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Slow motion of a droplet between two parallel plane walls
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Abstract

A combined analytical–numerical study for the creeping -ow caused by a -uid sphere translating in a second, immiscible -uid
parallel to two -at plates at an arbitrary position between them is presented. To solve the Stokes equations for the -uid velocity
1elds inside and outside the spherical droplet, a general solution is constructed from fundamental solutions in both rectangular and
spherical coordinate systems. Boundary conditions are enforced 1rst at the plane walls by the Fourier transforms and then on the
droplet surface by a collocation technique. Numerical results for the hydrodynamic drag force acting on the droplet are obtained
with good convergence for various relative viscosities of the droplet and separation distances between the droplet and the walls.
For the motion of a solid sphere (droplet with in1nite viscosity) parallel to a single plane wall or to two walls, our drag results
are in perfect agreement with the available solutions in the literature for all particle-to-wall spacings. The boundary-corrected drag
force exerted on the droplet normalized by the value in the absence of the walls is found to increase monotonically with an increase
in the internal-to-external viscosity ratio for any given geometry. ? 2001 Published by Elsevier Science Ltd.
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1. Introduction

The motion of droplets of one -uid dispersed in a sec-
ond, immiscible -uid plays an important role in a vari-
ety of natural and industrial processes, such as raindrop
formation, the mechanics and rheology of emulsions,
liquid–liquid extraction, and sedimentation phenomena.
The creeping--ow translation of a single spherical droplet
of radius a in an unbounded medium of viscosity � was
1rst analyzed independently by Hadamard (1911) and
Rybczynski (1911). Assuming continuous velocity and
continuous tangential shearing stress across the interface
between the -uid phases in the absence of surface ac-
tive agents, they found that the force exerted on the -uid
sphere by the surrounding -uid is

F0 = − 6��a
3�∗ + 2
3�∗ + 3

U: (1)

Here, U is the migration velocity of the droplet and �∗

is the internal-to-external viscosity ratio. Since the -uid
properties are arbitrary, Eq. (1) degenerates to the case of
motion of a solid sphere (Stokes’ law) when the viscosity
of the droplet becomes in1nite and to the case of motion
of a gas bubble when the viscosity approaches zero.
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During the translation of a -uid sphere in a second, im-
miscible -uid, the interfacial stresses acting at the droplet
surface tend to deform it. If the motion is suEciently slow
or the droplet is suEciently small, the droplet will in the
1rst approximation be spherical. The problems associated
with the shape of a droplet undergoing distortion, when
inertial e;ects are no longer negligible, were discussed
in the literature (Taylor & Acrivos, 1964; Dandy & Leal,
1989).

In many practical applications of low-Reynolds-number
motion, droplets are not isolated and the surrounding
-uid is externally bounded by solid walls. Thus, it is
important to determine if the presence of neighbor-
ing boundaries signi1cantly a;ects the movement of a
droplet. Using spherical bipolar coordinates, Bart (1968)
and Rushton and Davies (1973) examined the motion of
a spherical droplet settling normal to a plane interface
between two immiscible viscous -uids. This work is an
extension of the analyses of Maude (1961) and Brenner
(1961), who independently analyzed the -uid motion
generated by a rigid sphere moving perpendicular to a
solid plane surface or to a free surface plane. Wacholder
& Weihs (1972) also utilized bipolar coordinates to study
the motion of a -uid sphere through another -uid normal
to a rigid or free plane surface; their calculations agree
with the results obtained by Bart (1968) in these limits.

0009-2509/01/$ - see front matter ? 2001 Published by Elsevier Science Ltd.
PII: S 0009-2509(01)00323-2



6864 H. J. Keh, P. Y. Chen / Chemical Engineering Science 56 (2001) 6863–6871

Hetsroni, Haber, and Wacholder (1970) used a method
of re-ections to solve for the terminal settling velocity of
a spherical droplet moving axially at an arbitrary radial
location within a long circular tube 1lled with a viscous
-uid. The wall e;ects experienced by a -uid sphere mov-
ing along the axis of a circular tube were also examined
by using the reciprocal theorem (Brenner, 1971) and an
approximate approach (Coutanceau & Thizon, 1981).

The parallel motion of a droplet in a quiescent -uid
at any position between two parallel -at plates was stud-
ied by Shapira and Haber (1988) using the method of
re-ections. Approximate solutions for the hydrodynamic
drag force exerted on the droplet were obtained to the
1rst order of a=(b+ c), where b and c are the respective
distances from the droplet center to the two plates. Ob-
viously, this result cannot be suEciently accurate when
the value of a=(b+ c) is large, say, ¿ 0:2. The purpose
of this article is to obtain an exact solution for the slow
motion of a spherical droplet parallel to two plane walls
at an arbitrary position between them. The creeping--ow
equations applicable to the system are solved by using a
combined analytical-numerical method with a boundary
collocation technique (Ganatos, Pfe;er, & Weinbaum,
1980), and the wall-corrected drag force acting on the
droplet is obtained with good convergence for various
cases. For the special case of movement of a droplet with
in1nite viscosity, our calculations show excellent agree-
ment with the available solutions in the literature for the
corresponding motion of a solid sphere.

2. Analysis

We consider the steady creeping motion caused by
a spherical droplet of radius a translating with a con-
stant velocity U=Uex in an immiscible -uid parallel
to two in1nite plane walls whose distances from the
center of the droplet are b and c, as shown in Fig. 1.
Here (x; y; z); (�; �; z), and (r; �; �) denote the rectangu-
lar, circular cylindrical, and spherical coordinate systems,

Fig. 1. Geometric sketch of the translation of a spherical droplet
parallel to two plane walls at an arbitrary position between them.

respectively, with the origin of coordinates at the droplet
center, and ex is the unit vector in the x direction. We set
b6 c throughout this work, without the loss of general-
ity. The droplet is assumed to be suEciently small so that
interfacial tension (which is assumed to be fairly large)
maintains its spherical shape. The -uid is at rest far away
from the droplet. The objective is to determine the cor-
rection to Eq. (1) for the motion of the droplet due to the
presence of the plane walls.

The -uids inside and outside the droplet are assumed
to be incompressible and Newtonian. Owing to the low
Reynolds number, the -uid motion is governed by the
Stokes equations,

�∇2v −∇p= 0; (2a)

∇ · v=0 (r¿ a); (2b)

�1∇2v1 −∇p1 = 0; (3a)

∇ · v1 = 0 (r6 a); (3b)

where v1 and v are the -uid velocity 1elds for the -ow
inside the droplet and for the external -ow, respectively,
p1 and p are the corresponding dynamic pressure distri-
butions, and �1 is the viscosity of the droplet.

The boundary conditions for the -uid velocity at the
droplet surface, on the plane walls, and far removed from
the droplet are

r= a: er · (v −Uex)=0; (4a)

v= v1; (4b)

(I − erer)er: (� − �1)= 0; (4c)

z= c;−b: v= 0; (4d)

�→ ∞: v= 0: (4e)

Here, �= �[∇v + (∇v)T] and �1 = �1[∇v1 + (∇v1)T] are
viscous stress tensors for the external -ow and the -ow
inside the droplet, respectively; er together with e� and
e� are the unit vectors in spherical coordinates; I is the
unit dyadic.

In view of the linearity of the governing equations and
boundary conditions, the external velocity 1eld v can be
decomposed into two contributions (Ganatos et al. 1980),

v= vw + vs: (5)

Here, vw is a solution of Eq. (2) in rectangular coor-
dinates that represents the disturbance produced by the
plane walls and is given by

vw = vwxex + vwyey + vwzez; (6)

where ex; ey, and ez are the unit vectors in rectangu-
lar coordinates, and vwx; vwy; vwz are the double Fourier
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integrals,

vwx =
∫ ∞

0

∫ ∞

0
D1(�; �; z) cos(�x) cos(�y) d� d�; (7a)

vwy =
∫ ∞

0

∫ ∞

0
D2(�; �; z) sin(�x) sin(�y) d� d�; (7b)

vwz =
∫ ∞

0

∫ ∞

0
D3(�; �; z) sin(�x) cos(�y) d� d�: (7c)

In Eq. (7),

D1 =
[
X ∗

(
1 +

�2

�
z
)
− X ∗∗ ��

�
z − X ∗∗∗�z

]
e�z

+
[
Y ∗

(
1 − �2

�
z
)

+ Y ∗∗ ��
�
z − Y ∗∗∗�z

]
e−�z;

(8a)

D2 =
[
−X ∗ ��

�
z + X ∗∗

(
1 +

�2

�
z
)

+ X ∗∗∗�z
]

e�z

+
[
Y ∗ ��

�
z + Y ∗∗

(
1 − �2

�
z
)

+ Y ∗∗∗�z
]

e−�z;

(8b)

D3 = [X ∗�z − X ∗∗�z + X ∗∗∗(1 − �z)]e�z

+[Y ∗�z − Y ∗∗�z + Y ∗∗∗(1 + �z)]e−�z;
(8c)

where the starred X and Y are unknown functions of
separation variables � and �, and �2 = �2 + �2.

The second part of v in Eq. (5), denoted by vs, is a
solution of Eq. (2) in spherical coordinates representing
the disturbance generated by the droplet and is given by

vs = vsxex + vsyey + vszez; (9)

where

vsx =
∞∑
n=1

(AnA′
n + BnB′

n + CnC ′
n); (10a)

vsy =
∞∑
n=1

(AnA′′
n + BnB′′

n + CnC ′′
n ); (10b)

vsz =
∞∑
n=1

(AnA′′′
n + BnB′′′

n + CnC ′′′
n ): (10c)

In Eq. (10), the primed An; Bn, and Cn are functions of
position involving associated Legendre functions of cos �
de1ned in the appendix, which were also given by Eq.
(2:6) of Ganatos et al. (1980), and An; Bn, and Cn are
unknown constants. Note that the boundary condition in
Eq. (4e) is immediately satis1ed by a solution of the form
given by Eqs. (5)–(10).

The solution to Eq. (3) for the internal velocity 1eld
can be expressed as

v1 = v1rer + v1�e� + v1�e�; (11)

where

v1r =
∞∑
n=1

nP1
n(!)( PCnrn−1 + PAnrn+1) cos�; (12a)

v1� =
∞∑
n=1

[
PBnrnP1

n(!)(1 − !2)−1=2 − (1 − !2)1=2 dP1
n(!)
d!

×
(

PCnrn−1 − PAn
n+ 3
n+ 1

rn+1
)]

cos�; (12b)

v1� =
∞∑
n=1

[
PBnrn(1 − !2)1=2 dP1

n(!)
d!

− (1 − !2)−1=2P1
n(!)

×
(

PCnrn−1 − PAn
n+ 3
n+ 1

rn+1
)]

sin�; (12c)

Pmn is the associated Legendre function of order n and de-
gree m, ! is used to denote cos � for brevity, and PAn; PBn,
and PCn are unknown constants. A solution of this form
satis1es the requirement that the velocity is 1nite for
any position within the droplet. Note that the solution
for v1 contains only terms of cos� and sin� (and not
higher-order harmonics) due to the symmetry of the ge-
ometry of the system.

A brief conceptual description of the solution proce-
dure to determine the starred X and Y functions in Eq. (8)
and the constants An; Bn; Cn; PAn; PBn, and PCn in Eqs. (10)
and (12) is given below to help follow the mathematical
development. At 1rst, boundary conditions [given by Eq.
(4d)] are exactly satis1ed on the plane walls by using
the Fourier transforms. This permits the unknown starred
X and Y functions to be determined in terms of the co-
eEcients An; Bn, and Cn. Then, the boundary conditions
in Eqs. (4a)–(4c) on the surface of the droplet can be
satis1ed by making use of the collocation method, and
the solution of the collocation matrix provides numerical
values for the coeEcients An; Bn; Cn; PAn; PBn, and PCn.

Substitution of the velocity distribution v given by Eqs.
(5)–(10) into the boundary conditions of Eq. (4d) and
application of the Fourier sine and cosine inversions on
the variables x and y, respectively, lead to a solution
for the functions D1; D2, and D3 (or starred X and Y
functions) in terms of the coeEcients An; Bn, andCn. After
the substitution of this solution back into Eq. (7) and
utilization of the integral representations of the modi1ed
Bessel functions of the second kind, the external -uid
velocity 1eld can be expressed as

v= vxex + vyey + vzez; (13)

where

vx =
∞∑
n=1

[An(A′
n + �′n) + Bn(B′

n + �′n) + Cn(C ′
n + #′n)];

(14a)
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vy =
∞∑
n=1

[An(A′′
n + �′′n ) + Bn(B′′

n + �′′n ) + Cn(C ′′
n + #′′n )];

(14b)

vz =
∞∑
n=1

[An(A′′′
n + �′′′n ) + Bn(B′′′

n + �′′′n )

+Cn(C ′′′
n + #′′′n )]: (14c)

Here, the primed �n; �n, and #n are complicated functions
of position in the form of integration (which must be
performed numerically) de1ned by Eq. (C1) of Ganatos
et al. (1980).

The boundary conditions that remain to be satis1ed are
those on the droplet surface. Substituting Eqs. (11)–(14)
into Eqs. (4a)–(4c), one obtains
∞∑
n=1

[AnA∗
n(a; !; �) + BnB∗

n(a; !; �) + CnC∗
n (a; !; �)]

=Ux(1 − !2)1=2 cos�; (15a)

∞∑
n=1

[AnA∗
n(a; !; �) + BnB∗

n(a; !; �) + CnC∗
n (a; !; �)]

−
∞∑
n=1

[ PCnnan−1P1
n(!) + PAnnan+1P1

n(!)] cos�=0;

(15b)

∞∑
n=1

[AnA∗∗
n (a; !; �) + BnB∗∗

n (a; !; �) + CnC∗∗
n (a; !; �)]

−
∞∑
n=1

[
PBnan(1 − !2)−1=2P1

n(!)

− PCnan−1(1 − !2)1=2 dP1
n

d!
− PAn

n+ 3
n+ 1

×an+1(1 − !2)1=2 dP1
n

d!

]
cos�=0; (15c)

∞∑
n=1

[AnA∗∗∗
n (a; !; �) + BnB∗∗∗

n (a; !; �) + CnC∗∗∗
n (a; !; �)]

−
∞∑
n=1

[
PBnan(1 − !2)1=2 dP1

n

d!

− PCnan−1(1 − !2)−1=2P1
n(!) − PAn

n+ 3
n+ 1

×an+1(1 − !2)−1=2P1
n(!)

]
sin�=0; (15d)

∞∑
n=1

{ (
@
@r

− 1
r

)
[AnA∗∗

n (r; !; �) + BnB∗∗
n (r; !; �)

+CnC∗∗
n (r; !; �)] − (1 − !2)1=2

r
@
@!

[AnA∗
n(r; !; �)

+BnB∗
n(r; !; �) + CnC∗

n (r; !; �)]

}
r=a

−�∗
∞∑
n=1

[
PBn(n− 1)an−1P1

n(!)(1 − !2)−1=2

− PCn2(n− 1)an−2(1 − !2)1=2 dP1
n(!)
d!

− PAn
n(n+ 2)
n+ 1

an(1 − !2)1=2 dP1
n(!)
d!

]
cos�=0;

(15e)

∞∑
n=1

{ (
@
@r

− 1
r

)
[AnA∗∗∗

n (r; !; �) + BnB∗∗∗
n (r; !; �)

+CnC∗∗∗
n (r; !; �)] +

(1 − !2)−1=2

r
@
@�

[AnA∗
n(r; !; �)

+BnB∗
n(r; !; �) + CnC∗

n (r; !; �)]

}
r=a

−�∗
∞∑
n=1

[
PBn(n− 1)an−1(1 − !2)1=2 dP1

n(!)
d!

− PCn2(n− 1)an−2(1 − !2)−1=2P1
n(!)

− PAn
n(n+ 2)
n+ 1

an(1 − !2)−1=2P1
n(!)

]
sin�=0;

(15f)

where �∗ = �1=�. The starred An; Bn, and Cn functions in
Eq. (15) are de1ned by

A∗
n(r; !; �) = (1 − !2)1=2(A′

n + �′n) cos�

+(1 − !2)1=2(A′′
n + �′′n ) sin�

+!(A′′′
n + �′′′n ); (16a)

B∗
n(r; !; �) = (1 − !2)1=2(B′

n + �′n) cos�+ (1 − !2)1=2

×(B′′
n + �′′n ) sin�+ !(B′′′

n + �′′′n );
(16b)

C∗
n (r; !; �) = (1 − !2)1=2(C ′

n + #′n) cos�+ (1 − !2)1=2

×(C ′′
n + #′′n ) sin�+ !(C ′′′

n + #′′′n );
(16c)
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A∗∗
n (r; !; �) = !(A′

n + �′n) cos�+ !(A′′
n + �′′n ) sin�

−(1 − !2)1=2(A′′′
n + �′′′n ); (16d)

B∗∗
n (r; !; �) = !(B′

n + �′n) cos�+ !(B′′
n + �′′n ) sin�

−(1 − !2)1=2(B′′′
n + �′′′n ); (16e)

C∗∗
n (r; !; �) = !(C ′

n + #′n) cos�+ !(C ′′
n + #′′n ) sin�

−(1 − !2)1=2(C ′′′
n + #′′′n ); (16f)

A∗∗∗
n (r; !; �)= − (A′

n + �′n) sin�+ (A′′
n + �′′n ) cos�;

(16g)

B∗∗∗
n (r; !; �)= − (B′

n + �′n) sin�+ (B′′
n + �′′n ) cos�;

(16h)

C∗∗∗
n (r; !; �)= − (C ′

n + #′n) sin�+ (C ′′
n + #′′n ) cos�;

(16i)

where the primed An; Bn; Cn; �n; �n, and #n are functions
of position in Eqs. (10) and (14).

Careful examination of Eq. (15) shows that the solu-
tion of the coeEcient matrix generated is independent of
the � coordinate of the boundary points on the spherical
surface r= a. To satisfy the conditions in Eq. (15) ex-
actly along the entire surface of the droplet would require
the solution of the entire in1nite array of unknown con-
stants An; Bn; Cn; PAn, PBn, and PCn. However, the colloca-
tion technique (O’Brien, 1968; Ganatos et al., 1980; Keh
& Tseng, 1992; Chen & Ye, 2000) enforces the bound-
ary conditions at a 1nite number of discrete points on the
half-circular generating arc of the droplet (from �=0 to
�) and truncates the in1nite series in Eqs. (12) and (14)
into 1nite ones. If the spherical boundary is approximated
by satisfying the conditions of Eqs. (4a)–(4c) at N dis-
crete points on its generating arc, the in1nite series in
Eqs. (12) and (14) are truncated after N terms, resulting
in a system of 6N simultaneous linear algebraic equa-
tions in the truncated form of Eq. (15). This matrix equa-
tion can be solved to yield the 6N unknown constants
An; Bn; Cn; PAn; PBn, and PCn appearing in the truncated form
of Eqs. (12) and (14). The -uid velocity 1eld is com-
pletely obtained once these coeEcients are solved. Note
that the de1nite integrals in Eq. (15) after the substitution
of Eq. (16) must be performed numerically. The accuracy
of the truncation technique can be improved to any de-
gree by taking a suEciently large value of N . Naturally,
as N → ∞ the truncation error vanishes and the overall
accuracy of the solution depends only upon the numerical
integration required in evaluating the matrix elements.

The drag force exerted by the external -uid on the
spherical droplet can be determined from (Ganatos et al.,
1980)

F= − 8��A1ex: (17)

This expression shows that only the lowest-order coeE-
cient A1 contributes to the hydrodynamic force acting on
the droplet.

3. Results and discussion

The solution for the slow motion of a spherical droplet
parallel to two plane walls at an arbitrary position between
them, obtained by using the boundary collocation tech-
nique described in the previous section, will be presented
in this section. The system of linear algebraic equations
to be solved for coeEcients An; Bn; Cn; PAn; PBn, and PCn is
constructed from Eq. (15). All the numerical integrations
to evaluate the starred An; Bn, and Cn functions (or the
primed �n; �n, and #n functions) were done by the 40-point
Gauss–Laguerre quadrature. The numerical calculations
were performed by using a DEC 3000=600 workstation.

When specifying the points along the semicircular gen-
erating arc of the sphere where the boundary conditions
are to be exactly satis1ed, the 1rst points that should be
chosen are �=0 and �, since these points de1ne the pro-
jected area of the droplet normal to the direction of mo-
tion and control the gaps between the droplet and the
neighboring walls. In addition, the point �=�=2 is also
important. However, an examination of the system of lin-
ear algebraic equations in Eq. (15) shows that this ma-
trix equation becomes singular if these points are used.
To overcome this diEculty, these points are replaced by
closely adjacent points, i.e., �= &; �=2 − &; �=2 + &, and
�− &. Additional points along the boundary are selected
as mirror-image pairs about the plane �=�=2 to divide
the two quarter-circular arcs of the droplet into equal seg-
ments. The optimum value of & in this work is found to
be 0:1◦, with which the numerical results of the hydro-
dynamic drag force acting on the droplet converge satis-
factorily. In selecting the boundary points, any value of
� may be used except �=0, �=2, and �, since the matrix
equation (15) is singular for these values.

The collocation solutions of the hydrodynamic drag
force exerted on a -uid droplet translating parallel to
a single plane wall (with c → ∞) for various values
of a=b and �∗ are presented in Table 1. The drag force
F0 acting on an identical droplet in an unbounded -uid,
given by Eq. (1) (with F0 =F0ex), is used to normal-
ize the boundary-corrected values. Obviously, F=F0 = 1
as a=b=0 for any value of �∗. The accuracy and con-
vergence behavior of the truncation technique depends
principally upon the ratio a=b. All of the results obtained
under this collocation scheme converge to at least 1ve
signi1cant 1gures. For the diEcult case of a=b=0:999
the number of collocation points N =36 is suEciently
large to achieve this convergence. For the special case
of translation of a rigid sphere (with �∗ → ∞) par-
allel to a plane wall, our numerical results agree per-
fectly with the semi-analytical solution obtained using



6868 H. J. Keh, P. Y. Chen / Chemical Engineering Science 56 (2001) 6863–6871

Table 1
The normalized drag force F=F0 experienced by a spherical droplet
translating parallel to a single plane wall at various values of a=b and
�∗

a=b F=F0

�∗ = 0 �∗ = 1 �∗ = 10 �∗ =∞
0.1 1.0390 1.0491 1.0576 1.0595
0.2 1.0812 1.1030 1.1217 1.1259
0.3 1.1273 1.1625 1.1932 1.2003
0.4 1.1783 1.2288 1.2741 1.2847
0.5 1.2358 1.3040 1.3675 1.3828
0.6 1.3028 1.3918 1.4790 1.5006
0.7 1.3847 1.4988 1.6191 1.6503
0.8 1.4948 1.6399 1.8109 1.8591
0.9 1.6776 1.8601 2.1262 2.2152
0.95 1.8620 2.0610 2.4255 2.5725
0.975 2.0425 2.2417 2.6978 2.9225
0.99 2.2324 2.4236 2.9759 3.3347
0.995 2.3205 2.5080 3.1100 3.5821
0.999 2.4030 2.5883 3.2439 3.9048

spherical bipolar coordinates (O’Neill, 1964; Goldman,
Cox, and Brenner, 1967). As expected, the results in Ta-
ble 1 illustrate that the drag force on the droplet is a

Table 2
The normalized drag force F=F0 experienced by a spherical droplet translating parallel to two plane walls at various values of a=b; s (= b=(b+c)),
and �∗a

s a=b F=F0

�∗ = 0 �∗ = 1 �∗ = 10 �∗ =∞
0.25 0.1 1.0455 (1.0435) 1.0574 (1.0544) 1.0674 (1.0633) 1.0697 (1.0653)

0.2 1.0954 (1.0870) 1.1215 (1.1088) 1.1438 (1.1266) 1.1489 (1.1306)
0.3 1.1505 (1.1305) 1.1931 (1.1632) 1.2304 (1.1899) 1.2391 (1.1958)
0.4 1.2121 (1.1740) 1.2737 (1.2175) 1.3295 (1.2531) 1.3427 (1.2611)
0.5 1.2821 (1.2175) 1.3657 (1.2719) 1.4445 (1.3164) 1.4635 (1.3263)
0.6 1.3637 (1.2611) 1.4730 (1.3263) 1.5812 (1.3797) 1.6080 (1.3916)
0.7 1.4628 (1.3046) 1.6024 (1.3807) 1.7504 (1.4430) 1.7884 (1.4568)
0.8 1.5931 (1.3481) 1.7689 (1.4351) 1.9756 (1.5063) 2.0322 (1.5221)
0.9 1.8000 (1.3916) 2.0178 (1.4895) 2.3294 (1.5696) 2.4278 (1.5874)
0.95 1.9979 2.2342 2.6501 2.8067
0.975 2.1858 2.4227 2.9337 3.1677
0.99 2.3802 2.6093 3.2192 3.5870
0.995 2.4699 2.6952 3.3562 3.8367
0.999 2.5536 2.7767 3.4926 4.1613

0.5 0.1 1.0717 (1.0669) 1.0911 (1.0837) 1.1074 (1.0974) 1.1111 (1.1004)
0.2 1.1546 (1.1339) 1.1986 (1.1674) 1.2373 (1.1947) 1.2462 (1.2008)
0.3 1.2513 (1.2008) 1.3256 (1.2510) 1.3935 (1.2921) 1.4096 (1.3012)
0.4 1.3659 (1.2678) 1.4758 (1.3347) 1.5812 (1.3895) 1.6068 (1.4016)
0.5 1.5040 (1.3347) 1.6547 (1.4184) 1.8074 (1.4868) 1.8458 (1.5021)
0.6 1.6748 (1.4016) 1.8709 (1.5021) 2.0840 (1.5842) 2.1395 (1.6025)
0.7 1.8939 (1.4686) 2.1340 (1.5857) 2.4324 (1.6816) 2.5124 (1.7029)
0.8 2.1939 (1.5355) 2.4925 (1.6694) 2.9001 (1.7790) 3.0194 (1.8033)
0.9 2.6733 (1.6025) 3.0239 (1.7531) 3.6336 (1.8763) 3.8369 (1.9037)
0.95 3.1154 3.4801 4.2925 4.6101
0.975 3.5181 3.8711 4.8709 5.3405
0.99 3.9244 4.2535 5.4513 6.1841
0.995 4.1096 4.4287 5.7303 6.6854
0.999 4.2818 4.5942 6.0090 7.3358

aThe values in parentheses are calculated from the approximate formula obtained by Shapira and Haber (1988) using the method of re-ections.

monotonically increasing function of a=b, and will be-
come in1nite in the limit a=b=1, for any given value of
�∗. Also, the wall-corrected normalized drag force on the
droplet increases monotonically with an increase in �∗,
keeping a=b unchanged.

A number of converged numerical solutions for the
normalized drag force F=F0 are presented in Table 2 for
the translation of a spherical droplet parallel to two plane
walls at two particular positions between them (with
b=(b + c)=0:25 and 0.5) for various values of a=b and
�∗ using the boundary collocation technique. For the spe-
cial case of a rigid sphere (with �∗ → ∞), our results
agree well with the previous solution obtained by a sim-
ilar collocation method (Ganatos et al., 1980), in which
no tabulated values are available for a precise compari-
son). Using a method of re-ections, Shapira and Haber
(1988) obtained a formula for the drag force acting on
a droplet of arbitrary viscosity translating parallel to two
plates to the 1rst order of a=(b + c). The values of the
wall-corrected drag force calculated from this approx-
imate formula are also listed in Table 2 for compari-
son. It can be seen that the method-of-re-ection solution
to the leading order agrees with the exact solution for
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Fig. 2. Plots of the normalized drag force F=F0 on a spherical gas
bubble (with �∗ → 0) translating parallel to two plane walls versus
the ratio b=(b+ c) with a=b and 2a=(b+ c) as parameters.

small values of a=b. The errors are less than 3:7% for cases
with a=b6 0:2. However, the accuracy of this approxi-
mate solution begins to deteriorate, as expected, when the
droplet gets closer to the walls. For example, the errors
can be greater than 12% for cases with a=b=0:4. Anal-
ogous to the situation of translation parallel to a single
wall, for a constant value of b=(b+ c), Table 2 indicates
that the normalized drag force on the droplet increases
monotonically with an increase in a=b (again, F=F0 = 1
as a=b=0) for a 1xed value of �∗ and with an increase
in �∗ for a given value of a=b.

Fig. 2 shows the drag force exerted on a gas bubble
(with �∗ → 0) translating parallel to two plane walls. The
dashed curves (with a=b=constant) illustrate the e;ect
of the position of the second wall (at z= c) on the drag
for various values of the sphere-to-wall spacing b=a. The
solid curves (with 2a=(b+c)= constant) indicate the vari-
ation of the drag force as a function of the sphere position
at various values of the wall-to-wall spacing (b+c)=2a. At
a given value of 2a=(b+ c), the bubble (or a droplet with
a 1nite value of �∗, whose result is not exhibited here but
can also be obtained accurately) experiences minimum
drag when it is located midway between the two walls,
analogous to the corresponding case of a solid sphere
(Ganatos et al., 1980). The drag force becomes in1nite as
the bubble (or a droplet with 1nite �∗) approaches either
of the walls.

In Fig. 3, the normalized drag force on a spherical
droplet translating on the midplane between two paral-
lel plane walls (with c= b) is plotted by solid curves as
a function of a=b for various values of �∗. The corre-
sponding drag on the droplet when the second wall is not
present (with c → ∞) is also plotted by dashed curves
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Fig. 3. Plots of the normalized drag force F=F0 on a spherical droplet
translating on the midplane between two parallel plane walls (with
c= b) versus the ratio a=b with �∗ as a parameter. The dashed curves
are plotted for the translation of an identical droplet parallel to a
single plane wall for comparison.

in the same 1gure for comparison. It can be seen from
this 1gure (or from a comparison between Tables 1 and
2) that, for an arbitrary combination of parameters a=b
and �∗, the assumption that the results for two walls can
be obtained by simple addition of the single-wall e;ect
gives too large a correction to the hydrodynamic drag
on a droplet if a=b is small (say, ¡ 0:25) but underesti-
mates the wall correction if a=b is relatively large (say,
¿ 0:35).

4. Concluding remarks

In this work the slow motion of a spherical droplet
parallel to two plane walls at an arbitrary position between
them is studied theoretically. A semi-analytical method
with the boundary collocation technique has been used to
solve the Stokes equations for the velocity 1elds in the
-uid phases. The results for the hydrodynamic drag force
exerted on the droplet indicate that the solution procedure
converges rapidly and accurate solutions can be obtained
for various cases of the relative viscosity of the droplet
and the separation between the droplet and the walls.
It has been found that, for a given relative position of
the walls, the wall-corrected drag acting on the droplet
normalized by the value in the absence of the walls is a
monotonically increasing function of the ratio of viscosity
between the internal and surrounding -uids. For a given
droplet translating between two parallel walls separated
by a 1xed distance, the droplet experiences minimum
drag when it is located midway between the walls, and



6870 H. J. Keh, P. Y. Chen / Chemical Engineering Science 56 (2001) 6863–6871

the drag becomes in1nite as the droplet touches either of
the walls.

In Tables 1 and 2 as well as Figs. 2 and 3, we
presented only the results for resistance problems, de1-
ned as those in which the drag force F acting on the
droplet is to be determined for a speci1ed droplet velocity
U [= − (F0=6��a)(3�∗ + 3)=(3�∗ + 2)]. In a mo-
bility problem, on the other hand, the applied force
F[= 6��aU0(3�∗ + 2)=(3�∗ + 3)] exerted on the droplet
is speci1ed and the droplet velocity U is to be deter-
mined. For the creeping motion of a spherical droplet
with a 1nite viscosity located between two parallel planes
considered in this work, the ratio U=U0 for a mobility
problem equals the ratio (F=F0)−1 for its corresponding
resistance problem. Thus, our results can also be applied
to physical problems in which the force on the droplet
is the prescribed quantity and the droplet must move
accordingly.

Notation

a radius of the droplet, m
An; Bn; Cn coeEcients in the expression of Eq.

(10) for the external -ow 1eld,
mn+1 s−1; mn+3 s−1; mn+2 s−1

PAn; PBn; PCn coeEcients in the expression of Eq.
(12) for the internal -ow 1eld, m−n s−1,
m−n+1 s−1, m−n+2 s−1

A′
n; B

′
n:; C

′
n functions of position de1ned by Eqs.

A′′
n ; B

′′
n ; C

′′
n (A.1)–(A.9), m−n, m−n−2;m−n−1

A′′′
n ; B

′′′
n: ; C

′′′
n

b; c the respective distances from the droplet
center to the two plates, m

ex; ey; ez unit vectors in rectangular coordinates
er ; e�; e� unit vectors in spherical coordinates
F; F drag force acting on the droplet, N
F0; F0 drag force acting on the droplet in an un-

bounded -uid, N
N number of collocation points on the droplet

surface
Pmn associated Legendre function of order n

and degree m
r radial spherical coordinate, m
U; U translational velocity of the droplet, m s−1

v velocity 1eld of the external -uid, m s−1

v1 -uid velocity 1eld inside the droplet, m s−1

x; y; z rectangular coordinates, m

Greek letters

�′n; �
′
n; #

′
n; functions of position de1ned by Eq. (C1)

�′′n ; �
′′
n ; #

′′
n of Ganatos et al. (1980), m−n, m−n−2;

�′′′n ; �
′′′
n ; #

′′′
n m−n−1

� viscosity of the external -uid, kg m−1 s−1

�1 viscosity of the -uid inside the droplet,
kg m−1 s−1

�∗ = �1=�
�; � angular spherical coordinates
! =cos �
� radial cylindrical coordinate, m
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Appendix

For the sake of completion, the de1nitions of the
primed An; Bn, and Cn functions in Eq. (10) are given
here.

A′
n =

1
2rn

[2n(2n− 1)(1 − !2)1=2P1
n(!) cos2 �

+(n− 2)P2
n−1(!)cos 2�

− n(n+ 1)(n− 2)Pn−1(!)]; (A.1)

B′
n = − 1

2rn+2 [P2
n+1(!) cos 2�− n(n+ 1)Pn+1(!)];

(A.2)

C ′
n =

1
2rn+1 [P2

n(!) cos 2�+ n(n+ 1)Pn(!)]; (A.3)

A′′
n =

1
rn

[n(2n− 1)(1 − !2)1=2P1
n(!)

+ (n− 2)P2
n−1(!)] cos� sin�; (A.4)

B′′
n = − 1

rn+2P
2
n+1(!) cos� sin�; (A.5)

C ′′
n =

1
rn+1P

2
n(!) cos� sin�; (A.6)

A′′′
n =

1
rn

[n(2n− 1)!P1
n(!)

− (n+ 1)(n− 2)P1
n−1(!)] cos�; (A.7)

B′′′
n = − 1

rn+2 nP
1
n+1(!) cos�; (A.8)

C ′′′
n = − 1

rn+1P
1
n(!) cos�: (A.9)



H. J. Keh, P. Y. Chen / Chemical Engineering Science 56 (2001) 6863–6871 6871

References

Bart, E. (1968). The slow unsteady settling of a -uid sphere toward
a -at -uid interface. Chemical Engineering Science, 23, 193–210.

Brenner, H. (1961). The slow motion of a sphere through a viscous
-uid towards a plane surface. Chemical Engineering Science, 16,
242–251.

Brenner, H. (1971). Pressure drop due to the motion of neutrally
buoyant particles in duct -ows. II. Spherical droplets and
bubbles. Industrial and Engineering Chemistry Fundamentals, 10,
537–542.

Chen, S. B., & Ye, X. (2000). Boundary e;ect on slow motion
of a composite sphere perpendicular to two parallel impermeable
plates. Chemical Engineering Science, 55, 2441–2453.

Coutanceau, M., & Thizon, P. (1981). Wall e;ect on the bubble
behaviour in highly viscous liquids. Journal of Fluid Mechanics,
107, 339–373.

Dandy, D. S., & Leal, L. G. (1989). Bouyancy-driven motion of
a deformable drop through a quiescent liquid at intermediate
Reynolds numbers. Journal of Fluid Mechanics, 208, 161–192.

Ganatos, P., Pfe;er, R., & Weinbaum, S. (1980). A strong interaction
theory for the creeping motion of a sphere between plane parallel
boundaries. Part 2. Parallel motion. Journal of Fluid Mechanics,
99, 755–783.

Goldman, A. J., Cox, R. G., & Brenner, H. (1967). Slow viscous
motion of a sphere parallel to a plane wall-I. Motion through a
quiescent -uid. Chemical Engineering Science, 22, 637–651.

Hadamard, J. S. (1911). Movement permanent lent d’une sphere
liquide et visqueuse dans un liquide visqueux. Comptes Rendus

Hebdomadaires des Seances de V Academie des Sciences (Paris),
152, 1735–1738.

Hetsroni, G., Haber, S., & Wacholder, E. (1970). The -ow 1elds
in and around a droplet moving axially within a tube. Journal of
Fluid Mechanics, 41, 689–705.

Keh, H. J., & Tseng, Y. K. (1992). Slow motion of multiple droplets
in arbitrary three-dimensional con1gurations. A.I.Ch.E. Journal,
38, 1881–1904.

Maude, A. D. (1961). End e;ects in a falling-sphere viscometer.
Britain Journal of Applied Physics, 12, 293–295.

O’Brien, V. (1968). Form factors for deformed spheroids in Stokes
-ow. A.I.Ch.E. Journal, 14, 870–875.

O’Neill, M. E. (1964). A slow motion of viscous liquid caused by a
slowly moving solid sphere. Mathematika, 11, 67–74.

Rushton, E., & Davies, G. A. (1973). The slow unsteady settling of
two -uid spheres along their line of centres. Applied Scienti>c
Research, 28, 37–61.

Rybczynski, W. (1911). Uber die Fortschreitende Bewegung einer
-ussigen Kugel in einem zahen Medium. Bull. Acad. Sci. Cracovie
Ser. A, 1, 40–46.

Shapira, M., & Haber, S. (1988). Low Reynolds number motion of
a droplet between two parallel plates. International Journal of
Multiphase Flow, 14, 483–506.

Taylor, T. D., & Acrivos, A. (1964). On the deformation and drag of
a falling viscous drop at low Reynolds number. Journal of Fluid
Mechanics, 18, 466–476.

Wacholder, E., & Weihs, D. (1972). Slow motion of a -uid sphere
in the vicinity of another sphere or a plane boundary. Chemical
Engineering Science, 27, 1817–1828.


