. Plots of the dimensionless diffusioosmotic velocity u(y)/U∗ in a slit
with surface layers of polyelectrolytes with b/h = 0.8, N = 1, β = 0, and
Pe = 1 versus the relative position y/h: (a) for λh = 1 and various values of
κh; (b) for κh = 1 and various values of λh. The solid and dashed curves denote
the cases ζ = 6 and 2, respectively.

6. Concluding remarks

A theoretical study of the steady diffusioosmotic flow of so-
lutions of symmetric electrolytes in a capillary slit bearing a
layer of adsorbed polyelectrolytes on each of its inside walls is
presented in this work. No assumption is made about the thick-
nesses of the electric double layer and the surface charge layer.
Both the effect of the lateral distribution of the electrolyte ions
(or of the electrostatic potential) and the effect of ionic con-
vection caused by the diffusioosmotic flow itself (relaxation
effect) on the tangential electric field induced by the applied
electrolyte concentration gradient are taken into account. By
numerically solving the Poisson–Boltzmann equation and the
modified Navier–Stokes/Brinkman equation applicable to the
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(a)

(b)

Fig. 12. Plots of the dimensionless diffusioosmotic velocity u(0)/U∗ at the
median plane in a slit with surface layers of polyelectrolytes with b/h = 0.8,
ζ = 0, and κh = 10 versus the parameter N : (a) for λh = 1 and various values
of β ; (b) for β = −0.2 and various values of λh. The solid and dashed curves
represent the cases Pe = 1 and 0, respectively.

system, the electrostatic potential, dynamic pressure, induced
electric field, and fluid velocity profiles on a cross section of
the slit under the influence of a constant gradient of the elec-
trolyte concentration are obtained. Our results demonstrate that
the structure of the surface charge layer can lead to a diffu-
sioosmotic flow quite different from that in a capillary with
bare walls [17], depending on the characteristics of the capil-
lary, of the surface charge layer, and of the electrolyte solution.
The results show that the effect of the deviation of the local
induced tangential electric field in the slit from its bulk-phase
quantity and the relaxation effect due to electrolyte convection
are very important and cannot be neglected in the evaluation of
the diffusioosmotic velocity of electrolyte solutions in the axial
direction of the capillary slit.
(a)

(b)

Fig. 13. Maps showing the direction of the diffusioosmotic velocity at the me-
dian plane in a slit with surface layers of polyelectrolytes with b/h = 0.8,
ζ = 0, κh = 10, and λh = 1: (a) Pe = 0; (b) Pe = 1.

It is worth repeating that all the results in this study are ob-
tained on the basis of a small external gradient of the electrolyte
concentration in the axial direction of the capillary slit. If the
imposed concentration gradient |∇n∞| is relatively large, then
the effect of variation of the electrostatic potential ψ in the slit
with the tangential position cannot be neglected. However, it is
reasonable to expect that this effect will lead to quantitatively
rather than qualitatively different results.
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