Available online at www.sciencedirect.com

SCIENCE@DIREOT" g(g]If)LOIDS
sl SURFACES
ELSEVIER Colloids and Surfaces A: Physicochem. Eng. Aspects 267 (2005) 4-15

www.elsevier.com/locate/colsurfa

Diffusioosmosis of electrolyte solutions in a capillary
slit with surface charge layers

Hsien Chen Ma, Huan J. Kéh

Department of Chemical Engineering, National Taiwan University, Taipei 106-17, Taiwan, ROC
Available online 25 July 2005

Abstract

The steady diffusioosmotic flow of an electrolyte solution in a fine capillary slit with each of its inside walls covered by a layer of adsorbed
polyelectrolytes is analytically studied. In this solvent-permeable and ion-penetrable surface charge layer, idealized polyelectrolige segmen
are assumed to distribute at a uniform density. The electric double layer and the surface charge layer may have arbitrary thicknesses relati
to the gap width between the slit walls. The Debye—Huckel approximation is used to obtain the electrostatic potential distribution on a cross
section of the slit. The macroscopic electric field induced by the imposed electrolyte concentration gradient through the slit is determined as
function of the lateral position rather than taken as its constant bulk-phase quantity. Explicit formulas for the fluid velocity profile are derived
as the solution of a modified Navier—Stokes/Brinkman equation. The effect of the lateral distribution of the induced axial electric field in the
slit on the diffusioosmotic flow is found to be of dominant significance in most practical situations and to drive the fluid towards the end of
higher electrolyte concentration. The existence of the surface charge layers can lead to a quite different diffusioosmotic flow from that in a
capillary with bare walls.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction lengthx—1 (defined right after E3)). The fluid motion asso-
ciated with this mechanism, known as “diffusioosmosis”,
The flow of electrolyte solutions in a small pore with @ has been analytically examined for solutions near a plane
charged wall is of much fundamental and practical interestin wall [4,9-12]and inside a fine capillaffl3—16] Electrolyte
various areas of science and engineering. In general, drivingsolutions with a concentration gradient of order 100 km8l/m
forces for this electrokinetic flow include dynamic pressure (=1 M/cm) along solid surfaces with a zeta potential of order
differences between the two ends of the pore (a streamingk7/e (~25 mV:e is the charge of a protohjis the Boltzmann
potential is developed as a result of zero net electric current) constant, and’” is the absolute temperature) can flow by
and tangential electric fields that interact with the electric diffusioosmosis at velocities of several micrometers per
double layer adjacent to the pore wall (electroosmosis). Prob-second.
lems of fluid flow in pores caused by these well-known  Although the basic relationships involved in electrokinetic
driving forces were studied extensively in the past century phenomena were derived mainly by using the traditional
[1-8]. model of plain distribution of surface charges, quite a
Another driving force for the electrokinetic flow in @ number of investigations have applied these phenomena to
micropore, which has commanded less attention, involvesthe study of the effects of polyelectrolyte adsorbates. The
tangential concentration gradients of an ionic solute thatinter- electroosmotic flows in capillaries with thin polymer layers
acts with the charged pore wall. This solute-wall interaction on the inside walls were theoretically examined for the cases
is electrostatic in nature and its range is the Debye screeningof a slit[17,18]and a tubd19] with thin double layers. On
the other hand, analytical formulas for the electroosmotic
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of adsorbed polyelectrolytes were obtained by solving the

charged polymers in equilibrium with the surrounding solu-

linearized Poisson—Boltzmann equation for the case of antion. The polymer layer is treated as a solvent-permeable

arbitrary value okR or kh, wherer is the radius of a capillary
tube andh is the half thickness of a capillary sli20,21]
Recently, the diffusioosmotic flow of a symmetric electrolyte
solution in a fine capillary slit bearing adsorbed polyelec-
trolytes on its inside walls was theoretically investigated for

and ion-penetrable surface charge layer of constant thick-
nessd=h— b in which fixed-charged groups of valenge
are distributed at a uniform density. Experimental val-
ues for human erythrocytd¢23], rat lymphocyteg24], and
grafted polymer macrocapsul§zb] indicate thatd ranges

the case of small potentials or low fixed-charge densities, from 7.8 nmto 3.3gum andV can be as high as 0.03 kmofm
and an analytical formula for the fluid velocity profile on depending on the pH and ionic strength of the electrolyte
the cross section of the slit was obtair{ed]. In this study, solution.
however, the effect of lateral distributions of the counter-ions ~ The prescribed electrolyte concentration gradient° is
and co-ions on the local macroscopic electric field induced a constant along the axial direction in the capillary, where
by the imposed electrolyte concentration gradient in the axial n°°(z) can be interpreted as the equivalent electrolyte con-
direction, which can be dominantly important, was neglected. centration in the bulk solution phase (outside the capillary) at

The objective of this work is to analyze the steady diffu- equilibrium with the fluid in the slit cross section at axial posi-
sioosmosis of an electrolyte solution with a constant imposed tion z. Since the electrolyte ions can diffuse freely along the
concentration gradient through a capillary slit bearing per- capillary (inside and outside the surface charge layers), there
manently adsorbed or covalently bound polyelectrolytes on exists no regular osmotic flow of the solvent. It is assumed
its inside walls. The charge and segment densities of thethatL|Vr*°|/n*°(0) « 1, wherez=0 is set at the midpoint
adsorbed polymers are assumed to be uniform throughoutthrough the capillary slit. Thus, the variation of the elec-
the surface charge layer, and the Debye—Huckel approxima-trostatic potential (excluding the macroscopic electric field
tion for the electrostatic potential is employed. However, no induced by the prescribed electrolyte gradient, which will be
assumptions will be made about the thickness of the electricdiscussed in the next section) and ionic concentrations in the
double layer or the thickness of the surface charge layer rel-slit with the axial position is negligible.
ative to the gap width between the slit walls, and the lateral  Because of the planar symmetry of the system, we need
distribution of the induced axial electric field is allowed. We consider only the half region8y < h, whereyis the distance
shall derive explicit formulas for the local and average fluid from the median plane between the slit walls in a normal
velocities due to the application of an electrolyte concentra- direction. Ify/(y) represents the electrostatic potential at the
tion gradient along the slit walls. These results show that the positiony relative to that in the bulk solution ané(y, z)
effect of the deviation of the induced axial electric field in andn_(y, z) denote the local concentrations of the cation and
the slit from its bulk-phase quantity on the diffusioosmotic anion, respectively, of the symmetric electrolyte with valence
velocity of the fluid is dominantly significantin most practical Z (which is positive), then Poisson’s equation gives
situations.

dy

dy?

47

~ =2 (1, 0) = n-(. O + HO)aN) ()

2. Electrostatic potential distribution Here, H(y) is a unit step function which equals unity if
b<y<h,and zero if O< y <b; ¢ = 4reper, Whereg, is the rela-

In this section, we consider the electrostatic potential dis- . L . S
T . . . tive permittivity of the electrolyte solution which is assumed
tribution in the fluid solution of a symmetrically charged . oo
to be constant angh is the permittivity of a vacuum.

electrolyte on a cross section of the narrow channel between .

. . . . The local concentrations, and n_ are also related tgr
two large identical parallel plates of lendtlat separation dis- by the Boltzmann equation:
tance Ziwith h <« L, asillustrated irig. L Each of the inside y q '

Zey
=n> ex —_—
ny =n p <:F T )

walls of the capillary slit is coated with a layer of adsorbed,
The substitution of Eq(2) into Eq. (1) leads to the well-

known Poisson—Boltzmann equation. For small valueg of

)

¥ or ZeylkT « 1, known as the Debye—Huckel approxima-
1 / 1, k he Debye—Huckel i

tion), the Poisson—Boltzmann equation can be linearized and

"""""""""""""""""""" Eq. (1) becomes

Ve z

d?y drgeN

9z = K>y — H(y) , 3)

y &

wherex = [871(Ze)2n°°(0)/8kT]1/2 is the Debye screening
parameter.

Fig. 1. Geometrical sketch for the diffusioosmosis in a capillary slit with
each of its inside walls covered by a layer of adsorbed polyelectrolytes.
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The boundary conditions faf are

d

To=0=0 (4a)
y

Wy = b7) = Yy = b*), (ab)

d d

d—f(y —b)= d—f(y — ), (40)

Yy=n="2 (4d)
y &

Eqgs.(4b)and(4c) are the continuity requirements fgrand

dy//dy at the outer edge of the surface charge 1d$826]

Eq. (4d) is the Gauss condition at the capillary wall, with

equal to the surface charge density of the bare wall.
The solution to Eqg3) and(4) is

kT
Y= Z—A coshgy), if0<y<b, (5a)
e

V= ];—T[B coshgy) + C sinhgy) + N], if b<y<h,
e

(5b)
with
_ G+ Nsinhd)
SN o
o — N coshgh) sinh(cb)
b= sinhch) ’ (6b)
C = N sinh{b), (6¢)

where & = 4nZeo/exkT and N = 4 Ze2qN/sk?kT. Evi-
dently, the electric potential given by E(p) is correct to

the first orders of the dimensionless fixed-charge densities
andN. Note that the parametéf can also be viewed as the

nondimensionalized Donnan potenfia8,27]of the surface
charge layer in the Debye—Huckel approximation.

If the boundary conditior{4d) for the case of constant

When there is no polyelectrolyte adsorbed on the walls of
the capillary slit, or when the adsorbed polymer layer is
uncharged, one haé=0. Then, Egs(5), (6), and(8) reduce

to

kT
¥ = ——Agcoshky), (10)
Ze
where
o
Ag = 11
0= Sinhih) (11a)
for the situation of constant surface charge density, and
Ag = 3 (11b)
coshfh)

for the situation of constant surface potentHA = Ag and
C=0).When the capillary slit is filled with the polyelec-
trolytes, one hagd=h andb =0. Then, Eqs(5), (6), and(8)
reduce to

kT —
¥ = —_[Bicoshiy) + N]. (12)
where
o

By = 13

1= Sinhgeh) (133)
for the situation of constant surface charge density, and

{—N

By = 13b

! coshfh) (130)

for the situation of constant surface potential- N=B=
B1 andC=0).

3. Induced electric field distribution

The ionic concentrations, andn_ in the capillary slit are

surface charge density is replaced by the boundary conditionnot uniform in both axial4) and lateral ) directions; hence

for the case of constant surface potential,

v(y=h)=¢, ()

then the solution in the form of E¢5) is also valid to the
first orders off and N, with

¢+ N[coshgd) — 1]

coshfh) ’ (8a)
_ ¢ — NI[sinh(ch) sinh(b) + 1]
B= coshfch) ’ (8b)

where¢ = Zet/kT is the dimensionless surface potential,

andc is still given by Eq(6c). By using Eqs(4d), (5b), (6c),
and(8b), it can be found that the relation betwegando
for arbitrary values oV, i and«b under the Debye—Huckel
approximation is

o coshih) = (¢ — N)sinhh) + N sinh(cb) (9)

their prescribed gradients in the axial direction can give rise
to a “diffusion current” distribution on a cross section of the
slit. To prevent a continuous separation of the counter-ions
and co-ions, an electric field distributidhalong the axial
direction arises spontaneously in the electrolyte solution to
produce another electric current distribution, which exactly
balances the diffusion curreft,10].

The flux of either ionic species can be expressed by the
Nernst—Planck equation,

Ze

Jr=—-Di |Vny £ ﬁﬂi(vw - E)|. (14)
where the principle of superposition for the electric potential
is used, and, andD_ are the diffusion coefficients of the
cations and anions, respectively, which are assumed to be
constant both inside and outside the porous surface layer. In
order to have no current arising from the cocurrent diffusion
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of the cations and anions, one must require jhatJ_ =J.
Applying this constraint to Eq14), one obtains

kT (Gy—G_\ Vn™
E=— , 15
Ze (G++G_) n>(0) (15)
where
Zeyr
GL.=D —_— 16
+ ieXp<:F T ) (16)

Here, the coefficients+ andG_ reflect the fact of anincrease

The momentum balances on the Newtonian fluid inthad
z directions give

% + Ze(ny — n_)d—w =0 (22)
ay dy
u ap
T’Iﬁ — H(y)fu= - —Ze(ny —n_)|E| (23)
[y 0z

Here,u(y) is the fluid velocity profile (satisfying the equation
of continuity for an incompressible fluid) in the direction of

in the axial diffusive flux of the counter-ions and a decrease decreasing electrolyte concentration (i.e., directioW o),

in the flux of the co-ions inside the electric double layer.
Substitution of Eqs(15) and(16) into Eq.(14) leads to,

J = —DVn®, a7)
where the position-dependent net diffusivity is
2G4G-
s sl (18)
Gy +G_

Eqgs.(15)and(17)show clearly that botk and/ are collinear
with the axially imposed electrolyte gradieviz>.

When the electric potentiat is low, a Taylor expansion
applies to Eq(16), and Egs(15) and(18) can be expressed
as

P N NI
E=T|p-a-@itvopd| S a9
and

_ 2p,D_ Zey o]

= [1—|—ﬁkT +007). (20)
where

_ Dy-D_

B= Dot D (21)

Evidently,—1 < 8 < 1. Note that, even if the cation and anion

diffusion coefficients are identical (i.3,=0, the Of/) term
in Eq. (19) for the induced electric fiel& still exists (due

p(y, 7) is the pressurek(y) is the macroscopic electric field

induced by the applied concentration gradient of the elec-
trolyte given by Eq(15)or (19), n is the viscosity of the fluid,
andf'is the hydrodynamic friction coefficient in the polymer
layer per unit volume of the fluid; both andf are assumed
to be constant. Eq(23) is the Navier—Stokes/Brinkman
equation modified by adding a term of electrostatic
force.

The boundary conditions forare

dl‘(y =0)=0, (24a)
dy

u(y =b")=u(y =b"), (24b)
du du

GOo=p) =G 0=, (240)
u(y=nh)=0 (24d)

Egs.(24b)and(24c) express the continuity conditions of
and of di/dy at the outer boundary of the surface charge layer
[17-19] In Eq.(24d), we have assumed that the shear plane
coincides with the surface of the bare wall.

After the substitution of E(2) for n.. into Eq.(22) (based
on the assumption that the equilibrium lateral ionic distribu-
tions are not affected by the axially induced electric field
E) and the application of the Debye—Huckel approximation,
the pressure distribution can be determined, with the result

to the adsorption of the counter-ions and depletion of the correct to the second orders®{or Z) andN as

co-ions near the slit walls) and equalg'Vr>/n°°(0). In a

previous study of the diffusioosmosis of electrolyte solutions
in a capillary slit with each of its inside walls covered by a

layer of adsorbed polyelectrolytE2?], only the first term in

the brackets of E(19), which is a constant, was considered

for E (the bulk-phase electrostatic potentiak 0 is taken

everywhere), and thus, the effect of the lateral distribution o
the induced electric field on the fluid velocity was excluded.

4. Fluid velocity distribution

n>(z)

7 ZPVON® - [V OF) (25)

p=po+

Here,po is the pressure at the median plane between the slit
walls, which is a constant in the absence of applied pressure

f gradient, and the electric potential distributigiy) is given

by Eq.(5).

Substituting the linearized form of the ionic concentration
distributions of Eq(2), the electrostatic potential distribution
of Eq. (5), the pressure profile of E¢25), and the induced
electric field profile of Eq(19)into Eq.(23), and solving for
the fluid velocity subject to the boundary conditions in Eq.

We now consider the steady flow of an electrolyte solution (24), we obtain
in a capillary slit with each of its inside walls coated with a '
layer of charged polymers under the influence of a constant ¥ _ Bd1+ Ly — 11— f2)s
= 8 4 J

. . X . 26
concentration gradient of the electrolyte prescribed axially. U* (26)
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where involving the functiongb1 and®3 represent the contribution
from electroosmosis, while the remainder terms (containing
@i = gi1(kb) — gin(ky) — gi2(kb) + sec hid)giz(ich) the function®,) are the chemiosmotic component. Note that
—tanh(.d)gio(kb), if 0 <y <b, (27a) additional second-order terms caused by electroosmosis may

exist if the electrolyte is not symmetric.
When there is no polymer adsorbed on the slit walls, one

®; = sechid)[gi2(kh) coshi.y — 1.b) hasd_:Q, b_:h, N=0, andx =0 and the potential profile in
_ _ the slit is given by Eq(10). Then, Eqs(27) and(30) reduce
—gio(kb) sinh@h — Ay)] — gia(ky), if b <y <h, to
(27b) @i = gi1(kh) — gi(xy) (31)
for i=1, 2, and 3. In the above equationg/* =
! ! ! D) = gi1(kh) — si1(ch 32
2kT|Vn™|/ni?, which is a characteristic value of the diffu- (@) = ginlich) = sia (ich) (32)
sioosmotic velocity, the functiongo(x), gi1(x), andg;2(x) are In the functionsg;1 and S;1 for this simple case, we take

defined by Eqs(A.1)~(A.3) in Appendix A andx = (fn)*/2. A=Ag, which was defined by Eq11). Egs.(31) and(32)

The parameter 1/ has the dimension of length and the agree with the result obtained in a previous artdlé], in
square of it is the so-called Darcy permeability of the porous which only the case of a capillary with bare walls is examined.
medium, which is related to the pore (or segment) size andIn this case, the function®; and (®;) with i equal to 1, 2,
porosity and characterizes the dynamic behavior of the vis- and 3 are always positive arbg > @,. It can be found by
cous fluid in it. For the surface charge layers of human a comparison between Eq80) and(32) that the structure
erythrocyteg[18], rat lymphocyteqd24], and grafted poly-  of the surface charge layer can result in an augmented or a
mer microcapsulef25], experimental data afi range from diminished fluid velocity relative to that in a capillary with

1.35to 3.7 nm. It can be found from E7) that the func- bare walls, depending on the characteristics of the electrolyte
tions @, and @3 are almost equivalent when the valueaf solution, of the surface charge layer, and of the capillary.
is large and the value @f is small. For the case of a capillary slit coated with an uncharged
The definition of the average fluid velocity over a cross polymer layer ¥ =0) at each of its inside walls, E¢10)
section of the capillary slit is for the potential distribution is also applicable and the fluid
1 rh velocity can be evaluated from Eq26)(30) by settingV =
(u) = Z/o u(y)dy (28) 0,B=A=ApandC=0.

Wheni — oo (very high segment density), the resistance
Substituting Egs(26) and(27) into the above equation and  to the fluid motion inside the surface charge layer is infinitely

performing the integration, we obtain large. For this limiting caseo(x) = gi2(x) =0, and Eqs(27)
w) and(30) reduce to
M 1 _l1_g2
g = PO0 T 5P = (1= F)(®a), @9 @ = gul) — galey). 0=y, (33a)
with ®; =0, if b<y<h, (33b)
b 1
D;) = —[gi1(kb) — gi2(kb —[Absechid b
(i) = [811(cb) — gi2(kb)] + — | () TR — (34)
+ tanh@.d)]giz(«h) . :
Eq. (33) shows that the fluid flow in the surface charge layer
—i[xb tanh.d) — sech{d) + 1]gio(kb) disappears and the velocity profile of the remaining fluid is
Ah similar to that in a polymer-free capillary slit of half thickness
—s;1(kb) — si2(kb), (30) b with a modified surface charge density or surface potential
at the wall.

where the functionsS;1(x) (= 5‘ gin(x) dx/xh) and Sj2(x)
(=/¢ gi2(x) dx/kh) are defined by Eq$A.5) and(A.6).

The function®; in Egs.(26) and(29) represents the first
orders ot (or¢) andN, while the functiong, and®3 denote
the second orders. As it is well-known, the diffusioosmosis @; = g;1(kb) — gi1(ky) + gia(kb), if 0 <y <b, (35a)
of an electrolyte solution in a capillary pore results from a

When A — 0 (very low segment density), the adsorbed
polymers do not exert resistance to the fluid motion in the
capillary channel. In this limit, Eq$27) and(30) become

linear combination of two effects: “chemiosmosis” due tothe Pi = &i3(ky), if b <y <Hh; (35b)
nonuniform adsorption of counter-ions and depletion of co- b
ions in the electric double layer over the charged surface and(®:) = 7 [8i1(kb) + gia(kb)] — sia(kb) + sia(icb). (36)

“electroosmosis” due to the macroscopic electric field gener-
ated by the imposed concentration gradient of the electrolytewhere the functiong;z and Siz(x) (=/ X"h gi3(x) dx/xh) are
given by Eq.(15) or (19). The terms in Eqs(26) and (29) defined by Eqs(A.7) and (A.8). If the adsorbed polymers
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are unchargedN=0), the above expressions for the fluid
velocity again reduce to Eq&1) and(32).

When the capillary slit is filled with the adsorbed poly-
mers, one hag=h andb =0, and the potential distribution in
the slit is given by Eq(12). Then, Eqs(27) and(30) reduce
to

h
> = gi4(Kh):;c));§:hy; — gualky) @37)
(@) = giaen) ) ), (39)

where the definitions of the functiongs(x) and S;s(x)
(=[ o gia(x) dx/kh) are given by Eqg(A.9) and(A.10).

2 T T I T I T | T
FIN=2
1
° 05
N
0
—1
3 T ‘ T I T I T l T
0 1 2 3 4 5
(a) xh
2 T I T I T I T I T
o
N
3 I T | T | T | T
4] 5 10 15 20 25
(b) xh

Fig. 2. Plots of the ratiE/]V for a capillary slit with its inside walls covered
by layers of adsorbed polyelectrolytes vs. the paramétefa) b/ = 0; (b)
blh=0.8.

5. Results and discussion

For the system of an electrolyte solution in a capillary
slit bearing adsorbed polyelectrolytes on its inside walls, the
surface charge density of the wall, the surface potential of
the wall, the fixed-charge density in the polyelectrolyte layer,
and the electrokinetic dimensions of the system are related
by Eq.(9). Fig. 2a) and (b) show the results of the ratio
o/N for the case ob/h = 0 and for the case of a finite
value ofb/h (=0.8), respectively, as functionswof for several
values of the ratig/N. It can be seen that/ N = 0 askh =0
ando/N = ¢/N — 1 askh — oo, regardless of the values of
¢/N andb/h. For the special case withh =0 andz/N = 1,
the potential in the polyelectrolyte-filled capillary equals the

200

150

P3 100

50

(@)

(b) yih

Fig. 3. Plots of the functionﬁg/]V2 for a capillary slit filled with adsorbed
polyelectrolytesk/h = 0) vs. the relative positionh: (a)xh =10; (b)Ah=1.
The dashed, solid, and dotted curves represent the Eas_ﬁe& 2,0, and
—2, respectively.
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Donnan potential everywhere, apdN = 0 at any value of
kh. For the other cases with/h =0, o has the same sign
as¢ — N and the magnitude @f/ N increases monotonically
with anincrease in/ for a constant value af/ N. For the case
with a finite value ob/h, o/ N is negative and its magnitude
is still a monotonic increasing function af: if ¢/N <0,
but the dependence o/ N on xh may not be monotonic if
¢/N > 0.

The functions®,, @,, and @3 given by Eg.(27) for
the general case and by E@81), (33), (35), and(37) for

) and N. Some graphical results concernidg /N and
@,/N? (and Zey/ kT N) as functions of the dimensionless
coordinatey/i can be found in the literatuf@2]. In Fig. 3,
the function®ds/N? for a slit filled with adsorbed polyelec-
trolytes (with b/h=0) calculated form Eq(37) is plotted
versusy/h for several values of the parameteysV, «h, and
Ah. It can be seen thaks is positive, meaning that the effect
of the lateral distribution of the induced axial electric field in
the slit will cause the fluid flowing towards the end of higher
electrolyte concentration. As expected, the valu@gfis a

several special cases determine the diffusioosmotic velocity monotonically decreasing function efz from a maximum

of a symmetric electrolyte in a capillary slit with each of its

at the median plane (with=0) between the slit walls to

inside walls covered by a layer of adsorbed polyelectrolytes zero at the no-slip walls (witlh=#). The value ofcbg/ﬁ2

according to Eq(26) correct to the second orders @f(or
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Fig. 4. Plots of the functi0|ti>3/1V2 for a capillary slit with its inside walls
covered by layers of adsorbed polyelectrolytes vs. the relative position
asb/h=0.8: (a)kh=10; (b) Ah=1. The solid, dashed, and dotted curves
represent the casegN = 0, 2, and 4, respectively.

in general increases with an increase jiv. Evidently, @3
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Fig. 5. Plots of the function)g,/ﬁ2 for a capillary slit with its inside walls
covered by layers of adsorbed polyelectrolytes vs. the relative position
asb/h=0.8: (a)xh=10; (b)Ah=1. The solid and dashed curves represent
the caseg/N = —1 and—2, respectively.
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increases with an increase in the valuechfand decreases polyelectrolyte layers on the slit walls. In the limit — oo,

with an increase in the value df, for an otherwise specified @3 vanishes within the surface charge layer>6) as

condition. In the limiting situations that: =0 (there is no expected, but can be finite at other locations in the capillary.

interaction between the diffuse ions and the fixed charges) For the case of /N > 0, as illustrated irfrig. 4 the value of

or Ah— oo (there is no flow penetration into the polymer @®3/N? increases with an increasexh or QN for an other-

layer), @3 vanishes at any position in the capillary. wise specified condition. For the casergV < 0, as shown
The function®s/N? for a capillary slit with its inside in Fig. 5, @3 at a given relative position not too close to the

walls covered by finite layers of adsorbed polyelectrolytes slit walls may not be a monotonically increasing function

(with b/h=0.8 as an example) is plotted versus the relative of kh. B B

position y/h in Figs. 4 and Sfor different values of the In Figs. 6-8the averaged valug®s) /N2, (®2)/N?, and

parameters/N, kh, andih. Again, @3 is positive for given (@3)/N?, respectively, calculated from E¢®8) as functions

values of these parameters, equals zero everywhere in thef the relevant parameters are plotted for a slit filled with

capillary for the limiting case oth =0, and decreases with  adsorbed polyelectrolytes. For all cases, b@th) /N2 and

an increase inh for an otherwise fixed condition. When the  (&3)/N? are positive, and the dependence of these values on

magnitudes of /N andah are relatively largegs/N? is not the parametey/ N becomes relatively weak when the magni-

a monotonic function of/h due to the existence of the finite  tude of the parametet is large. On the other hangp,) / N2

T T T T T T T T T LI B B T T T T 1171

(@2)
Nz
T — 8 —
01 1 10 0.1 1 10
(a) 2h (a) ih
100 = T T T T g 100 3 T T T T T T T T TTUTH
3 4h=0 1 1 E
10 5 E 10 = _ _;Jljg — —
<i_1) 1 = _ K(b2>] 4 4 -
N E | 213
4 / 4 4
— / — | —
13 / : 013 / E
3 /o 1 1 / ]
b / / b p / ]
T / /7 B 4 / 4
/
0.01 T /' AR LR T 0.01 T I'iff';‘lll T T T T T T
0.1 1 10 100 0.1 1 10 100
(b) xh (b) xh

Fig. 6. Plots of the functiok®1)/N for a capillary slit filled with adsorbed Fig. 7. Plots of the functiond,) /N2 for a capillary slit filled with adsorbed
polyelectrolytesk/h = 0) vs. the parametefsg andkh. The solid and dashed polyelectrolytesk/h =0) vs. the parametefs: andkh. The solid and dashed
curves represent the caggsvV = 0 and 2, respectively. curves represent the casgevV = 0 and 2, respectively.
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is positive as;/N > 1, negative as & ¢/N < 1,andvan- N at a fixed value ok and various values of /N, Ah,
ishes as;/N = 1. For the case of/N < 0 (which is not andb/h calculated from Egs(29) and (30) is displayed in
plotted here for conciseness®,) /N2 can be either positive  Figs. 9 and 10Because our analysis is based on the assump-
or negative depending on the combinatiog oV and«h. As tion of small electrostatic potentials, the magnitudesvof
expected, the magnitudes of all these three average functiongonsidered are less thanig. 9is drawn for the case of a
increase with an increase in the valuecbf(the dependence  symmetric electrolyte that the cation and anion diffusivities
for (®@,)/ N2 is weaker than for the other two functions when are equal §=0, representing the aqueous solution of KCI
khis large) and decrease with an increase in the valugof  if Z=1). Only the results at positive values &fare shown
for an otherwise specified condition. In the limiting situations because the fluid velocity, which is due to®(¢N, N?) con-
thatch =0 0rih — oo, (®1) = (P2) = (P3) =0andthereisno tribution entirely as illustrated by Eq&9) and(30), is now
fluid flow in the capillary. an even function ofV. It can be seen from Eq29) and
The dependence of the normalized average diffusioos- Figs. 7 and 8hatthe fluid flows contributed from chemiosmo-
motic velocity(u)/U" of an electrolyte solution in a capillary  sis (involving the functiorb,) and electroosmosis (involving
slitwith each of its inside walls covered by a layer of adsorbed
polyelectrolytes on the dimensionless fixed-charge density

50 , ; ,
150 ———T T —
0
120 — 1
-50
90 <u>
Ty
D, -100
30 -160 —
0 -200
. 1 0
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] E 2 - \ N -
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] E U 4 \ N e
J i \ N
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] Y ] ‘0 \
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14 / / = i \ B
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1S, ] 5 . ! : |
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0.1 T T T T T T T T T TIUT (b) N
0.1 1 10 100
(b) xh Fig. 9. Plots of the normalized average diffusioosmotic velogityU" in

B a capillary slit with its inside walls covered by layers of adsorbed poly-
Fig. 8. Plots of the function®s) /N2 for a capillary slit filled with adsorbed electrolytes vs. the dimensionless charge den€ityith «<2=10 and8=0:
polyelectrolytesk/h = 0) vs. the parametekd: andi/. The solid and dashed (a) b/h=0; (b) b/h=0.8. The solid and dashed curves represent the cases
curves represent the casgsv = 0 and 2, respectively. Z/N = 0 and 2, respectively.
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<u>

2|

Fig. 10. Plots of the normalized average diffusioosmotic velo@ityt" in
a capillary slit with its inside walls covered by layers of adsorbed polyelec-
trolytes vs. the dimensionless charge densitwith «2=10 andg=-0.2:

13

the order unity for the case of a thin polyelectrolyte layer
(b/lh — 1), but can be quite large ##h — 0.

In Fig. 10 the normalized average diffusioosmotic veloc-
ity (u)/U" as a function ofN is plotted for the case of a
symmetric electrolyte whose cation and anion have different
diffusion coefficients §=—0.2 is chosen, representing the
aqueous solution of NaCl i£=1). In this case, the diffu-
sioosmotic velocity is neither an even nor an odd function of
N. It can be seen that the fluid velocity is not necessarily a
monotonic function of the magnitude of for fixed values
of £/N, kh, Ah, andb/h. The curves in the vicinity oN = 0
indicate that the fluid might reverse direction of flow more
than once a® varies in a narrow range from negative to pos-
itive values. The reversals occurring at the valued afther
than zero result from the combination of the contributions
from electroosmosis of @(N) and O¢2, ¢N, N?) (which
is still dominant in many situations) and chemiosmosis of
O(¢2, tN, N?). Again, for specified values af, N, «h, and
blh, the magnitude ofu)/U" decreases monotonically with
an increase inh. In general, the net diffusioosmotic flow is
still dominated by the electroosmotic contribution and in the
direction of increasing electrolyte concentration.

6. Concluding remarks

The steady diffusioosmotic flow of solutions of sym-
metric electrolytes in a narrow capillary slit bearing a
layer of adsorbed polyelectrolytes on each of its inside
walls is analytically studied in this work. Solving the
linearized Poisson—Boltzmann equation and the modified
Navier—Stokes/Brinkman equation applicable to the system,
the electrostatic potential distribution and the fluid velocity
profile under the influence of a constant gradient of the
electrolyte concentration are obtained in closed forms to
the orders£ N) and ¢2, ¢N, N?), respectively. The macro-
scopic electric field induced by the prescribed electrolyte
concentration gradient through the capillary slit is a function

() b/h=0; (b) b/h=0.8. The solid and dashed curves represent the cases of the lateral position rather than a constant bulk-phase

¢/N = 0and 2, respectively.

®3) are inthe same direction a@E/N < 1butinthe oppo-
site directions ag/N > 1, and the net flow is dominated by

the electroosmotic effect (having the direction of increas-

quantity. The contribution to the diffusioosmotic flow made
by the position dependence of the induced electric field is of
the same order [@E, ¢N, N?)] as, but may have an opposite
direction to, that made by the chemiosmotic effect, and the
former is dominant in most practical situations, as indicated
by Eq.(26). Therefore, the effect of the deviation of the local

ing electrolyte concentration). As expected, the magnitude induced axial electric field in the slit from its bulk-phase

of (u)/U" increases monotonically with an increase| N
and with a decrease it for constant values af/ N, «h, and
blh. There is no diffusioosmotic motion of the fluid for the
special case of = N = 0. In a previous study of the same
diffusioosmosis[22], the O¢2, ¢N, N2) contribution from

quantity [given by the term of zeroth orderinin Eq.(19)],
which causes the fluid flowing towards the end of higher elec-
trolyte concentration, cannot be neglected in the evaluation
of the diffusioosmotic flow rate in a capillary, even for the
case of very thin double layer. Our results demonstrate that

electroosmotic effect was not considered, and the resultedthe structure of the surface charge layer can lead to a quite dif-

fluid velocity (which is due to chemiosmotic effect only) for
the case of /N > 1 was in the direction of decreasing elec-
trolyte concentration. Note that the magnitud€fU”" has

ferent diffusioosmotic flow from that in a capillary with bare
walls [16], depending on the characteristics of the capillary,
of the surface charge layer, and of the electrolyte solution.
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The macroscopic electric fielf arising spontaneously  g,,(x) = %Az(cosh & — 2x?), (A.2b)
due to the imposed concentration gradient of the electrolyte
in the axial direction of the capillary slit is provided by gai(x) = L A%(cosh & + 2x?); (A.2c)
Egs.(15) or (19), and the diffusioosmotic velocity of the : 5
electrolyte solution is obtained in E(R6), both are accu-  g),(y) = 2K _Fi() %ﬁv (A32)
rate with the primary effects only. In addition to the ionic KE— X A
fluxes due to diffusion and electric migration [given by Eq. , ,
(14)), the diffusioosmotic fluid flow can generate an elec- % 8k —
tric current by ionic convection (known as the relaxation g22(x) = 42 _ )2 Fa(x) + K2 _ 22 NFy(x)
effect). This electric current is not included in the current 242 B
balance for the determination @& in Section3. Thus, a +5(2A% — B2+ C? - 2N?), (A.3b)
secondary induced electric field must build up through the A
capillary, which is just sufficient to prevent the net electric
current flow. This secondary electric field, which is of the A2 )
order O¢2, tN, N?), and its contribution to the fluid flow,  §32(*) = g22(x) — 745 (A-3¢)
which is of the order Q, ¢2N, ¢tN?, N3), can be calculated here
via a similar approach in the calculations of the streaming wher
potential induced across the capillary in the presence of anfy(x) = B coshx + C sinhx, (A.4a)
applied pressure gradief,3,21] Alternatively, distribu- _
tions of ionic concentrations, electric potentials, and fluid F2(x) = (Bsinhx 4 C coshx), (A.4b)
velocity might be calculated in a gen_eral se!f-cpnsistent WaY £o(x) = (B2 + C?) cosh & + 2BC sinh 2, (A.4c)
[13-15,28] For the geometry of a capillary slit with adsorbed
polyelectrolyte layers considered in the present article, how- Fa(x) = (B? 4 C?)sinh 2 + 2BC cosh . (A.4d)
ever, the general approach accurate to higher ordersind In Eq.(30
N would be somewhat complicated and could be an endeavor n Eq.(30),
for future work. sinh
s1(x) = A (A.5a)
Kh
1
Acknowledgment s01(x) = mA2(3 sinh 2 — 4x%), (A.5b)
This research was supported by the National Science 1 o 3.
Council of the Republic of China. s31(¥) = 12¢h A"(3sinh 2 + 4x7); (A.5¢)
K2 K —=
Appendix A s12(x) = Wh K2 — 22 )LZ[FZ(Kh) — Fa(x)] — WN(K}I — X),
(A.6a)
For conciseness the definitions of some functions in Sec-
tion 4 are listed here. In Eq27),
[ «? I
gm&)=k{2A;@QW—A9mmy (Ala) 22 = G g el Fald) = Fal]
2 —
+ 8 Ntk — Fa(o)]
— > Kh) — X
K 442 82 — kh k2 — )2 2 2
gzo(x) = X 4K2 — )\‘2 F4()C) + K2 — )\‘ZNFZ(X) 2K _
+m(2A2 — B2+ C%? - 2N?)(kh —x), (A.6h)
— A®(sinh 2x — zx)} , (A.1b)
4/( 2
s32(x) = s22(x) — WA (kh — x). (A.6¢)
K K2 82 —
g30(x) = 5 mﬂ(x) + mNFz(X) In Egs.(35)and(36),
g13(x) = Fa(xh) — Fa(x), (A.7a)
— A®(sinh 2x + Zx)} : (A.1c) 1 _
g23(x) = g33(x) = 5[ F3(xh) — F3(x)] + 8Ngis(x); (A.7b)

g11(x) = A coshy, (A.2a)

51300 = T TFh)eh — ) — Faleh) + o)), (A8
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523(x) = 533() = —— Fa(ch)(ich — %)

2kh
L Fh) — ] + 8Vsis(). (ABD)
In Egs.(37)and(38),
K2 K2 —
g14(x) = mBl coshx — ﬁN’ (A.9a)

2i2 82 _
goa(x) = ﬁBl2 coshx + f'cﬂBlN coshx

242 P -
+?(31 +4B1N), (A.9b)
442 —
834(x) = g24(x) = —5 (B1+ N)*; (A.9¢)
©? sinhx KX —
— -~ __—_N, A.10a
514(x) L 2 ( )
. K2 ,sinh 2 82  —sinhx
S X) =
24 4?2 — )2 ! Kh K2 — )2 ! Kh
2cx o —
—— (B 4B1N), A.10b
+ th( 1“+4B1N) ( )
Aicx =2
s3a(x) = s24(x) — 57, (B1+ N) (A.10c)

andBi was defined by Eq13).
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