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Abstract

The dynamic electrophoretic response of a spherical dielectric particle suspended in an electrolyte solution to a step change in
electrics field is analytically studied. The electrical double layer surrounding the particle may have either a small but finite thickness
large thickness relative to the particle radius. For the case of electrophoresis of a particle with a thin double layer, the local elect
velocity at the outer edge of the double layer evolving with time after the external field is imposed is used as an apparent slip
condition at the particle surface so that the unsteady equation of motion for the fluid flow outside the double layer is solved. Clo
formulas for the transient electrophoretic mobility of the particle are derived as functions of relevant parameters. The results de
that, when the double layer surrounding the particle is relatively thin, the normalized electrophoretic mobility at a given dimension
decreases monotonically with a decrease in the parameterκa, whereκ−1 is the Debye screening length anda is the particle radius. When th
double layer of the particle is relatively thick, the particle mobility can have magnitudes comparable to those for a particle with a thi
layer in the initial stage, but will become much smaller afterward. In general, the effect of the relaxation time for transient electroph
negligible, regardless of the value ofκa.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Electrophoresis is a well-known technique that can
used in different fields such as clinical and biological fie
to separate and identify compounds such as amino acid
proteins. Although the basic relationships involved in el
trophoretic phenomena were derived mainly for the ste
state[1–13], the transient behavior of these phenomen
perhaps as important as their steady-state behavior in
as an evaluation of their usefulness or an efficient desig
the relevant equipment is concerned. When a colloidal p
cle moves through a constant but nonuniform electric fi
the field measured in the frame of the particle is unstead
several applications, the use of alternating electric fields
measurement of the electrophoretic mobility of suspen
particles has been proposed[14,15]. Knowledge of the dy-
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namic response of such particles to a time-variant ele
field can be used to develop new separation technologie
to interpret experimental observations.

Applying the ad hoc assumption that the fluid in the el
trical double layer surrounding the particle attains its
electroosmotic velocity instantaneously when the cons
electric field is imposed, Morrison found exact solutions
the transient electrophoresis of a dielectric sphere[16] and
of an arbitrarily oriented long cylinder[17] for the limit
of vanishingly thin double layers (κa → ∞, whereκ−1 is
the Debye screening length anda is the particle radius)
Later, Ivory [18] made a correction to Morrison’s solutio
for the electrophoresis of a sphere by applying the inte
cial boundary condition derived from the integral form
the momentum equation governing the fluid motion in
double layer, but this model failed to predict the transi
response of the particle as a function of the parameterκa.

In some practical applications of electrophoresis invo
ing small particles and dilute electrolyte solutions, the c
dition κa → ∞ is no longer satisfied and the depende
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of the dynamic response of an electrophoretic particle
κa must be taken into account. In this paper we pres
an analysis of the transient electrophoresis of a diele
sphere due to a sudden application of a constant electric
for two cases: a particle with a thin but finite double lay
(κa � 1) and a particle with a thick double layer(κa → 0).
The zeta potential (or surface charge density) of the p
cle is assumed to be uniform, but, for the case of a
but finite double layer, the dynamic response of the e
troosmotic flow at the particle surface is incorporated. T
transient responses of the electrophoretic mobility of the
ticle to a step change in the applied electric field as funct
of the relevant parameters such asκa are obtained in close
forms.

2. Transient electroosmotic flow parallel to a
dielectric plane

We first consider the transient laminar flow of an el
trolyte solution within the electric double layer adjacent t
dielectric plane wall under the influence of a constant e
tric field E applied tangential to the wall starting at t
time t = 0. The electroosmotic velocity at the outer ed
of the double layer will serve as a boundary condition
the formulation of the transient electrophoresis of a sph
cal particle with a thin double layer in Section3. The discrete
nature of the surface charges, which are uniformly dist
uted over the wall, is neglected, so that the space ch
density and equilibrium electric potential are functions of
normal position only. Gravitational effects are ignored. T
fluid velocity in the direction of the electric field at later
positiony and timet , u(y, t), which satisfies the equatio
of continuity for an incompressible fluid, is governed by t
Navier–Stokes equation modified with the electrostatic
fect [19],

(1)ρ
∂u

∂t
= η

∂2u

∂y2
+ ρeE,

whereρ andη are the density and viscosity, respectively,
the fluid. The net space charge densityρe(y) is related to the
equilibrium electric potential distributionψ(y) by Poisson
equation[3,19]

(2)
d2ψ

dy2
= −4π

ε
ρe,

based on the assumption that the ionic diffusion time s
across the double layer is much shorter than the viscous
scale such that the lateral potential profile is not affected
the tangentially applied electric field. In this equationε =
4πε0εr, whereεr is the relative permittivity of the electrolyt
solution andε0 is the permittivity of a vacuum. Note tha
the contributions from the pressure gradient and the grad
of the equilibrium potential cancel out in the Navier–Stok
equation.
The initial and boundary conditions foru are

(3)t = 0: u = 0,

(4)y = 0: ψ = ζ and u = 0,

(5)y = δ: dψ

dy
= 0 and

∂u

∂y
= 0,

whereζ is the zeta potential or surface potential at the w
(shear plane) andy = δ represents the outer edge of the el
tric double layer. Evidently,δ can be taken equal tobκ−1,
whereκ−1 is the Debye length andb is a positive numbe
about 3 to 5.

Since the system will attain a steady state ast → ∞, a
solution to Eq.(1) of the following form ought to be sough

(6)u(y, t) = u∞(y) + ut(y, t).

The steady-state limiting solutionu∞(y) is obtained from
Eqs.(1) and (2)by setting∂u/∂t = 0, for which the result
satisfying boundary conditions(4) and (5)is the Helmholtz
expression[1],

(7)u∞ = − εE

4πη

[
ζ − ψ(y)

]
.

Clearly, ψ(δ) = 0 and u∞(δ) = −εζE/4πη. Inserting
Eq. (6) into Eqs.(1)–(5) after the substitution of Eq.(7),
one obtains the governing equation as well as the in
and boundary conditions for the transient velocity funct
ut(y, t),

(8)
∂ut

∂t
= ν

∂2ut

∂y2

and

(9)t = 0: ut = −u∞(y),

(10)y = 0: ut = 0,

(11)y = δ: ∂ut

∂y
= 0,

whereν = η/ρ is the kinematic viscosity of the fluid. Thes
equations can be solved by the classical method of sep
tion of variables, and the solution is

ut = −
∞∑

n=1

[
2

δ

δ∫
0

u∞(y)sin(Dny)dy

]

(12)× sin(Dny)exp
(−D2

nνt
)
,

where

(13)Dn = (2n − 1)π

2δ
.

The combination of Eqs.(7) and (12)according to Eq.(6)
gives the fluid velocity profileu(y, t) along the plane wall
As expected, the solution of this transient flow probl
comes out in the form of infinite series. This series conve
rapidly for large dimensionless timesνt/δ2.

The fluid velocity at a large distance from the plane w
(with κy � κδ = b) caused by the suddenly applied elect
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field can be evaluated from the expression foru in Eq. (6),
noting thatψ(y) → 0 far from the wall. The result of thi
time-dependent electroosmotic velocity,Uδ(t), is

(14)Uδ = −εζE

4πη

[
1+

∞∑
n=1

Cn exp
(−D2

nνt
)]

,

where

(15)Cn = 4(−1)n

(2n − 1)π
.

Takingδ as the half thickness of a capillary slit, Eqs.(12) and
(14)can also represent the corresponding electroosmoti
locity of the fluid within the slit[19]. Note that, in Eq.(14),
the unsteady part retains its dependence on the double-
thickness.

3. Transient electrophoresis of a sphere with a thin
double layer

In this section, the transient electrophoretic motion o
dielectric sphere of radiusa surrounded by a thin but finit
electric double layer in an electrolyte solution (viz.κa � 1)
is analyzed. The spherical coordinates(r, θ,φ) with its ori-
gin at the particle center are used. At the timet = 0, the
uniform electric field is imposed in the positivez direction
and maintains a constant strengthE∞ throughout the sys
tem. Because the Reynolds number of electrokinetic flow
small, the motion of the fluid outside the thin double lay
which is electrically neutral, is governed by the unste
equation of motion for viscous axisymmetric creeping flow

(16)E2
S

(
E2

S − 1

ν

∂

∂t

)
Ψ = 0,

in which the Stokes stream functionΨ is related to the ve
locity components by

(17a)vr = − 1

r2 sinθ

∂Ψ

∂θ
,

(17b)vθ = 1

r sinθ

∂Ψ

∂r
,

and the Stokes operatorE2
s has the form

(18)E2
S = ∂2

∂r2
+ sinθ

r2

∂

∂θ

(
1

sinθ

∂

∂θ

)
.

It can be shown that the local tangential electric field
the surface of the dielectric sphere caused by the imp
electric field equals(−3/2)E∞ sinθ [1,13]. This local elec-
tric field acting on the diffuse ions within the thin doub
layer at the particle surface produces a relative tange
fluid velocity at the outer edge of the double layer as gi
by Eq.(14). Thus, the initial and boundary conditions for t
flow field around the particle are

(19)t = 0: vr = vθ = 0,
-

r

(20a)r = a+: vr = U cosθ,

vθ = −U sinθ + εζ

4πη

[
1+

∞∑
n=1

Cn exp
(−D2

nνt
)]

(20b)× 3

2
E∞ sinθ,

(21)r → ∞: vr = vθ = 0,

wherer = a+ represents the outer edge of the thin dou
layer, U(t) is the time-dependent electrophoretic veloc
of the particle to be determined, which can be expresse
U = U∞µ(t) with the steady particle velocity given by th
Smoluchowski equation[1],

(22)U∞ ≡ εζE∞
4πη

,

andζ is the zeta potential of the particle. Clearly,µ(0) = 0
andµ(∞) = 1.

The Laplace transform, which is defined by an over
for a function of timef (t) as

(23a)f̄ (s) =
∞∫

0

f (t)exp(−st) dt

and

(23b)f (t) = 1

2πi

γ+i∞∫
γ−i∞

f̄ (s)exp(st) ds,

with i = √−1, will be used to solve for the flow field an
particle velocity. Then, the transform of the general solut
of Eqs.(16) and (21)can be expressed as[16]

Ψ̄ = 3

2
U∞a

√
ν

s

[
A

√
ν

s

1

r
+ B

(
1+

√
ν

s

1

r

)

(24)× exp

(
−

√
s

ν
r

)]
sin2 θ,

where the coefficientsA andB are to be determined from
the boundary conditions in Eq.(20), with the result

A =
(

1+ a

√
s

ν

)(
1

s
+

∞∑
n=1

Cn

D2
nν + s

)

(25a)−
(

1+ a

√
s

ν
+ a2

3

s

ν

)
µ̄(s),

(25b)B =
[
µ̄(s) − 1

s
−

∞∑
n=1

Cn

D2
nν + s

]
exp

(
a

√
s

ν

)
.

With the solution of the stream function, the fluid veloc
components can be determined using Eq.(17).

The transient drag force exerted by the fluid on the sp
ical boundaryr = a+ can be derived from a general expre
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F = ηπ

π∫
0

r3 sin3 θ
∂

∂r

(
E2

SΨ

r2 sin2 θ

)
r dθ

(26)− ρπ

π∫
0

r2 sin2 θ
∂vθ

∂t
r dθ.

This force is equal to the rate of change of the particle m
mentum with respect to time,

(27)F = M
dU

dt
,

whereM is the mass of the particle. After taking the Lapla
transform of Eqs.(26) and (27)and using Eqs.(24), (25),
and (17b), we obtain the general equation of motion of
electrophoretic sphere in response to the application
step-function electric field,

(28)

µ̄(s) = β2

(
1

a

√
ν

s
+ ν

a2s

)[
1

s
+

∞∑
n=1

Cn

D2
nν + s

− µ̄(s)

]
,

where

(29)β =
√

9m

2M + m
,

andm = (4/3)πa3ρ, which is the mass of the fluid havin
the same volume as the particle. Obviously, 0� β � 3, with
the upper and lower bounds occurring at the limitsM/m = 0
andM/m → ∞, respectively.

It is convenient to define a dimensionless timeT and its
counterpartS in the Laplace transform as

(30a)T = tνβ2/a2,

(30b)S = sa2/νβ2.

Rearranging Eq.(28) in terms of the new variables, we o
tain

(31)µ̄∗(S) = 1+ (1− β2)S + βS3/2

(S − γ1)(S − γ2)

(
1

S
+

∞∑
n=1

Cn

ωn + S

)
,

where

(32)µ̄∗(S) = µ̄(s)νβ2/a2,

(33)ωn =
[
(2n − 1)πa

2βδ

]2

=
[

(2n − 1)πκa

2βb

]2

,

andγ1 andγ2 are the roots of the second-order equation

(34)S2 + (2− β2)S + 1= 0.

Equation(31)indicates that the dimensionless transient e
trophoretic mobilityµ is not only a function of the dimen
sionless timeT but also a function of the parametersκa/b

(= a/δ) andβ.
Whenβ �= 2, i.e.,γ1 �= γ2, we take the inverse Laplac

transform of Eq.(31) to result in
µ = 1− β

γ1 − γ2

[√
γ1 exp(γ1T )erfc

(√
γ1T

)
− √

γ2 exp(γ2T )erfc
(√

γ2T
)]

+
∞∑

n=1

Cn

[
(γ 2

1 + γ1)erfc(
√

γ1T )

(ωn + γ1)(γ2 − γ1)
exp(γ1T )

+ (γ 2
2 + γ2)erfc(

√
γ2T )

(ωn + γ2)(γ1 − γ2)
exp(γ2T )

+ 1+ ωn(γ1 + γ2 + 1) − iβω
3/2
n erf(

√−ωnT )

(ωn + γ1)(ωn + γ2)

(35)× exp(−ωnT )

]
,

where erf(x) and erfc(x) represent the error function an
complementary error function, respectively. Neutral bu
ancy, where the particle and fluid densities are the s
(M/m = 1), corresponds toβ = √

3. For the special case o
β = √

2 or the mass density ratioM/m = 7/4,γ1 = −γ2 = i

and the above solution can be simplified to

µ = 1+
[

2CF

(√
2T

π

)
− 1

]
cosT

+
[

2SF

(√
2T

π

)
− 1

]
sinT

+
∞∑

n=1

Cn

1+ ω2
n

[
(1+ ωn)exp(−ωnT )

− (1+ ωn)cosT − (1− ωn)sinT

− i
√

2ω
3/2
n exp(−ωnT )erf

(√−ωnT
)

+ 2CF

(√
2T

π

)
(cosT − ωn sinT )

(36)+ 2SF

(√
2T

π

)
(sinT + ωn cosT )

]
,

whereSF(s) andCF(x) are the Fresnel sine and cosine in
grals[21], respectively.

Whenβ = 2 orM/m = 5/8, γ1 = γ2 = 1 and the inverse
transform of Eq.(31)yields

µ = 1+ 2

√
T

π
− (1+ 2T )exp(T )erfc

(√
T

)

+
∞∑

n=1

Cn

(1+ ωn)2

{[
1+ 3ωn + 2iω

3/2
n erf

(√−ωnT
)]

× exp(−ωnT ) + 2(1+ ωn)

√
T

π

(37)− [
1+ 3ωn + 2(1+ ωn)T

]
exp(T )erfc

(√
T

)}
.

The infinite series in Eqs.(35)–(37)are the contributions
from the dynamic response of the electroosmotic flow at
particle surface after the electric field is suddenly applied
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the limit κa → ∞, these infinite series vanish and Eqs.(35)–
(37) reduce to the results obtained by Morrison[16]. The
numerical calculations of Eqs.(35)–(37)for the normalized
electrophoretic mobilityµ as a function of the paramete
νt/a2, κa/b, andβ will be presented in Section5.

4. Transient electrophoresis of a sphere with a thick
double layer

In this section, we first consider the transient transla
of a spherical particle of radiusa caused by a suddenly a
plied body force, and then extend its result to the cas
electrophoretic motion of a dielectric sphere with a th
electric double layer. At the timet = 0, a constant force
FA is imposed on the particle in the positivez direction and
maintained afterwards. When the Reynolds number is sm
the ambient fluid motion is governed by Eq.(16). The initial
and boundary conditions for the flow field are still given
Eqs.(19)–(21), but with Eq.(20b)replaced by

(38)r = a: vθ = −U sinθ,

whereU(t) is the time-dependent translational velocity
the particle to be determined, which can be expressed
cording to Stokes law asU = U∞µ(t) with

(39)U∞ ≡ FA

6πηa
.

Again, µ(0) = 0 andµ(∞) = 1. Taking the Laplace trans
form of Eq. (16) and applying conditions(19), (20a), (21),
and(38)again yields a solution for the stream function in t
form of Eq.(24), but here the coefficientsA andB become

(40a)A = −
(

1+ a

√
s

ν
+ a2

3

s

ν

)
µ̄(s),

(40b)B = µ̄(s)exp

(
a

√
s

ν

)
.

The transient drag forceF acting on the spherical bound
ary r = a by the fluid can also be determined from Eq.(26).
The sum of this hydrodynamic force and the applied fo
on the particle is equal to the rate of change of the par
momentum,

(41)FA + F = M
dU

dt
.

After taking the Laplace transform of Eqs.(26) and (41)and
using Eqs.(17b), (24), and (40), one obtains

(42)µ̄(s) = 1

s

(
a2s

β2ν
+ 1+ a

√
s

ν

)−1

.

In terms of the dimensionless variables defined by Eqs.(30)
and (32), Eq.(42)becomes

(43)µ̄∗(S) = 1+ S − βS1/2

,

S(S − γ1)(S − γ2)
-

whereγ1 andγ2 are the roots of Eq.(34).
Whenβ �= 2, i.e.,γ1 �= γ2, the inverse Laplace transfor

of Eq.(43) leads to

µ = 1− β

γ1 − γ2

[√
γ1 exp(γ2T )erfc

(√
γ2T

)
(44)− √

γ2 exp(γ1T )erfc
(√

γ1T
)]

.

For the special case ofβ = √
2, γ1 = −γ2 = i and the above

formula reduces to

µ = 1+
[

2SF

(√
2T

π

)
− 1

]
cosT

(45)−
[

2CF

(√
2T

π

)
− 1

]
sinT .

When β = 2, γ1 = γ2 = 1 and the inverse transform o
Eq.(43)gives

(46)µ = 1− 2

√
T

π
+ (2T − 1)exp(T )erfc

(√
T

)
.

We now consider the transient electrophoresis of a s
charged sphere surrounded by a thick electric double lay
an electrolyte solution, i.e., withκa → 0. At the timet = 0,
a step function electric field with constant strengthE∞ is
imposed. Because the gradient of the electrostatic pote
inside the double layer is characterized by the quantityκ|ζ |,
which is small, the effect of the electric force in the eq
tion of fluid motion is negligible. Thus, in the limit of sma
Reynolds number, the flow field around the electrophor
particle is also governed by Eqs.(16), (19), (20a), (21)
and (38). The Debye–Hückel approximation for a dielect
sphere of radiusa leads to a formula for the charge on t
particle surface asq = aεζ . The applied electric field exert
a body force on the charged particle with the magnitude

(47)FA = qE∞ = aεζE∞.

Therefore, the transient response of the particle migra
to the imposed step function electric field is the same
that presented above for the body-force-driven motion w
the suddenly applied force given by the above equation
according to Hückel equation[2], with the steady particle
velocityU∞ in Eq.(39) replaced by

(48)U∞ ≡ εζE∞
6πη

.

The result for the time-dependent electrophoretic mob
of the charged particle for various values of the param
β is again given by Eqs.(44)–(46)and will be discussed in
Section5.

5. Results and discussion

When a spherical dielectric particle of radiusa sur-
rounded by a thin electric double layer in an electrol
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(a) (b)

Fig. 1. Plots of the normalized slip velocityVslip at the particle surface (a) versus the dimensionless timeνt/a2; (b) versus the parameterκa/b.
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solution is subjected to an applied electric field of cons
strengthE∞ from time t = 0, the apparent slip velocity o
the fluid at the particle surface (or more precisely, at
outer boundary of the double layer) caused by the electr
motic effect, which drives the electrophoretic motion of t
particle, is given by the last term of Eq.(20b). A normal-
ized quantity of this time-dependent slip velocity can
expressed asVslip = 1 + ∑∞

n=1 Cn exp(−D2
nνt), which is a

function of the parameterνt/δ2 [= (κa/b)2(νt/a2)]. Fig. 1
shows the results ofVslip for various values ofκa/b and
νt/a2. The case ofκa/b < 3, which is hardly consistent wit
the assumption of a thin double layer at the particle surf
is considered here for the sake of numerical compariso
can be seen that the apparent slip velocity at the particle
face increases monotonically and rapidly with the time fr
zero att = 0 to its steady-state magnitude ast → ∞, as ex-
pected, for any given finite value ofκa/b. For a fixed value
of νt/a2, the normalized slip velocity decreases monoto
cally with a decrease inκa/b or an increase in the thickne
of the double layer. Owing to the fact that the response t
of the fluid within an infinitely thin double layer to the a
plied electric field is zero,Vslip equals unity in the limit of
κa → ∞ irrespectively of the duration. For all cases satis
ing the thin double layer assumption(κa/b � 3), the slip
velocity approaches its steady quantity rapidly, indicat
that it is justified to neglect the relaxation effect of this s
velocity in Morrison[16] analysis.

The expressions for the time-dependent electropho
mobility of a dielectric sphere in response to the appli
tion of a step-function electric field normalized by its cor
sponding steady-state quantity,µ, are given by Eqs.(35)–
(37) for the case of relatively large values ofκa and by
Eqs.(44)–(46)for the case ofκa → 0. In Fig. 2, this nor-
malized particle mobility is plotted versus the dimensionl
time νt/a2 and the mass density parameterβ for three val-
ues ofκa/b. As expected, the electrophoretic mobility
the particle increases monotonically (but not as rapidly
the apparent slip velocity at the particle surface shown
Fig. 1a does) with the time from zero att = 0 to its steady-
state magnitude ast → ∞ for any specified value ofκa/b

and finite value ofβ. For constant values ofκa/b andνt/a2,
µ is a monotonic increasing function ofβ, meaning that a
heavier particle lags behind a lighter one in the developm
of the electrophoretic mobility. In the limiting case ofβ = 0
or M/m → ∞, the particle mobility vanishes regardless
the values ofκa andt .

The normalized electrophoretic velocity of a dielect
sphere as a function of the dimensionless time is also plo
with κa/b as a parameter inFig. 3for the cases ofβ2 = 1 (or
M/m = 4) andβ2 = 6 (or M/m = 1/4). When the electric
double layer surrounding the particle is relatively thin,
particle mobility decreases monotonically with a decre
in κa/b for fixed values ofβ and νt/a2. This behavior is
expectable knowing that the apparent slip velocity cau
by the electroosmotic flow at the particle surface decre
with a decrease in the value ofκa/b indicated byFig. 1.
When the double layer of the particle is thick, the normaliz
electrophoretic velocity can have magnitudes comparab
those for a particle with a thin double layer (and is s
smaller than that for a particle withκa → ∞) in the ini-
tial stage, but will be much slower as the dimensionless t
νt/a2 becomes greater than about unity, regardless of
value ofβ.

Fig. 4 shows plots of the dimensionless accelerat
(a2/ν)dµ/dt of a spherical particle undergoing transie
electrophoresis versus the dimensionless timeνt/a2 with β



288 H.J. Keh, Y.C. Huang / Journal of Colloid and Interface Science 291 (2005) 282–291
(a) (b)

(c)

Fig. 2. Plots of the normalized electrophoretic mobilityµ versus the dimensionless timeνt/a2 with β2 as a parameter: (a)κa/b → ∞; (b) κa/b = 3;
(c) κa/b = 0.
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andκa/b as parameters. For the limiting case ofκa → ∞
illustrated inFig. 4a, the acceleration is a monotonic d
creasing function of the time and is infinite at the inst
the electric field is imposed. The singular result of an i
nite initial acceleration is due to the finite slip velocity at t
particle surface, which drives the electrophoretic movem
of the particle, even at the timet = 0 as shown inFig. 1a.
For the case of a sphere with a thin but finite double laye
depicted inFig. 4b, the dimensionless acceleration first
creases with the time from zero att = 0 to a maximum at a
small finite value ofνt/a2, and then decreases with the tim
monotonically. The result of a vanishing initial accelerat
in this case is due to the zero slip velocity at the particle
face att = 0 as indicted inFig. 1a. For the limiting case o
κa = 0 exhibited inFig. 4c, the acceleration is a monoton
decreasing function of the time but is finite at the instant
electric field is applied. For any given values ofκa/b andβ,
as expected, the acceleration of the electrophoretic pa
decreases rapidly afterνt/a2 equal to about 0.1 and vanish
in the limit νt/a2 → ∞.

As a typical example, we now consider the situation o
neutrally buoyant particle (withβ2 = 3 orM/m = 1) shown
in Fig. 2. The instantaneous electrophoretic mobility of
particle reaches 95% of its terminal value in the dimens
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(a) (b)

Fig. 3. Plots of the normalized electrophoretic mobilityµ versus the dimensionless timeνt/a2 with κa/b as a parameter: (a)β2 = 1; (b)β2 = 6.
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less timeνt/a2 equal to about 1.2 and 127 for the cases
a thin double layer and of a thick double layer, respectiv
independent of the applied electric field and the zeta po
tial. When the particle is suspended in an aqueous solu
(with ν of the order 10−6 m2/s) and has a radius of the ord
1 µm (for the case of thin double layer) or 0.1 µm (for
case of thick double layer), these relaxation responses
respond to times of order µs. For a particle with a sma
value ofβ or a greater value ofM/m, the relaxation time
for transient electrophoresis can be an order of magni
longer, but this response time is still negligible in practi
applications. Consequently, the electrophoretic velocity
dielectric sphere will closely follow the Smoluchowski equ
tion (for κa � 1) or Hückel equation (forκa � 1) with the
instantaneous applied electric field. The diffusion time sc
for an electrolyte having a typical diffusivity of the ord
10−9 m2/s across a thin double layer of 10 nm thicknes
about 0.1 µs. This time scale is an order of magnitude sm
than the viscous relaxation time, which justifies the assu
tion of equilibrium ion distributions inside the thin doub
layer. Although the dimensionless transition times show
Figs. 1–4are down to the order 10−3, it is understood tha
these thin double layer results may be accurate only for
case of large particles.

6. Conclusions

An analysis of the transient electrophoresis of a die
tric sphere suspended in an electrolyte solution in resp
to a step change in the applied electric field, which w
approximate the fields encountered in most technolog
applications, is presented in this work. When the electr
-

double layer surrounding the particle is thin compared w
the particle radius, the apparent slip velocity at the part
surface is derived from the dynamic electroosmotic ve
ity of the fluid at the outer boundary of the double lay
adjacent to a plane wall. By solving the unsteady mom
tum conservation equation applicable to the systems
particle with a thin but finite double layer and of a par
cle with a thick double layer, closed-form expressions
the dynamic response of the flow field of the suspend
fluid and the electrophoretic mobility of the particle as fun
tions of relevant parameters are obtained. These results
that, when the double layer surrounding the particle is
atively thin, the particle mobility decreases monotonica
with a decrease in the electrokinetic particle radiusκa for
fixed values of the mass density parameterβ and the dimen-
sionless timeνt/a2. When the double layer of the partic
is thick, the electrophoretic mobility can have magnitud
comparable to those for a particle with a thin double laye
the initial stage, but will be much smaller asνt/a2 becomes
greater. For the case of an electrophoretic sphere with a
but finite double layer, the acceleration of the particle fi
increases with the time from zero att = 0 to a maximum a
a small value ofνt/a2, and then decreases with the time a
vanishes in the limitνt/a2 → ∞.

Our results, which provide useful insight into the act
phenomena regarding the transient response of a cha
particle to a sudden application of a constant electric fi
show that the effect of the relaxation time for transi
electrophoresis in general is negligible, irrespective of
applied electric field, the zeta potential, and the value
κa. Also, these results will serve as useful limiting so
tion against which the results of more sophisticated mo
(which account for the polarization effect of the mobile io
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(a) (b)

(c)

Fig. 4. Plots of the normalized electrophoretic acceleration(a2/ν)dµ/dt versus the dimensionless timeνt/a2 with β2 as a parameter: (a)κa/b → ∞;
(b) κa/b = 3; (c) κa/b = 0.
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in the thin double layer[11,12], for instance, or even dea
with a particle with an arbitrary value ofκa) may be bench
marked.
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