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Abstract

The steady diffusioosmotic flow of an electrolyte solution in a fine capillary slit with each of its inside walls covered by a layer of adsorbed
polyelectrolytes is analytically studied. In this solvent-permeable and ion-penetrable surface charge layer, idealized polyelectrolyte segments
are assumed to distribute at a uniform density. The electric double layer and the surface charge layer may have arbitrary thicknesses relative
to the gap width between the slit walls. The Debye–Huckel approximation is used to obtain the electrostatic potential distribution on a cross
section of the slit. The macroscopic electric field induced by the imposed electrolyte concentration gradient through the slit is determined as a
function of the lateral position rather than taken as its constant bulk-phase quantity. Explicit formulas for the fluid velocity profile are derived
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s the solution of a modified Navier–Stokes/Brinkman equation. The effect of the lateral distribution of the induced axial electric fi
lit on the diffusioosmotic flow is found to be of dominant significance in most practical situations and to drive the fluid towards th
igher electrolyte concentration. The existence of the surface charge layers can lead to a quite different diffusioosmotic flow from
apillary with bare walls.
2005 Elsevier B.V. All rights reserved.
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. Introduction

The flow of electrolyte solutions in a small pore with a
harged wall is of much fundamental and practical interest in
arious areas of science and engineering. In general, driving
orces for this electrokinetic flow include dynamic pressure
ifferences between the two ends of the pore (a streaming
otential is developed as a result of zero net electric current)
nd tangential electric fields that interact with the electric
ouble layer adjacent to the pore wall (electroosmosis). Prob-

ems of fluid flow in pores caused by these well-known
riving forces were studied extensively in the past century

1–8].
Another driving force for the electrokinetic flow in a

icropore, which has commanded less attention, involves
angential concentration gradients of an ionic solute that inter-
cts with the charged pore wall. This solute-wall interaction

s electrostatic in nature and its range is the Debye screening

∗ Corresponding author. Tel.: +886 2 33663048; fax: +886 2 23623040.
E-mail address: huan@ntu.edu.tw (H.J. Keh).

lengthκ−1 (defined right after Eq.(3)). The fluid motion asso
ciated with this mechanism, known as “diffusioosmos
has been analytically examined for solutions near a p
wall [4,9–12]and inside a fine capillary[13–16]. Electrolyte
solutions with a concentration gradient of order 100 kmo4

(=1 M/cm) along solid surfaces with a zeta potential of o
kT/e (∼25 mV;e is the charge of a proton,k is the Boltzmann
constant, andT is the absolute temperature) can flow
diffusioosmosis at velocities of several micrometers
second.

Although the basic relationships involved in electrokin
phenomena were derived mainly by using the traditi
model of plain distribution of surface charges, quit
number of investigations have applied these phenome
the study of the effects of polyelectrolyte adsorbates.
electroosmotic flows in capillaries with thin polymer lay
on the inside walls were theoretically examined for the c
of a slit [17,18] and a tube[19] with thin double layers. O
the other hand, analytical formulas for the electroosm
velocity profile of electrolyte solutions on the cross sec
of a capillary with its inside wall covered by a finite lay
927-7757/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
oi:10.1016/j.colsurfa.2005.06.031
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of adsorbed polyelectrolytes were obtained by solving the
linearized Poisson–Boltzmann equation for the case of an
arbitrary value ofκR orκh, whereR is the radius of a capillary
tube andh is the half thickness of a capillary slit[20,21].
Recently, the diffusioosmotic flow of a symmetric electrolyte
solution in a fine capillary slit bearing adsorbed polyelec-
trolytes on its inside walls was theoretically investigated for
the case of small potentials or low fixed-charge densities,
and an analytical formula for the fluid velocity profile on
the cross section of the slit was obtained[22]. In this study,
however, the effect of lateral distributions of the counter-ions
and co-ions on the local macroscopic electric field induced
by the imposed electrolyte concentration gradient in the axial
direction, which can be dominantly important, was neglected.

The objective of this work is to analyze the steady diffu-
sioosmosis of an electrolyte solution with a constant imposed
concentration gradient through a capillary slit bearing per-
manently adsorbed or covalently bound polyelectrolytes on
its inside walls. The charge and segment densities of the
adsorbed polymers are assumed to be uniform throughout
the surface charge layer, and the Debye–Huckel approxima-
tion for the electrostatic potential is employed. However, no
assumptions will be made about the thickness of the electric
double layer or the thickness of the surface charge layer rel-
ative to the gap width between the slit walls, and the lateral
distribution of the induced axial electric field is allowed. We
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charged polymers in equilibrium with the surrounding solu-
tion. The polymer layer is treated as a solvent-permeable
and ion-penetrable surface charge layer of constant thick-
nessd = h − b in which fixed-charged groups of valenceq
are distributed at a uniform densityN. Experimental val-
ues for human erythrocytes[23], rat lymphocytes[24], and
grafted polymer macrocapsules[25] indicate thatd ranges
from 7.8 nm to 3.38�m andN can be as high as 0.03 kmol/m3,
depending on the pH and ionic strength of the electrolyte
solution.

The prescribed electrolyte concentration gradient∇n∞ is
a constant along the axial direction in the capillary, where
n∞(z) can be interpreted as the equivalent electrolyte con-
centration in the bulk solution phase (outside the capillary) at
equilibrium with the fluid in the slit cross section at axial posi-
tion z. Since the electrolyte ions can diffuse freely along the
capillary (inside and outside the surface charge layers), there
exists no regular osmotic flow of the solvent. It is assumed
thatL|∇n∞|/n∞(0) � 1, wherez = 0 is set at the midpoint
through the capillary slit. Thus, the variation of the elec-
trostatic potential (excluding the macroscopic electric field
induced by the prescribed electrolyte gradient, which will be
discussed in the next section) and ionic concentrations in the
slit with the axial position is negligible.

Because of the planar symmetry of the system, we need
consider only the half region 0≤ y ≤ h, wherey is the distance
f mal
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hall derive explicit formulas for the local and average fl
elocities due to the application of an electrolyte concen
ion gradient along the slit walls. These results show tha
ffect of the deviation of the induced axial electric field

he slit from its bulk-phase quantity on the diffusioosm
elocity of the fluid is dominantly significant in most practi
ituations.

. Electrostatic potential distribution

In this section, we consider the electrostatic potential
ribution in the fluid solution of a symmetrically charg
lectrolyte on a cross section of the narrow channel bet

wo large identical parallel plates of lengthL at separation dis
ance 2h with h � L, as illustrated inFig. 1. Each of the insid
alls of the capillary slit is coated with a layer of adsorb

ig. 1. Geometrical sketch for the diffusioosmosis in a capillary slit
ach of its inside walls covered by a layer of adsorbed polyelectrolyte
rom the median plane between the slit walls in a nor
irection. Ifψ(y) represents the electrostatic potential at
osition y relative to that in the bulk solution andn+(y, z)
ndn−(y, z) denote the local concentrations of the cation
nion, respectively, of the symmetric electrolyte with vale
(which is positive), then Poisson’s equation gives

d2ψ

dy2 = −4πe

ε
{Z[n+(y,0) − n−(y,0)] +H(y)qN} (1)

ere, H(y) is a unit step function which equals unity
< y < h, and zero if 0≤ y <b; ε= 4πε0εr, whereεr is the rela

ive permittivity of the electrolyte solution which is assum
o be constant andε0 is the permittivity of a vacuum.

The local concentrationsn+ and n− are also related toψ
y the Boltzmann equation:

± = n∞ exp

(
∓Zeψ
kT

)
(2)

he substitution of Eq.(2) into Eq. (1) leads to the well
nown Poisson–Boltzmann equation. For small valuesψ
or Zeψ/kT � 1, known as the Debye–Huckel approxim
ion), the Poisson–Boltzmann equation can be linearized
q.(1) becomes

d2ψ

dy2 = κ2ψ −H(y)
4πqeN

ε
, (3)

hereκ = [8π(Ze)2n∞(0)/εkT ]
1/2

is the Debye screenin
arameter.
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The boundary conditions forψ are

dψ

dy
(y = 0) = 0, (4a)

ψ(y = b−) = ψ(y = b+), (4b)

dψ

dy
(y = b−) = dψ

dy
(y = b+), (4c)

dψ

dy
(y = h) = 4πσ

ε
. (4d)

Eqs.(4b)and(4c)are the continuity requirements forψ and
dψ/dy at the outer edge of the surface charge layer[18,26].
Eq. (4d) is the Gauss condition at the capillary wall, withσ
equal to the surface charge density of the bare wall.

The solution to Eqs.(3) and(4) is

ψ = kT

Ze
A cosh(κy), if 0 ≤ y ≤ b, (5a)

ψ = kT

Ze
[B cosh(κy) + C sinh(κy) + N̄], if b ≤ y ≤ h,

(5b)

with

A = σ̄ + N̄ sinh(κd)

sinh(κh)
, (6a)
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When there is no polyelectrolyte adsorbed on the walls of
the capillary slit, or when the adsorbed polymer layer is
uncharged, one hasN = 0. Then, Eqs.(5), (6), and(8) reduce
to

ψ = kT

Ze
A0 cosh(κy), (10)

where

A0 = σ̄

sinh(κh)
(11a)

for the situation of constant surface charge density, and

A0 = ζ̄

cosh(κh)
(11b)

for the situation of constant surface potential (B = A = A0 and
C = 0).When the capillary slit is filled with the polyelec-
trolytes, one hasd = h andb = 0. Then, Eqs.(5), (6), and(8)
reduce to

ψ = kT

Ze
[B1 cosh(κy) + N̄], (12)

where

B1 = σ̄

sinh(κh)
(13a)
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= σ̄ − N̄ cosh(κh) sinh(κb)

sinh(κh)
, (6b)

= N̄ sinh(κb), (6c)

here σ̄ = 4πZeσ/εκkT and N̄ = 4πZe2qN/εκ2kT . Evi-
ently, the electric potential given by Eq.(5) is correct to

he first orders of the dimensionless fixed-charge densit̄σ
ndN̄. Note that the parameter̄N can also be viewed as t
ondimensionalized Donnan potential[18,27]of the surface
harge layer in the Debye–Huckel approximation.

If the boundary condition(4d) for the case of consta
urface charge density is replaced by the boundary con
or the case of constant surface potential,

(y = h) = ζ, (7)

hen the solution in the form of Eq.(5) is also valid to the
rst orders ofζ andN̄, with

= ζ̄ + N̄[cosh(κd) − 1]

cosh(κh)
, (8a)

= ζ̄ − N̄[sinh(κh) sinh(κb) + 1]

cosh(κh)
, (8b)

here ζ̄ = Zeζ/kT is the dimensionless surface poten
ndc is still given by Eq.(6c). By using Eqs.(4d), (5b), (6c),
nd(8b), it can be found that the relation betweenζ and σ̄

or arbitrary values of̄N, κh andκb under the Debye–Huck
pproximation is

¯cosh(κh) = (ζ̄ − N̄) sinh(κh) + N̄ sinh(κb) (9)
or the situation of constant surface charge density, and

1 = ζ̄ − N̄

cosh(κh)
(13b)

or the situation of constant surface potential (A− N̄ = B =
1 andC = 0).

. Induced electric field distribution

The ionic concentrationsn+ andn− in the capillary slit are
ot uniform in both axial (z) and lateral (y) directions; henc

heir prescribed gradients in the axial direction can give
o a “diffusion current” distribution on a cross section of
lit. To prevent a continuous separation of the counter
nd co-ions, an electric field distributionE along the axia
irection arises spontaneously in the electrolyte solutio
roduce another electric current distribution, which exa
alances the diffusion current[4,10].

The flux of either ionic species can be expressed b
ernst–Planck equation,

± = −D±
[
∇n± ± Ze

kT
n±(∇ψ − E)

]
, (14)

here the principle of superposition for the electric pote
s used, andD+ andD− are the diffusion coefficients of th
ations and anions, respectively, which are assumed
onstant both inside and outside the porous surface lay
rder to have no current arising from the cocurrent diffu
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of the cations and anions, one must require thatJ+ = J− = J.
Applying this constraint to Eq.(14), one obtains

E = kT

Ze

(
G+ −G−
G+ +G−

) ∇n∞

n∞(0)
, (15)

where

G± = D± exp

(
∓Zeψ
kT

)
(16)

Here, the coefficientsG+ andG− reflect the fact of an increase
in the axial diffusive flux of the counter-ions and a decrease
in the flux of the co-ions inside the electric double layer.

Substitution of Eqs.(15)and(16) into Eq.(14) leads to,

J = −D∇n∞, (17)

where the position-dependent net diffusivity is

D = 2G+G−
G+ +G−

(18)

Eqs.(15)and(17)show clearly that bothE andJ are collinear
with the axially imposed electrolyte gradient∇n∞.

When the electric potentialψ is low, a Taylor expansion
applies to Eq.(16), and Eqs.(15) and(18) can be expressed
as

E

[ ] ∞

a

D

w

β

E ion
d
i
t the
c
p ions
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l
t red
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4

tion
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The momentum balances on the Newtonian fluid in they and
z directions give

∂p

∂y
+ Ze(n+ − n−)

dψ

dy
= 0 (22)

η
d2u

dy2 −H(y)fu = ∂p

∂z
− Ze(n+ − n−)|E| (23)

Here,u(y) is the fluid velocity profile (satisfying the equation
of continuity for an incompressible fluid) in the direction of
decreasing electrolyte concentration (i.e., direction of∇n∞),
p(y, z) is the pressure,E(y) is the macroscopic electric field
induced by the applied concentration gradient of the elec-
trolyte given by Eq.(15)or (19),η is the viscosity of the fluid,
andf is the hydrodynamic friction coefficient in the polymer
layer per unit volume of the fluid; bothη andf are assumed
to be constant. Eq.(23) is the Navier–Stokes/Brinkman
equation modified by adding a term of electrostatic
force.

The boundary conditions foru are

du

dy
(y = 0) = 0, (24a)

u(y = b−) = u(y = b+), (24b)

u
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[ lane
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t esult
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w ssure
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tion
d on
o d
e r
t Eq.
(

= kT

Ze
β − (1 − β2)

Zeψ

kT
+ O(ψ2)

∇n
n∞(0)

(19)

nd

= 2D+D−
D+ +D−

[
1 + β

Zeψ

kT
+ O(ψ2)

]
, (20)

here

= D+ −D−
D+ +D−

(21)

vidently,−1≤β≤ 1. Note that, even if the cation and an
iffusion coefficients are identical (i.e.,β = 0, the O(ψ) term

n Eq. (19) for the induced electric fieldE still exists (due
o the adsorption of the counter-ions and depletion of
o-ions near the slit walls) and equals−ψ∇n∞/n∞(0). In a
revious study of the diffusioosmosis of electrolyte solut

n a capillary slit with each of its inside walls covered b
ayer of adsorbed polyelectrolytes[22], only the first term in
he brackets of Eq.(19), which is a constant, was conside
or E (the bulk-phase electrostatic potentialψ = 0 is taken
verywhere), and thus, the effect of the lateral distributio
he induced electric field on the fluid velocity was exclud

. Fluid velocity distribution

We now consider the steady flow of an electrolyte solu
n a capillary slit with each of its inside walls coated wit
ayer of charged polymers under the influence of a con
oncentration gradient of the electrolyte prescribed ax
du

dy
(y = b−) = du

dy
(y = b+), (24c)

(y = h) = 0 (24d)

qs.(24b) and(24c) express the continuity conditions ou
nd of du/dy at the outer boundary of the surface charge l

17–19]. In Eq.(24d), we have assumed that the shear p
oincides with the surface of the bare wall.

After the substitution of Eq.(2) for n± into Eq.(22)(based
n the assumption that the equilibrium lateral ionic distr

ions are not affected by the axially induced electric fi
) and the application of the Debye–Huckel approximat

he pressure distribution can be determined, with the r
orrect to the second orders ofσ̄ (or ζ) andN̄ as

= p0 + n∞(z)

kT
(Ze)2{[ψ(y)]2 − [ψ(0)]2} (25)

ere,p0 is the pressure at the median plane between th
alls, which is a constant in the absence of applied pre
radient, and the electric potential distributionψ(y) is given
y Eq.(5).

Substituting the linearized form of the ionic concentra
istributions of Eq.(2), the electrostatic potential distributi
f Eq. (5), the pressure profile of Eq.(25), and the induce
lectric field profile of Eq.(19) into Eq.(23), and solving fo

he fluid velocity subject to the boundary conditions in
24), we obtain

u

U∗ = βΦ1 + 1
8Φ2 − 1

4(1 − β2)Φ3, (26)
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where

Φi = gi1(κb) − gi1(κy) − gi2(κb) + sec h(λd)gi2(κh)

− tanh(λd)gi0(κb), if 0 ≤ y ≤ b, (27a)

Φi = sech(λd)[gi2(κh) cosh(λy − λb)

−gi0(κb) sinh(λh− λy)] − gi2(κy), if b ≤ y ≤ h,

(27b)

for i = 1, 2, and 3. In the above equations,U∗ =
2kT |∇n∞|/ηκ2, which is a characteristic value of the diffu-
sioosmotic velocity, the functionsgi0(x), gi1(x), andgi2(x) are
defined by Eqs.(A.1)–(A.3) in Appendix A, andλ= (f/n)1/2.
The parameter 1/λ has the dimension of length and the
square of it is the so-called Darcy permeability of the porous
medium, which is related to the pore (or segment) size and
porosity and characterizes the dynamic behavior of the vis-
cous fluid in it. For the surface charge layers of human
erythrocytes[18], rat lymphocytes[24], and grafted poly-
mer microcapsules[25], experimental data ofi/λ range from
1.35 to 3.7 nm. It can be found from Eq.(27) that the func-
tionsΦ2 andΦ3 are almost equivalent when the value ofκh
is large and the value ofd/h is small.

The definition of the average fluid velocity over a cross
s

〈

S nd
p

w

〈

w
(

st
o
t osis
o m a
l the
n co-
i and
“ ner-
a olyte
g

involving the functionsΦ1 andΦ3 represent the contribution
from electroosmosis, while the remainder terms (containing
the functionΦ2) are the chemiosmotic component. Note that
additional second-order terms caused by electroosmosis may
exist if the electrolyte is not symmetric.

When there is no polymer adsorbed on the slit walls, one
hasd = 0, b = h, N = 0, andλ= 0 and the potential profile in
the slit is given by Eq.(10). Then, Eqs.(27)and(30) reduce
to

Φi = gi1(κh) − gi1(κy) (31)

〈Φ〉 = gi1(κh) − si1(κh) (32)

In the functionsgi1 and Si1 for this simple case, we take
A = A0, which was defined by Eq.(11). Eqs.(31) and(32)
agree with the result obtained in a previous article[16], in
which only the case of a capillary with bare walls is examined.
In this case, the functionsΦi and〈Φi〉 with i equal to 1, 2,
and 3 are always positive andΦ3 ≥Φ2. It can be found by
a comparison between Eqs.(30) and(32) that the structure
of the surface charge layer can result in an augmented or a
diminished fluid velocity relative to that in a capillary with
bare walls, depending on the characteristics of the electrolyte
solution, of the surface charge layer, and of the capillary.

For the case of a capillary slit coated with an uncharged
polymer layer (N = 0) at each of its inside walls, Eq.(10)
f uid
v
0

nce
t itely
l
a

Φ

Φ

〈

E yer
d id is
s ss
b ntial
a

bed
p the
c

Φ

Φ

〈

w
d rs
ection of the capillary slit is

u〉 = 1

h

∫ h

0
u(y) dy (28)

ubstituting Eqs.(26) and(27) into the above equation a
erforming the integration, we obtain

〈u〉
U∗ = β〈Φ1〉 + 1

8〈Φ2〉 − 1
4(1 − β2)〈Φ3〉, (29)

ith

Φi〉 = b

h
[gi1(κb) − gi2(κb)] + 1

λh
[λb sech(λd)

+ tanh(λd)]gi2(κh)

− 1

λh
[λb tanh(λd) − sech(λd) + 1]gi0(κb)

−si1(κb) − si2(κb), (30)

here the functionsSi1(x) (=
∫ x

0 gi1(x) dx/κh) and Si2(x)
=
∫ x

0 gi2(x) dx/κh) are defined by Eqs.(A.5) and(A.6).
The functionΦ1 in Eqs.(26) and(29) represents the fir

rders of̄σ (orζ) andN̄, while the functionsΦ2 andΦ3 denote
he second orders. As it is well-known, the diffusioosm
f an electrolyte solution in a capillary pore results fro

inear combination of two effects: “chemiosmosis” due to
onuniform adsorption of counter-ions and depletion of

ons in the electric double layer over the charged surface
electroosmosis” due to the macroscopic electric field ge
ted by the imposed concentration gradient of the electr
iven by Eq.(15) or (19). The terms in Eqs.(26) and(29)
or the potential distribution is also applicable and the fl
elocity can be evaluated from Eqs.(26)–(30)by settingN̄ =
, B = A = A0 andC = 0.

Whenλ→ ∞ (very high segment density), the resista
o the fluid motion inside the surface charge layer is infin
arge. For this limiting case,gi0(x) = gi2(x) = 0, and Eqs.(27)
nd(30) reduce to

i = gi1(κb) − gi1(κy), if 0 ≤ y ≤ b, (33a)

i = 0, if b ≤ y ≤ h, (33b)

Φi〉 = b

h
gi1(κb) − si1(κb) (34)

q.(33)shows that the fluid flow in the surface charge la
isappears and the velocity profile of the remaining flu
imilar to that in a polymer-free capillary slit of half thickne
with a modified surface charge density or surface pote
t the wall.

When λ→ 0 (very low segment density), the adsor
olymers do not exert resistance to the fluid motion in
apillary channel. In this limit, Eqs.(27)and(30)become

i = gi1(κb) − gi1(κy) + gi3(κb), if 0 ≤ y ≤ b, (35a)

i = gi3(κy), if b ≤ y ≤ h; (35b)

Φi〉 = b

h
[gi1(κb) + gi3(κb)] − si1(κb) + si3(κb), (36)

here the functionsgi3 andSi3(x) (=
∫ κh

x
gi3(x) dx/κh) are

efined by Eqs.(A.7) and(A.8). If the adsorbed polyme



H.C. Ma, H.J. Keh / Colloids and Surfaces A: Physicochem. Eng. Aspects 267 (2005) 4–15 9

are uncharged (N = 0), the above expressions for the fluid
velocity again reduce to Eqs.(31)and(32).

When the capillary slit is filled with the adsorbed poly-
mers, one hasd = h andb = 0, and the potential distribution in
the slit is given by Eq.(12). Then, Eqs.(27)and(30) reduce
to

Φi = gi4(κh)
cosh(λy)

cosh(λh)
− gi4(κy) (37)

〈Φi〉 = gi4(κh)
tanh(λh)

λh
− si4(κh), (38)

where the definitions of the functionsgi4(x) and Si4(x)
(=

∫ x

0 gi4(x) dx/κh) are given by Eqs.(A.9) and(A.10).

F
b
b

5. Results and discussion

For the system of an electrolyte solution in a capillary
slit bearing adsorbed polyelectrolytes on its inside walls, the
surface charge density of the wall, the surface potential of
the wall, the fixed-charge density in the polyelectrolyte layer,
and the electrokinetic dimensions of the system are related
by Eq. (9). Fig. 2(a) and (b) show the results of the ratio
σ̄/N̄ for the case ofb/h = 0 and for the case of a finite
value ofb/h (=0.8), respectively, as functions ofκh for several
values of the ratiōζ/N̄. It can be seen that̄σ/N̄ = 0 asκh = 0
andσ̄/N̄ = ζ̄/N̄ − 1 asκh → ∞, regardless of the values of
ζ̄/N̄ andb/h. For the special case withb/h = 0 andζ̄/N̄ = 1,
the potential in the polyelectrolyte-filled capillary equals the
ig. 2. Plots of the ratiōσ/N̄ for a capillary slit with its inside walls covered
y layers of adsorbed polyelectrolytes vs. the parameterκh: (a) b/h = 0; (b)
/h = 0.8.

F
p
T
−

ig. 3. Plots of the functionΦ3/N̄
2 for a capillary slit filled with adsorbed

olyelectrolytes (b/h = 0) vs. the relative positiony/h: (a)κh = 10; (b)λh = 1.
he dashed, solid, and dotted curves represent the casesζ̄/N̄ = 2, 0, and
2, respectively.
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Donnan potential everywhere, and̄σ/N̄ = 0 at any value of
κh. For the other cases withb/h = 0, σ̄ has the same sign
asζ̄ − N̄ and the magnitude of̄σ/N̄ increases monotonically
with an increase inκh for a constant value of̄ζ/N̄. For the case
with a finite value ofb/h, σ̄/N̄ is negative and its magnitude
is still a monotonic increasing function ofκh if ζ̄/N̄ ≤ 0,
but the dependence of̄σ/N̄ on κh may not be monotonic if
ζ̄/N̄ > 0.

The functionsΦ1, Φ2, andΦ3 given by Eq.(27) for
the general case and by Eqs.(31), (33), (35), and(37) for
several special cases determine the diffusioosmotic velocity
of a symmetric electrolyte in a capillary slit with each of its
inside walls covered by a layer of adsorbed polyelectrolytes
according to Eq.(26) correct to the second orders ofσ̄ (or

F
c
a
r

ζ̄) and N̄. Some graphical results concerningΦ1/N̄ and
Φ2/N̄

2 (andZeψ/kT N̄) as functions of the dimensionless
coordinatey/h can be found in the literature[22]. In Fig. 3,
the functionΦ3/N̄

2 for a slit filled with adsorbed polyelec-
trolytes (with b/h = 0) calculated form Eq.(37) is plotted
versusy/h for several values of the parametersζ̄/N̄, κh, and
λh. It can be seen thatΦ3 is positive, meaning that the effect
of the lateral distribution of the induced axial electric field in
the slit will cause the fluid flowing towards the end of higher
electrolyte concentration. As expected, the value ofΦ3 is a
monotonically decreasing function ofy/h from a maximum
at the median plane (withy = 0) between the slit walls to
zero at the no-slip walls (withy = h). The value ofΦ3/N̄

2

in general increases with an increase inζ̄/N̄. Evidently,Φ3
ig. 4. Plots of the functionΦ3/N̄
2 for a capillary slit with its inside walls

overed by layers of adsorbed polyelectrolytes vs. the relative positiony/h
s b/h = 0.8: (a)κh = 10; (b) λh = 1. The solid, dashed, and dotted curves
epresent the cases̄ζ/N̄ = 0, 2, and 4, respectively.

F
c
a
t

ig. 5. Plots of the functionΦ3/N̄
2 for a capillary slit with its inside walls

overed by layers of adsorbed polyelectrolytes vs. the relative positiony/h
sb/h = 0.8: (a)κh = 10; (b)λh = 1. The solid and dashed curves represent

he cases̄ζ/N̄ = −1 and−2, respectively.
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increases with an increase in the value ofκh and decreases
with an increase in the value ofλh, for an otherwise specified
condition. In the limiting situations thatκh = 0 (there is no
interaction between the diffuse ions and the fixed charges)
or λh → ∞ (there is no flow penetration into the polymer
layer),Φ3 vanishes at any position in the capillary.

The functionΦ3/N̄
2 for a capillary slit with its inside

walls covered by finite layers of adsorbed polyelectrolytes
(with b/h = 0.8 as an example) is plotted versus the relative
position y/h in Figs. 4 and 5for different values of the
parameters̄ζ/N̄, κh, andλh. Again,Φ3 is positive for given
values of these parameters, equals zero everywhere in the
capillary for the limiting case ofκh = 0, and decreases with
an increase inλh for an otherwise fixed condition. When the
magnitudes of̄ζ/N̄ andλh are relatively large,Φ3/N̄

2 is not
a monotonic function ofy/h due to the existence of the finite

F
p
c

polyelectrolyte layers on the slit walls. In the limitλh → ∞,
Φ3 vanishes within the surface charge layer (y > b) as
expected, but can be finite at other locations in the capillary.
For the case of̄ζ/N̄ ≥ 0, as illustrated inFig. 4, the value of
Φ3/N̄

2 increases with an increase inκh or ζ̄/N̄ for an other-
wise specified condition. For the case ofζ̄/N̄ < 0, as shown
in Fig. 5, Φ3 at a given relative position not too close to the
slit walls may not be a monotonically increasing function
of κh.

In Figs. 6–8, the averaged values〈Φ3〉/N̄2, 〈Φ2〉/N̄2, and
〈Φ3〉/N̄2, respectively, calculated from Eq.(38)as functions
of the relevant parameters are plotted for a slit filled with
adsorbed polyelectrolytes. For all cases, both〈Φ2〉/N̄2 and
〈Φ3〉/N̄2 are positive, and the dependence of these values on
the parameter̄ζ/N̄ becomes relatively weak when the magni-
tude of the parameterκh is large. On the other hand,〈Φ2〉/N̄2
ig. 6. Plots of the function〈Φ1〉/N̄ for a capillary slit filled with adsorbed
olyelectrolytes (b/h = 0) vs. the parametersλh andκh. The solid and dashed
urves represent the casesζ̄/N̄ = 0 and 2, respectively.

F
p
c

ig. 7. Plots of the function〈Φ2〉/N̄2 for a capillary slit filled with adsorbed
olyelectrolytes (b/h = 0) vs. the parametersλh andκh. The solid and dashed
urves represent the casesζ̄/N̄ = 0 and 2, respectively.
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is positive as̄ζ/N̄ > 1, negative as 0≤ ζ̄/N̄ < 1, and van-
ishes as̄ζ/N̄ = 1. For the case of̄ζ/N̄ < 0 (which is not
plotted here for conciseness),〈Φ2〉/N̄2 can be either positive
or negative depending on the combination ofζ̄/N̄ andκh. As
expected, the magnitudes of all these three average functions
increase with an increase in the value ofκh (the dependence
for 〈Φ2〉/N̄2 is weaker than for the other two functions when
κh is large) and decrease with an increase in the value ofλh,
for an otherwise specified condition. In the limiting situations
thatκh = 0 orλh → ∞, 〈Φ1〉 = 〈Φ2〉 = 〈Φ3〉 = 0 and there is no
fluid flow in the capillary.

The dependence of the normalized average diffusioos-
motic velocity〈u〉/U* of an electrolyte solution in a capillary
slit with each of its inside walls covered by a layer of adsorbed
polyelectrolytes on the dimensionless fixed-charge density

F
p
c

N̄ at a fixed value ofκh and various values of̄ζ/N̄, λh,
andb/h calculated from Eqs.(29) and(30) is displayed in
Figs. 9 and 10. Because our analysis is based on the assump-
tion of small electrostatic potentials, the magnitudes ofN̄

considered are less than 3.Fig. 9 is drawn for the case of a
symmetric electrolyte that the cation and anion diffusivities
are equal (β = 0, representing the aqueous solution of KCl
if Z = 1). Only the results at positive values ofN̄ are shown
because the fluid velocity, which is due to O(ζ2, ζN,N2) con-
tribution entirely as illustrated by Eqs.(29) and(30), is now
an even function ofN̄. It can be seen from Eq.(29) and
Figs. 7 and 8that the fluid flows contributed from chemiosmo-
sis (involving the functionΦ2) and electroosmosis (involving
ig. 8. Plots of the function〈Φ3〉/N̄2 for a capillary slit filled with adsorbed
olyelectrolytes (b/h = 0) vs. the parametersλh andκh. The solid and dashed
urves represent the casesζ̄/N̄ = 0 and 2, respectively.

F
a
e
(
ζ

ig. 9. Plots of the normalized average diffusioosmotic velocity〈u〉/U* in
capillary slit with its inside walls covered by layers of adsorbed poly-

lectrolytes vs. the dimensionless charge densityN̄ with κh = 10 andβ = 0:
a) b/h = 0; (b) b/h = 0.8. The solid and dashed curves represent the cases
/̄N̄ = 0 and 2, respectively.
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Fig. 10. Plots of the normalized average diffusioosmotic velocity〈u〉/U* in
a capillary slit with its inside walls covered by layers of adsorbed polyelec-
trolytes vs. the dimensionless charge densityN̄ with κh = 10 andβ =−0.2:
(a) b/h = 0; (b) b/h = 0.8. The solid and dashed curves represent the cases
ζ̄/N̄ = 0 and 2, respectively.

Φ3) are in the same direction as 0≤ ζ̄/N̄ < 1 but in the oppo-
site directions as̄ζ/N̄ > 1, and the net flow is dominated by
the electroosmotic effect (having the direction of increas-
ing electrolyte concentration). As expected, the magnitude
of 〈u〉/U* increases monotonically with an increase in|N̄|
and with a decrease inλh for constant values of̄ζ/N̄, κh, and
b/h. There is no diffusioosmotic motion of the fluid for the
special case of̄ζ = N̄ = 0. In a previous study of the same
diffusioosmosis[22], the O(ζ2, ζN,N2) contribution from
electroosmotic effect was not considered, and the resulted
fluid velocity (which is due to chemiosmotic effect only) for
the case of̄ζ/N̄ > 1 was in the direction of decreasing elec-
trolyte concentration. Note that the magnitude of〈u〉/U* has

the order unity for the case of a thin polyelectrolyte layer
(b/h → 1), but can be quite large ifb/h → 0.

In Fig. 10, the normalized average diffusioosmotic veloc-
ity 〈u〉/U* as a function ofN̄ is plotted for the case of a
symmetric electrolyte whose cation and anion have different
diffusion coefficients (β =−0.2 is chosen, representing the
aqueous solution of NaCl ifZ = 1). In this case, the diffu-
sioosmotic velocity is neither an even nor an odd function of
N̄. It can be seen that the fluid velocity is not necessarily a
monotonic function of the magnitude of̄N for fixed values
of ζ̄/N̄, κh, λh, andb/h. The curves in the vicinity of̄N = 0
indicate that the fluid might reverse direction of flow more
than once as̄N varies in a narrow range from negative to pos-
itive values. The reversals occurring at the values ofN̄ other
than zero result from the combination of the contributions
from electroosmosis of O(ζ,N) and O(ζ2, ζN,N2) (which
is still dominant in many situations) and chemiosmosis of
O(ζ2, ζN,N2). Again, for specified values of̄ζ, N̄, κh, and
b/h, the magnitude of〈u〉/U* decreases monotonically with
an increase inλh. In general, the net diffusioosmotic flow is
still dominated by the electroosmotic contribution and in the
direction of increasing electrolyte concentration.

6. Concluding remarks
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The steady diffusioosmotic flow of solutions of sy
etric electrolytes in a narrow capillary slit bearing

ayer of adsorbed polyelectrolytes on each of its in
alls is analytically studied in this work. Solving t

inearized Poisson–Boltzmann equation and the mod
avier–Stokes/Brinkman equation applicable to the sys

he electrostatic potential distribution and the fluid velo
rofile under the influence of a constant gradient of
lectrolyte concentration are obtained in closed form

he orders (ζ,N) and (ζ2, ζN, N̄2), respectively. The macr
copic electric field induced by the prescribed electro
oncentration gradient through the capillary slit is a func
f the lateral position rather than a constant bulk-ph
uantity. The contribution to the diffusioosmotic flow ma
y the position dependence of the induced electric field

he same order [O(ζ2, ζN,N2)] as, but may have an oppos
irection to, that made by the chemiosmotic effect, and

ormer is dominant in most practical situations, as indic
y Eq.(26). Therefore, the effect of the deviation of the lo

nduced axial electric field in the slit from its bulk-pha
uantity [given by the term of zeroth order inψ in Eq.(19)],
hich causes the fluid flowing towards the end of higher e

rolyte concentration, cannot be neglected in the evalu
f the diffusioosmotic flow rate in a capillary, even for
ase of very thin double layer. Our results demonstrate
he structure of the surface charge layer can lead to a quit
erent diffusioosmotic flow from that in a capillary with ba
alls [16], depending on the characteristics of the capil
f the surface charge layer, and of the electrolyte solutio



14 H.C. Ma, H.J. Keh / Colloids and Surfaces A: Physicochem. Eng. Aspects 267 (2005) 4–15

The macroscopic electric fieldE arising spontaneously
due to the imposed concentration gradient of the electrolyte
in the axial direction of the capillary slit is provided by
Eqs.(15) or (19), and the diffusioosmotic velocityu of the
electrolyte solution is obtained in Eq.(26); both are accu-
rate with the primary effects only. In addition to the ionic
fluxes due to diffusion and electric migration [given by Eq.
(14)], the diffusioosmotic fluid flow can generate an elec-
tric current by ionic convection (known as the relaxation
effect). This electric current is not included in the current
balance for the determination ofE in Section3. Thus, a
secondary induced electric field must build up through the
capillary, which is just sufficient to prevent the net electric
current flow. This secondary electric field, which is of the
order O(ζ2, ζN,N2), and its contribution to the fluid flow,
which is of the order O(ζ3, ζ2N, ζN2, N3), can be calculated
via a similar approach in the calculations of the streaming
potential induced across the capillary in the presence of an
applied pressure gradient[2,3,21]. Alternatively, distribu-
tions of ionic concentrations, electric potentials, and fluid
velocity might be calculated in a general self-consistent way
[13–15,28]. For the geometry of a capillary slit with adsorbed
polyelectrolyte layers considered in the present article, how-
ever, the general approach accurate to higher orders ofζ and
N would be somewhat complicated and could be an endeavor
for future work.
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ppendix A

For conciseness the definitions of some functions in
ion 4 are listed here. In Eq.(27),

10(x) = κ

λ

[
κ2

κ2 − λ2F2(x) − A sinhx

]
, (A.1a)

20(x) = κ

λ

[
4κ2

4κ2 − λ2F4(x) + 8κ2

κ2 − λ2 N̄F2(x)

− A2(sinh 2x− 2x)

]
, (A.1b)

30(x) = κ

λ

[
4κ2

4κ2 − λ2F4(x) + 8κ2

κ2 − λ2 N̄F2(x)

− A2(sinh 2x+ 2x)

]
; (A.1c)

11(x) = A coshx, (A.2a)
11(x) = A
κh

, (A.5a)

21(x) = 1

12κh
A2(3 sinh 2x− 4x3), (A.5b)

31(x) = 1

12κh
A2(3 sinh 2x+ 4x3); (A.5c)

12(x) = 1

κh

κ2

κ2 − λ2 [F2(κh) − F2(x)] − κ

λ2h
N̄(κh− x),

(A.6a)

22(x) = 1

κh

κ2

4κ2 − λ2 [F4(κh) − F4(x)]

+ 8

κh

κ2

κ2 − λ2 N̄[F2(κh) − F2(x)]

+ 2κ

λ2h
(2A2 − B2 + C2 − 2N̄2)(κh− x), (A.6b)

32(x) = s22(x) − 4κ

λ2h
A2(κh− x). (A.6c)

n Eqs.(35)and(36),

13(x) = F1(κh) − F1(x), (A.7a)

23(x) = g33(x) = 1
2[F3(κh) − F3(x)] + 8N̄g13(x); (A.7b)

13(x) = 1

κh
[F1(κh)(κh− x) − F2(κh) + F2(x)], (A.8a)
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s23(x) = s33(x) = 1

2κh
F3(κh)(κh− x)

− 1

4κh
[F4(κh) − F4(x)] + 8N̄s13(x). (A.8b)

In Eqs.(37)and(38),

g14(x) = κ2

κ2 − λ2B1 coshx− κ2

λ2 N̄, (A.9a)

g24(x) = 2κ2

4κ2 − λ2B1
2 cosh 2x+ 8κ2

κ2 − λ2B1N̄ coshx

+2κ2

λ2 (B1
2 + 4B1N̄), (A.9b)

g34(x) = g24(x) − 4κ2

λ2 (B1 + N̄)2; (A.9c)

s14(x) = κ2

κ2 − λ2B1
sinhx

κh
− κx

λ2h
N̄, (A.10a)

s24(x) = κ2

4κ2 − λ2B1
2 sinh 2x

κh
+ 8κ2

κ2 − λ2B1N̄
sinhx

κh

+2κx

λ2h
(B1

2 + 4B1N̄), (A.10b)
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